PowerPoint Presentation
|
|
- 수한 시
- 8 years ago
- Views:
Transcription
1 Hadoop 과 Advanced Analytics 을활용한 Big Data 숨은가치창출 임상배부장 Technology 사업본부, 한국오라클
2 Safe Harbor The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle s products remains at the sole discretion of Oracle. 2
3 Big Data Strategy Produce Data vs Use Data Big Data use case 3
4 Big Data s Impact on Business Run The Business Transform The Business Volume Velocity Variety Volume Velocity 4
5 Big Data Strategic Recommendations 1. Create Data reservoir for future value 2. Combine Data to get fast answers to new questions 3. Apply predictive analysis to get billion points of prediction 4. Accelerate data-driven actions 5
6 Big Data 환경, 가장큰기술적변화 ( 저장 / 처리 ) Data 전송구조에서 Program 전송구조로변경 Program Program Data VS Data 6
7 Big Data 환경, 가장큰기술적변화 ( 고급분석 ) 데이터이동없이, 데이터와분석을하나의환경에서 Advanced Analytics In-DB Analytics Advanced Analytics Data VS Data 데이터이동없음 데이터중복제거 높은보안성 기존추가인프라필요없음 7
8 Produce Data 어떻게이차이를줄일수있을까요? 대량의데이터를캡쳐 모든데이터를분석 안전하고통합된데이터플랫폼 Use Data 8
9 빅데이터구현접근방법 출처 : google trends( 기준 ) 9
10 Functional Assessment Hadoop vs. Relational STP Tooling maturity 5 4 Stringent Non-Functionals 3 Ingestion rate ACID transactions Hadoop on BDA Oracle on Exadata Cost effectively store low value data Security ETL simplicity Variety of data formats Data sparsity 10
11 Unified Big Data Environment VS & 11
12 Big Data Architecture 구성단계기존의 DW Architecture 에 Big Data 를포함하도록점진적으로확산 기존데이터대상고급분석 Fast Data 실시간처리 Low Density Data 저밀도고용량데이터저장및처리 Discovery 탐색을통한새로운정보발견 12
13 1 단계 : DW 상에서의고급분석데이터의이동없이데이터가있는곳에서고급분석수행 Business Data (ERP, CRM, SCM etc) Oracle Database Oracle BI Enterprise Edition Advanced Analytics Acquire Organize Analyze Decide 13
14 2 단계 : 저밀도데이터저장 / 처리도입 Hadoop 적용, DW 를위한비정형 ODS, ETL 보조, MR 기반알고리즘 Business Data (ERP, CRM, SCM etc) Unstructured Big Data Hadoop Algorithm (MapReduce) Aggregate Pre-Analyze Oracle Database Advanced Analytics Oracle BI Enterprise Edition Acquire Organize Analyze Decide 14
15 3 단계 : 실시간처리구조로의확장 CEP 기반실시간전략및대응환경구축 Business Data (ERP, CRM, SCM etc) Unstructured Big Data Hadoop Oracle Database Oracle BI Enterprise Edition Aggregate Pre-Analyze Advanced Analytics Model Streaming Data Event Processing Real Time Decisions Acquire Organize Act Analyze Decide 15
16 Database, [NoSQL & Hadoop] Best Together RDBMS NoSQL Hadoop 최적사용 : 비즈니스데이타 ( 계좌, 고객등 ) High density data 엄격한트랜잭션처리 (ACID) 다수의사용자에대해정합성과안정성보장 100% SQL Compliance 고비용 최적사용 : SNS, 블로그등의텍스트 Partial Consistency Delay 허용 유연성과효율성 특화된용도에맞게사용 RDBMS와는보완관계 선택의폭이넓어짐 최적사용 : 웹 / 센서로그등의 low density data 기존데이터의 Archival Parallel Batch Processing 트랜잭션지원안함 데이터전처리및집계에적합 저비용 데이터의특성에맞추어적절한아키텍쳐에저장하는것이 TCO 절감의출발점 16
17 기업내 Hadoop 활용사례유형 Algorithm (MapReduce) Unstructured Big Data Hadoop ILM ETL Aggregate Pre-Analyze RDBMS Advanced Analytics BI 1. 기존 DW 확장 (Hot, Warm, Cold) 2. 비정형 / 정형 ETL 역활 3. MapReduce 기반분석수행 (MR-Style Algorithm) Query ETL Analysis Acquire Organize Analyze Decide 17
18 어떤 Hadoop 을도입할것인가? 100% 오픈소스기반, 중요기술의빠른진화 Hadoop 전문가에의해구현 대형클러스터에필요한것에집중 개방적접근방식 대규모환경에서검증되었음 클라우데라가관리및테스트 오픈소스컴포넌트관리 다기능관리 GUI 툴제공 18
19 살것인가? 만들것인가? Hadoop 인프라구축및최적화 Oracle Big Data Appliance Balanced Architecture 6x Higher Performance Specialized connectors 40 Gb/sec network Pre-built Optimized for Hadoop Redundancy built-in Simplified Support Automated Install( Mammoth) BYO Hadoop Cluster Traditional Low Performance No specialized connectors 8 10 Gb/sec network Requires tuning Build-your-own HA Complex multivendor support Manual provisioning 19
20 Perfect Balance Reducing Skew in Reducers China BE NL Lux Total Runtime of Reduce Phase 20
21 Perfect Balance Reducing Skew in Reducers Time Reduction with Perfect Balance C1 C2 China C3 BE NL Lux Oracle Big Data Appliance 에서제공하는하둡 MR 성능강화기능 Original Run Time of Reduce Phase 21
22 만약그래도 DIY 로구성하고싶다면 하둡인프라전문가 & 하둡개발전문가모두필요 X86 서버를구매혹은재사용 ( 성능이슈 ) 하둡클러스터를위한네트워크인프라구축은?(80/20) 설치-> 설정-> 튜닝 (OS, JVM, Network, Hadoop) Data Skew 발생시대안은? 새로운버전의하둡패치는어떻게? HA 구성은어떻게?(NN, JT) 하둡보안성은어떻게?(Kerberos, Sentry, Audit) 하둡운영시맞게될어려움 ( 장애, Knowledge base 없음 ) 22
23 Unified Data Analytics Environment Unified Analytics API SQL R MR Hadoop RDBMS IB Management Framework and Tools Unified Analytics Processing Platform 23
24 Produce Data Use Data 어떻게이차이를줄일수있을까요? 대량의데이터를캡쳐 모든데이터를분석 안전하고통합된데이터플랫폼 24
25 Big Data Connectors and Data Integrator 15TB / hour 10x Faster Big Data Appliance + Hadoop Exadata + Oracle Database 25
26 Oracle SQL 을통한 Hadoop 활용 하둡 (hive) 데이터와 DB 데이터와조인수행 26
27 Analyze All Your Data In-Place Advanced Analytics Big Data Appliance + Hadoop Exadata + Oracle Database 27
28 Oracle DBMS SQL & R Analyze Data across all your Systems Hadoop R SQL Oracle Database 분석의데이터를확장하고하둡에있는데이터를분석할수있는사용자를확보 IB 기존에알고있는 Oracle SQL 과 R 의강력한기능을이용하여비정형 / 정형모든데이터를분석 28
29 Advanced Analytics: 구성요소 Oracle 의 RDBMS 에데이터마이닝, 통계분석, 고급분석의기능을포함» Oracle Data Mining 데이터베이스내마이닝알고리즘 스타스키마, 문장, 트랜잭션데이터마이닝 In-DB model 생성및적용 Exadata scoring 50+ in-db statistical functions» Oracle R Enterprise DB 내에서 R 수행 ; 일부함수는 SQL 로변형됨 in-db 통계함수를지원하는폭넒은라이브러리 내장된 R 을이용해모든 R 패키지지원 29
30 Advanced Analytics 의가치 Value Proposition Traditional Analytics Data Import Data Mining Model Scoring Data Preparation and Transformation Data Mining Model Building Data Prep & Transformation Oracle Advanced Analytics avings 데이터는데이터베이스에존재 SQL 커널에서확장성있고병렬처리가능한데이터마이닝알고리즘구현 데이터준비자동화적은총소유비용 (TCO) 데이터중복제거 별도의분석용서버들을제거 확장성, 관리성, 보안지원 x PERFORMANCE 데이터베이스의기능과통합데이터이동없이 in-db 분석수행정보지연현상제거 : 일 - 주 분 - 시간 Data Extraction Hours, Days or Weeks Model Scoring Embedded Data Prep Model Building Data Preparation Secs, Mins or Hours 10x LOWER TOTAL COST OF OWNERSHIP 전통적인통계 / 마이닝패키지의년간사용료절약 / 감소오라클 DB, DW 및 BI 기술플랫폼과레버리지됨 30
31 SQL Developer/Oracle Data Miner 4.0 R 스크립트를 GUI 환경에서사용 SQL Query node R 스크립트통합지원 R 31
32 Vector Register Oracle In-Memory DBMS(Announcing at OOW 2013) Fastest Query Performance In-Memory Column Store Sales CPU State column Load multiple State values CA >100X Faster SIMD Compare Vector all values Compare in 1 cycle all values in 1 cycle Scales Up or Scales out for very large data sets Scans use super fast SIMD vector instructions Billions of rows/sec scan rate per CPU core Joins up to 10X Faster 32
33 Produce Data Use Data 어떻게이차이를줄일수있을까요? 대량의데이터를캡쳐 모든데이터를분석 안전하고통합된데이터플랫폼 33
34 Platform Strengths Low-cost Scalability Flexible Schema on Read Abstract Storage Model Open Rapid Evolution Extreme Performance Highly Secure Analytic SQL Rich Tool Set Vast Expertise Big Data Appliance + Hadoop Exadata + Oracle Database 34
35 How can we leverage the strengths of both platforms? 35
36 Big Data 보안 Big Data 는반드시보호되어야하며감사를수행해야함. 기존 RDBMS 에저장된중요데이터와보안측면에있어차이가없음 36
37 Big Data 보안고려사항요약 : AAA Big Data 보안 (3A) Authenticate Users( 인증 ) Authorize access to data and services( 권한부여 ) Audit activity and users( 감사 ) 정확한감사를위해서는인증, 권한부여등이필요하며인증은필수적요소. 37
38 사용자위장디렉토리 / 파일레벨의접근권한 Hadoop Distributed File System: drwxr-xr-x - finance supergroup :52 /fin_data drwxr-xr-x - healthcare supergroup :52 /health_data Masquerade security Hadoop Cluster Sensitive data owned by users / groups 38
39 하둡기본보안모델해킹데모화면 39
40 Kerberos 를통한강력한인증제공 인증이필요한하둡서비스 주요하둡서비스대상인증필요 Flume, Hue, Oozie, Hive, HBase, ZooKeeper 등 3 rd Party 커넥터 사용자및서비스의시스템접속요청이정상인지를확인 Authenticate / Get Ticket Granting Ticket Client Key Distribution Center Access Service Using Ticket Kerberos Service Registration Key Distribution Center (Optional) Big Data Appliance 40
41 Apache Sentry 소개 Authorization Module for Hive & Impala Authorization Founded by Cloudera, Oracle and friends Open Source Donated to Apache Software Foundation Incubating 41
42 Sentry 권한인증기능 Authorization Module for Hive & Impala Authorization Secure Authorization 데이터접근및데이터권한제어 Fine-Grained Authorization 데이터베이스의서브셋 ( 컬럼 ) 수준의사용자접근권한제어 Role-Based Authorization 역활기반의템플릿화된권한을생성및적용 Multitenant Administration 각데이터베이스 / 스키마별다른정책을수립, 다른관리자에의해관리가능 42
43 하둡환경에서감사기능수행 Cloudera Navigator Architecture HDFS, Hive, Hbase, Cloudera Impala 서비스를통해접근한 HDFS 데이터와 Hive 메타데이터를대상으로감사수행 Audit 43
44 Oracle Audit Vault and Database Firewall 오라클 DBMS 감사와 Hadoop 감사를하나의솔루션으로수행 Audit Hadoop Non-Relational Data Audit Vault Operating Systems One 모든감사데이터에대한통합된, 안전한저장소 감사리포팅, 조기경보, 정책관리등을위한중앙화된플랫폼 Databases Relational Data 44
45 Big Data Use case 45
46 Turkcell Anti-Fraud Predictive Analytics Objectives Prepaid card fraud millions of dollars/year Extremely fast sifting through huge data volumes; with fraud, time is money Solution Monitor 10 billion daily call-data records Leveraged SQL for the preparation 1 PB Due to the slow process of moving data, Turkcell IT builds and deploys models in-db Oracle Advanced Analytics on Exadata for extreme speed. Analysts can detect fraud patterns almost immediately We can analyze large volumes of customer data and call-data records easier and faster than with any other tool and rapidly detect and combat fraudulent phone use. Hasan Tongu Yılmaz, Manager Oracle Advanced Analytics In-Database Fraud Models Exadata 46
47 National Cancer Institute Identifying Relationship between Gene to Cancer Interaction 17,000 Genes 60M Patients 5 Major Cancer Types 20M Medical Publications 47
48 Frederick National Laboratory Gene/Cancer Co-Occurrence 분석결과, 유전자활동에대하여상세경로를밝혀냄으로써항암제개발에많은정보를획득함 48
49 Frederick National Laboratory 49
50 FSI-Full Service Bank Before After Mainframe Mainframe Oracle Big Data Appliance Oracle Exadata Challenges: Reduce IT costs Comply with regulations requiring more data to support stress testing Consolidate and streamline data processing Benefits: Faster access to 6x more data Lower cost, simplified architecture Implemented in a matter of months 50
51 Big Data Use-case( 제조, 금융, 교통, 유통 ) 51
52 In-Database Analytics Unified Data Analytic Environment Oracle Big Data Appliance Optimized for Hadoop, R, and NoSQL Processing Oracle Big Data Connectors Oracle Exadata System of Record Optimized for DW/OLTP Oracle Exalytics Optimized for Analytics & In-Memory Workloads Hadoop (CDH Enterprise) Oracle R Oracle NoSQL Database Applications Oracle Big Data Connectors Oracle Advanced Analytics Data Warehouse Oracle Database Oracle Enterprise Performance Management Oracle Business Intelligence Applications Oracle Business Intelligence Tools Oracle Endeca Information Discovery 완성된하둡인프라 고성능 RDBMS 연계 In-DB 기반고급분석수행 탐색기반의정형 + 비정형복합처리 End to End 엔터프라이즈아키텍처지원, 유지보수및기술지원단일지원 52
김기남_ATDC2016_160620_[키노트].key
metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational
More informationDW 개요.PDF
Data Warehouse Hammersoftkorea BI Group / DW / 1960 1970 1980 1990 2000 Automating Informating Source : Kelly, The Data Warehousing : The Route to Mass Customization, 1996. -,, Data .,.., /. ...,.,,,.
More informationecorp-프로젝트제안서작성실무(양식3)
(BSC: Balanced ScoreCard) ( ) (Value Chain) (Firm Infrastructure) (Support Activities) (Human Resource Management) (Technology Development) (Primary Activities) (Procurement) (Inbound (Outbound (Marketing
More information15_3oracle
Principal Consultant Corporate Management Team ( Oracle HRMS ) Agenda 1. Oracle Overview 2. HR Transformation 3. Oracle HRMS Initiatives 4. Oracle HRMS Model 5. Oracle HRMS System 6. Business Benefit 7.
More information歯CRM개괄_허순영.PDF
CRM 2000. 8. KAIST CRM CRM CRM CRM :,, KAIST : 50%-60%, 20% 60%-80%. AMR Research 10.. CRM. 5. Harvard Business review 60%, 13%. Michaelson & Associates KAIST CRM? ( ),,, -,,, CRM needs,,, dynamically
More informationETL_project_best_practice1.ppt
ETL ETL Data,., Data Warehouse DataData Warehouse ETL tool/system: ETL, ETL Process Data Warehouse Platform Database, Access Method Data Source Data Operational Data Near Real-Time Data Modeling Refresh/Replication
More information歯목차45호.PDF
CRM CRM (CRM : Customer Relationship Management ). CRM,,.,,.. IMF.,.,. (CRM: Customer Relationship Management, CRM )., CRM,.,., 57 45 (2001 )., CRM...,, CRM, CRM.. CRM 1., CRM,. CRM,.,.,. (Volume),,,,,,,,,,
More informationPortal_9iAS.ppt [읽기 전용]
Application Server iplatform Oracle9 A P P L I C A T I O N S E R V E R i Oracle9i Application Server e-business Portal Client Database Server e-business Portals B2C, B2B, B2E, WebsiteX B2Me GUI ID B2C
More information들어가는글 2012년 IT 분야에서최고의관심사는아마도빅데이터일것이다. 관계형데이터진영을대표하는오라클은 2011년 10월개최된 오라클오픈월드 2011 에서오라클빅데이터어플라이언스 (Oracle Big Data Appliance, 이하 BDA) 를출시한다고발표하였다. 이와
Oracle Data Integrator 와 Oracle Big Data Appliance 저자 - 김태완부장, 한국오라클 Fusion Middleware(taewan.kim@oracle.com) 오라클은최근 Big Data 분약에 End-To-End 솔루션을지원하는벤더로급부상하고있고, 기존관계형데이터저장소와새로운트랜드인비정형빅데이터를통합하는데이터아키텍처로엔터프로이즈시장에서주목을받고있다.
More informationOracle9i Real Application Clusters
Senior Sales Consultant Oracle Corporation Oracle9i Real Application Clusters Agenda? ? (interconnect) (clusterware) Oracle9i Real Application Clusters computing is a breakthrough technology. The ability
More information빅데이터처리의핵심인 Hadoop 을오라클은어떻게지원하나요? Oracle Big Data Appliance Solution 01 빅데이터처리를위한전문솔루션이 Oracle Big Data Appliance 군요. Oracle Big Data Appliance 와함께라면더이
Cover Story 03 28 Oracle Big Data Solution 01_Oracle Big Data Appliance 02_Oracle Big Data Connectors 03_Oracle Exdata In-Memory Database Machine 04_Oracle Endeca Information Discovery 05_Oracle Event
More informationIntra_DW_Ch4.PDF
The Intranet Data Warehouse Richard Tanler Ch4 : Online Analytic Processing: From Data To Information 2000. 4. 14 All rights reserved OLAP OLAP OLAP OLAP OLAP OLAP is a label, rather than a technology
More informationCONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내 빅데이터 산 학 연 관
방송 통신 전파 KOREA COMMUNICATIONS AGENCY MAGAZINE 2013 VOL.174 09+10 CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내
More information슬라이드 제목 없음
(Electronic Commerce/Electronic Business) ( ) ,, Bio Bio 1 2 3 Money Money ( ) ( ) 4025 39 21 25 20 13 15 13 15 17 12 11 10 1 23 1 26 ( ) 1 2 2 6 (1 3 ) 1 14:00 20:00 1 2 1 1 5-6 4 e t / Life Cycle (e-commerce)
More information02이승민선생_오라클.PDF
Oracle Internet Procurement Agenda 1 2 3 4 5 Introduction Oracle Solution Overview Oracle Internet Procurement Value Proposition Reference Conclusion e-procurement, E- Commerce Internet Automated Transactions
More informationuntitled
3 IBM WebSphere User Conference ESB (e-mail : ljm@kr.ibm.com) Infrastructure Solution, IGS 2005. 9.13 ESB 를통한어플리케이션통합구축 2 IT 40%. IT,,.,, (Real Time Enterprise), End to End Access Processes bounded by
More informationuntitled
Logistics Strategic Planning pnjlee@cjcci.or.kr Difference between 3PL and SCM Factors Third-Party Logistics Supply Chain Management Goal Demand Management End User Satisfaction Just-in-case Lower
More informationCover Story 01 20 Oracle Big Data Vision 01_Big Data의 배경 02_Big Data의 정의 03_Big Data의 활용 방안 04_Big Data의 가치
Oracle Big Data 오라클 빅 데이터 이야기 Cover Story 01 20 Oracle Big Data Vision 01_Big Data의 배경 02_Big Data의 정의 03_Big Data의 활용 방안 04_Big Data의 가치 최근 빅 데이터에 대한 관심이 커지고 있는데, 그 배경이 무엇일까요? 정말 다양한 소스로부터 엄청난 데이터들이 쏟아져
More information±èÇö¿í Ãâ·Â
Smartphone Technical Trends and Security Technologies The smartphone market is increasing very rapidly due to the customer needs and industry trends with wireless carriers, device manufacturers, OS venders,
More informationPowerPoint 프레젠테이션
Reasons for Poor Performance Programs 60% Design 20% System 2.5% Database 17.5% Source: ORACLE Performance Tuning 1 SMS TOOL DBA Monitoring TOOL Administration TOOL Performance Insight Backup SQL TUNING
More informationuntitled
SAS Korea / Professional Service Division 2 3 Corporate Performance Management Definition ý... is a system that provides organizations with a method of measuring and aligning the organization strategy
More informationService-Oriented Architecture Copyright Tmax Soft 2005
Service-Oriented Architecture Copyright Tmax Soft 2005 Service-Oriented Architecture Copyright Tmax Soft 2005 Monolithic Architecture Reusable Services New Service Service Consumer Wrapped Service Composite
More informationModel Investor MANDO Portal Site People Customer BIS Supplier C R M PLM ERP MES HRIS S C M KMS Web -Based
e- Business Web Site 2002. 04.26 Model Investor MANDO Portal Site People Customer BIS Supplier C R M PLM ERP MES HRIS S C M KMS Web -Based Approach High E-Business Functionality Web Web --based based KMS/BIS
More informationMS-SQL SERVER 대비 기능
Business! ORACLE MS - SQL ORACLE MS - SQL Clustering A-Z A-F G-L M-R S-Z T-Z Microsoft EE : Works for benchmarks only CREATE VIEW Customers AS SELECT * FROM Server1.TableOwner.Customers_33 UNION ALL SELECT
More informationOracle Apps Day_SEM
Senior Consultant Application Sales Consulting Oracle Korea - 1. S = (P + R) x E S= P= R= E= Source : Strategy Execution, By Daniel M. Beall 2001 1. Strategy Formulation Sound Flawed Missed Opportunity
More informationSimplify your Job Automatic Storage Management DB TSC
Simplify your Job Automatic Storage Management DB TSC 1. DBA Challenges 2. ASM Disk group 3. Mirroring/Striping/Rebalancing 4. Traditional vs. ASM 5. ASM administration 6. ASM Summary Capacity in Terabytes
More informationBasic Template
Hadoop EcoSystem 을홗용한 Hybrid DW 구축사례 2013-05-02 KT cloudware / NexR Project Manager 정구범 klaus.jung@{kt nexr}.com KT의대용량데이터처리이슈 적재 Data의폭발적인증가 LTE 등초고속무선 Data 통싞 : 트래픽이예상보다빨리 / 많이증가 비통싞 ( 컨텐츠 / 플랫폼 /Bio/
More informationPowerPoint Presentation
빅데이터아키텍쳐소개 임상배 (sangbae.lim@oracle.com) Technology Sales Consulting, Oracle Korea Agenda 빅데이터아키텍쳐트랜드 빅데이터활용단계별요소기술 사업방향및활용사례 요약 Q&A 빅데이터아키텍쳐트랜드 빅데이터아키텍쳐트랜드 오픈소스와기간계, 정보계시스템과의융합 현재빅데이터의열풍의근원은하둡 (Hadoop)
More information<353020B9DAC3E1BDC42DC5ACB6F3BFECB5E520C4C4C7BBC6C3BFA1BCADC0C720BAB8BEC820B0EDB7C1BBE7C7D7BFA120B0FCC7D120BFACB1B82E687770>
한국산학기술학회논문지 Vol. 12, No. 3 pp. 1408-1416, 2011 클라우드 컴퓨팅에서의 보안 고려사항에 관한 연구 박춘식 1* 1 서울여자대학교 정보보호학과 Study on Security Considerations in the Cloud Computing Choon-Sik Park 1* 1 Department of Information Security,
More informationOZ-LMS TM OZ-LMS 2008 OZ-LMS 2006 OZ-LMS Lite Best IT Serviece Provider OZNET KOREA Management Philosophy & Vision Introduction OZNETKOREA IT Mission Core Values KH IT ERP Web Solution IT SW 2000 4 3 508-2
More information2017 1
2017 2017 Data Industry White Paper 2017 1 1 1 2 3 Interview 1 4 1 3 2017IT 4 20161 4 2017 4 * 22 2017 4 Cyber Physical SystemsCPS 1 GEGE CPS CPS Industrial internet, IoT GE GE Imagination at Work2012
More information슬라이드 1
Data Warehouse 통합솔루션 회사연혁 Teradata Corporation (NYSE: TDC) 은 30 년이상업계를선도하며, 전세계적으로 Big Data 및데이터웨어하우스관련 Analytic 솔루션과컨설팅서비스를제공하는최고의기술을보유한 Global 기업 Teradata 본사 한국 Teradata 미국오하이오주 Dayton에세계최초의금전등록기제조사
More informationDB진흥원 BIG DATA 전문가로 가는 길 발표자료.pptx
빅데이터의기술영역과 요구역량 줌인터넷 ( 주 ) 김우승 소개 http://zum.com 줌인터넷(주) 연구소 이력 줌인터넷 SK planet SK Telecom 삼성전자 http://kimws.wordpress.com @kimws 목차 빅데이터살펴보기 빅데이터에서다루는문제들 NoSQL 빅데이터라이프사이클 빅데이터플랫폼 빅데이터를위한역량 빅데이터를위한역할별요구지식
More informationMicrosoft PowerPoint - 3.공영DBM_최동욱_본부장-중소기업의_실용주의_CRM
中 규모 기업의 실용주의CRM 전략 (CRM for SMB) 공영DBM 솔루션컨설팅 사업부 본부장 최동욱 2007. 10. 25 Agenda I. 중소기업의 고객관리, CRM의 중요성 1. 국내외 CRM 동향 2. 고객관리, CRM의 중요성 3. CRM 도입의 기대효과 II. CRM정의 및 우리회사 적합성 1. 중소기업에 유용한 CRM의 정의 2. LTV(Life
More information<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770>
327 Journal of The Korea Institute of Information Security & Cryptology ISSN 1598-3986(Print) VOL.24, NO.2, Apr. 2014 ISSN 2288-2715(Online) http://dx.doi.org/10.13089/jkiisc.2014.24.2.327 개인정보 DB 암호화
More informationPowerPoint 프레젠테이션
CRM Data Quality Management 2003 2003. 11. 11 (SK ) hskim226@skcorp.com Why Quality Management? Prologue,,. Water Source Management 2 Low Quality Water 1) : High Quality Water 2) : ( ) Water Quality Management
More informationOpen Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤
Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤 (byounggon.kim@opence.org) 빅데이터분석및서비스플랫폼 모바일 Browser 인포메이션카탈로그 Search 인포메이션유형 보안등급 생성주기 형식
More informationAPOGEE Insight_KR_Base_3P11
Technical Specification Sheet Document No. 149-332P25 September, 2010 Insight 3.11 Base Workstation 그림 1. Insight Base 메인메뉴 Insight Base Insight Insight Base, Insight Base Insight Base Insight Windows
More informationスライド タイトルなし
2 3 회사 소개 60%출자 40%출자 주식회사 NTT데이타 아이테크 NTT DATA의 영업협력이나 첨단기술제공, 인재육성등 여러가지 지원을 통해서 SII 그룹을 대상으로 고도의 정보 서비스를 제공 함과 동시에 NTT DATA ITEC 가 보유하고 있는 높은 업무 노하우 와 SCM을 비롯한 ERP분야의 기술력을 살려서 조립가공계 및 제조업 등 새로운 시장에
More informationI I-1 I-2 I-3 I-4 I-5 I-6 GIS II II-1 II-2 II-3 III III-1 III-2 III-3 III-4 III-5 III-6 IV GIS IV-1 IV-2 (Complement) IV-3 IV-4 V References * 2012.
: 2013 1 25 Homepage: www.gaia3d.com Contact: info@gaia3d.com I I-1 I-2 I-3 I-4 I-5 I-6 GIS II II-1 II-2 II-3 III III-1 III-2 III-3 III-4 III-5 III-6 IV GIS IV-1 IV-2 (Complement) IV-3 IV-4 V References
More informationWeb Application Hosting in the AWS Cloud Contents 개요 가용성과 확장성이 높은 웹 호스팅은 복잡하고 비용이 많이 드는 사업이 될 수 있습니다. 전통적인 웹 확장 아키텍처는 높은 수준의 안정성을 보장하기 위해 복잡한 솔루션으로 구현
02 Web Application Hosting in the AWS Cloud www.wisen.co.kr Wisely Combine the Network platforms Web Application Hosting in the AWS Cloud Contents 개요 가용성과 확장성이 높은 웹 호스팅은 복잡하고 비용이 많이 드는 사업이 될 수 있습니다. 전통적인
More informationORANGE FOR ORACLE V4.0 INSTALLATION GUIDE (Online Upgrade) ORANGE CONFIGURATION ADMIN O
Orange for ORACLE V4.0 Installation Guide ORANGE FOR ORACLE V4.0 INSTALLATION GUIDE...1 1....2 1.1...2 1.2...2 1.2.1...2 1.2.2 (Online Upgrade)...11 1.3 ORANGE CONFIGURATION ADMIN...12 1.3.1 Orange Configuration
More informationBackup Exec
(sjin.kim@veritas.com) www.veritas veritas.co..co.kr ? 24 X 7 X 365 Global Data Access.. 100% Storage Used Terabytes 9 8 7 6 5 4 3 2 1 0 2000 2001 2002 2003 IDC (TB) 93%. 199693,000 TB 2000831,000 TB.
More information1.장인석-ITIL 소개.ppt
HP 2005 6 IT ITIL Framework IT IT Framework Synchronized Business and IT Business Information technology Delivers: Simplicity, Agility, Value IT Complexity Cost Scale IT Technology IT Infrastructure IT
More informationSchoolNet튜토리얼.PDF
Interoperability :,, Reusability: : Manageability : Accessibility :, LMS Durability : (Specifications), AICC (Aviation Industry CBT Committee) : 1988, /, LMS IMS : 1997EduCom NLII,,,,, ARIADNE (Alliance
More informationsolution map_....
SOLUTION BROCHURE RELIABLE STORAGE SOLUTIONS ETERNUS FOR RELIABILITY AND AVAILABILITY PROTECT YOUR DATA AND SUPPORT BUSINESS FLEXIBILITY WITH FUJITSU STORAGE SOLUTIONS kr.fujitsu.com INDEX 1. Storage System
More informationPowerPoint 프레젠테이션
2003 CRM (Table of Contents). CRM. 2003. 2003 CRM. CRM . CRM CRM,,, Modeling Revenue Legacy System C. V. C. C V.. = V Calling Behavior. Behavior al Value Profitability Customer Value Function Churn scoring
More informationCRM Fair 2004
easycrm Workbench ( ) 2004.04.02 I. CRM 1. CRM 2. CRM 3. II. easybi(business Intelligence) Framework 1. 2. - easydataflow Workbench - easycampaign Workbench - easypivot Reporter. 1. CRM 1.?! 1.. a. & b.
More information04-다시_고속철도61~80p
Approach for Value Improvement to Increase High-speed Railway Speed An effective way to develop a highly competitive system is to create a new market place that can create new values. Creating tools and
More informationThe Self-Managing Database : Automatic Health Monitoring and Alerting
The Self-Managing Database : Automatic Health Monitoring and Alerting Agenda Oracle 10g Enterpirse Manager Oracle 10g 3 rd Party PL/SQL API Summary (Self-Managing Database) ? 6% 6% 12% 55% 6% Source: IOUG
More informationPowerPoint Presentation
We Are Living in the Information Age Saint Kim, Senior Director, Enterprise Architect In digital era, What does Watching TV even mean? 2 Source: The Wall Street Journal (2013/10/08) Insert Information
More information03.Agile.key
CSE4006 Software Engineering Agile Development Scott Uk-Jin Lee Division of Computer Science, College of Computing Hanyang University ERICA Campus 1 st Semester 2018 Background of Agile SW Development
More information2013<C724><B9AC><ACBD><C601><C2E4><CC9C><C0AC><B840><C9D1>(<C6F9><C6A9>).pdf
11-1140100-000102-01 9 93320 788988 807705 ISBN 978-89-88807-70-5 93320 2013 11 25 2013 11 28,,, FKI ISBN 978-89-88807-70-5 87 www.acrc.go.kr 24 www.fki.or.kr PREFACE CONTENTS 011 017 033 043 051 061
More informationexample code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for
2003 Development of the Software Generation Method using Model Driven Software Engineering Tool,,,,, Hoon-Seon Chang, Jae-Cheon Jung, Jae-Hack Kim Hee-Hwan Han, Do-Yeon Kim, Young-Woo Chang Wang Sik, Moon
More information06_ÀÌÀçÈÆ¿Ü0926
182 183 184 / 1) IT 2) 3) IT Video Cassette Recorder VCR Personal Video Recorder PVR VCR 4) 185 5) 6) 7) Cloud Computing 8) 186 VCR P P Torrent 9) avi wmv 10) VCR 187 VCR 11) 12) VCR 13) 14) 188 VTR %
More information비식별화 기술 활용 안내서-최종수정.indd
빅데이터 활용을 위한 빅데이터 담당자들이 실무에 활용 할 수 있도록 비식별화 기술과 활용방법, 실무 사례 및 예제, 분야별 참고 법령 및 활용 Q&A 등 안내 개인정보 비식별화 기술 활용 안내서 Ver 1.0 작성 및 문의 미래창조과학부 : 양현철 사무관 / 김자영 주무관 한국정보화진흥원 : 김진철 수석 / 김배현 수석 / 신신애 부장 문의 : cckim@nia.or.kr
More information14 경영관리연구 제6권 제1호 (2013. 6) Ⅰ. 서론 2013년 1월 11일 미국의 유명한 경영전문 월간지 패스트 컴퍼니 가 2013년 글로벌 혁신 기업 50 을 발표했다. 가장 눈에 띄는 것은 2년 연속 혁신기업 1위를 차지했던 애플의 추락 이었다. 음성 인식
애플의 사례를 통해 살펴본 창조적 파괴 13 경영관리연구 (제6권 제1호) 애플의 사례를 통해 살펴본 창조적 파괴 박재영 이맥소프트(주) 부사장 슘페터가 제시한 창조적 파괴는 경제적 혁신과 비즈니스 사이클을 의미하는 이론이며, 단순하게 는 창조적 혁신을 의미한다. 즉 혁신적 기업의 창조적 파괴행위로 인해 새로운 제품이 성공적으로 탄생하는 것이다. 이후 다른
More informationSW¹é¼Ł-³¯°³Æ÷ÇÔÇ¥Áö2013
SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING
More information슬라이드 1
Data-driven Industry Reinvention All Things Data Con 2016, Opening speech SKT 종합기술원 최진성원장 Big Data Landscape Expansion Big Data Tech/Biz 진화방향 SK Telecom Big Data Activities Lesson Learned and Other Topics
More informationPCServerMgmt7
Web Windows NT/2000 Server DP&NM Lab 1 Contents 2 Windows NT Service Provider Management Application Web UI 3 . PC,, Client/Server Network 4 (1),,, PC Mainframe PC Backbone Server TCP/IP DCS PLC Network
More information` Companies need to play various roles as the network of supply chain gradually expands. Companies are required to form a supply chain with outsourcing or partnerships since a company can not
More information20(53?)_???_O2O(Online to Offline)??? ???? ??.hwp
O2O(Online to Offline)서비스 전략방향 연구 - 모바일 사용자 경험 디자인(UX Design)을 중심으로 - O2O(Online to Offline) Service Strategy Research -Focusing on Mobile UX Design- 주저자 김 형 모 Kim, Hyung-mo BK21플러스 다빈치 창의융합인재양성사업단 BK21Plus
More informationuntitled
(shared) (integrated) (stored) (operational) (data) : (DBMS) :, (database) :DBMS File & Database - : - : ( : ) - : - : - :, - DB - - -DBMScatalog meta-data -DBMS -DBMS - -DBMS concurrency control E-R,
More information歯부장
00-10-31 1 (1030) 2/26 (end-to-end) Infrastructure,, AMR. e-business e-business Domain e-business B2B Domain / R&D, B2B B2E B2C e-business IT Framework e-business Platform Clearance/Security * e-business
More information정보기술응용학회 발표
, hsh@bhknuackr, trademark21@koreacom 1370, +82-53-950-5440 - 476 - :,, VOC,, CBML - Abstract -,, VOC VOC VOC - 477 - - 478 - Cost- Center [2] VOC VOC, ( ) VOC - 479 - IT [7] Knowledge / Information Management
More informationAgenda 01 Oracle Big Data Analytics Solution Business Data Data Streaming(NoSQL) APIs Oracle CAF & Stream Explorer Data Services Data Streams Social/L
BIG DATA PLATFOM & ANALYTICS SOLUTION BIG DATA ANALYTICS SOLUTION BIG DATA CLOUD SEVICE Agenda 01 Oracle Big Data Analytics Solution Business Data Data Streaming(NoSQL) APIs Oracle CAF & Stream Explorer
More informationE-BI Day Presentation
E-Business Intelligence Agenda Issue E-BI Architecture ORACLE E-BI Solutions ORACLE E-BI ORACLE E-BI I. Issue? KPI. (KPI ). Jeff Henley, CFO, Oracle Corporation I. Issue? I. Issue Many Sources, Users,and
More informationAgenda 오픈소스 트렌드 전망 Red Hat Enterprise Virtualization Red Hat Enterprise Linux OpenStack Platform Open Hybrid Cloud
오픈소스 기반 레드햇 클라우드 기술 Red Hat, Inc. Senior Solution Architect 최원영 부장 wchoi@redhat.com Agenda 오픈소스 트렌드 전망 Red Hat Enterprise Virtualization Red Hat Enterprise Linux OpenStack Platform Open Hybrid Cloud Red
More informationBusiness Agility () Dynamic ebusiness, RTE (Real-Time Enterprise) IT Web Services c c WE-SDS (Web Services Enabled SDS) SDS SDS Service-riented Architecture Web Services ( ) ( ) ( ) / c IT / Service- Service-
More informationInteg
HP Integrity HP Chipset Itanium 2(Processor 9100) HP Integrity HP, Itanium. HP Integrity Blade BL860c HP Integrity Blade BL870c HP Integrity rx2660 HP Integrity rx3600 HP Integrity rx6600 2 HP Integrity
More informationData Industry White Paper
2017 2017 Data Industry White Paper 2017 1 3 1 2 3 Interview 1 ICT 1 Recommendation System * 98 2017 Artificial 3 Neural NetworkArtificial IntelligenceAI 2 AlphaGo 1 33 Search Algorithm Deep Learning IBM
More informationPowerPoint 프레젠테이션
CRM Fair 2004 Spring Copyright 2004 DaumSoft All rights reserved. INDEX Copyright 2004 DaumSoft All rights reserved. Copyright 2004 DaumSoft All rights reserved. Copyright 2004 DaumSoft All rights reserved.
More informationAmazon EBS (Elastic Block Storage) Amazon EC2 Local Instance Store (Ephemeral Volumes) Amazon S3 (Simple Storage Service) / Glacier Elastic File Syste (EFS) Storage Gateway AWS Import/Export 1 Instance
More information08SW
www.mke.go.kr + www.keit.re.kr Part.08 654 662 709 731 753 778 01 654 Korea EvaluationInstitute of industrial Technology IT R&D www.mke.go.kr www.keit.re.kr 02 Ministry of Knowledge Economy 655 Domain-Specific
More information빅데이터_DAY key
Big Data Near You 2016. 06. 16 Prof. Sehyug Kwon Dept. of Statistics 4V s of Big Data Volume Variety Velocity Veracity Value 대용량 다양한 유형 실시간 정보 (불)확실성 가치 tera(1,0004) - peta -exazetta(10007) bytes in 2020
More information사용시 기본적인 주의사항 경고 : 전기 기구를 사용할 때는 다음의 기본적인 주의 사항을 반드시 유의하여야 합니다..제품을 사용하기 전에 반드시 사용법을 정독하십시오. 2.물과 가까운 곳, 욕실이나 부엌 그리고 수영장 같은 곳에서 제품을 사용하지 마십시오. 3.이 제품은
OPERATING INSTRUCTIONS OPERATING INSTRUCTIONS 사용자설명서 TourBus 0 & TourBus 5 사용시 기본적인 주의사항 경고 : 전기 기구를 사용할 때는 다음의 기본적인 주의 사항을 반드시 유의하여야 합니다..제품을 사용하기 전에 반드시 사용법을 정독하십시오. 2.물과 가까운 곳, 욕실이나 부엌 그리고 수영장 같은 곳에서
More informationSecurity Overview
May. 14, 2004 Background Security Issue & Management Scope of Security Security Incident Security Organization Security Level Security Investment Security Roadmap Security Process Security Architecture
More information금융고객 보안 Selling
Big Data Innovation : 효율적인활용전략고찰 장성우상무 Technology Business Unit, Oracle Korea Agenda Big Data 브리핑 Big Data 활용전략 주요질문정리 활용시고려사항 Big Data 아키텍쳐구성방안 Big Data To-Be Architecture 오라클의지원솔루션
More information¹Ìµå¹Ì3Â÷Àμâ
MIDME LOGISTICS Trusted Solutions for 02 CEO MESSAGE MIDME LOGISTICS CO., LTD. 01 Ceo Message We, MIDME LOGISTICS CO., LTD. has established to create aduance logistics service. Try to give confidence to
More informationF1-1(수정).ppt
, thcho@kisaorkr IPAK (Information Protection Assessment Kit) IAM (INFOSEC Assessment Methodology) 4 VAF (Vulnerability Assessment Framework) 5 OCTAVE (Operationally Critical Threat, Asset, and Vulnerability
More information지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월
지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., 2004 5 2009 12 KOSPI200.,. * 2009. 지능정보연구제 16 권제 1 호 2010 년 3 월 김선웅 안현철 社 1), 28 1, 2009, 4. 1. 지능정보연구제 16 권제 1 호 2010 년 3 월 Support
More informationMicrosoft PowerPoint - XP Style
Business Strategy for the Internet! David & Danny s Column 유무선 통합 포탈은 없다 David Kim, Danny Park 2002-02-28 It allows users to access personalized contents and customized digital services through different
More information[Brochure] KOR_TunA
LG CNS LG CNS APM (TunA) LG CNS APM (TunA) 어플리케이션의 성능 개선을 위한 직관적이고 심플한 APM 솔루션 APM 이란? Application Performance Management 란? 사용자 관점 그리고 비즈니스 관점에서 실제 서비스되고 있는 어플리케이션의 성능 관리 체계입니다. 이를 위해서는 신속한 장애 지점 파악 /
More information슬라이드 1
2015( 제 8 회 ) 한국소프트웨어아키텍트대회 Database In-Memory 2015. 07. 16 한국오라클 김용한 Agenda 1 2 3 4 5 6 In-Memory Computing 개요주요요소기술 In-Memory의오해와실제적용시고려사항 12c In-Memory Option의소개결론 2 1. In-Memory Computing 개요 전통적인데이터처리방식
More informationCover Story 빅데이터플랫폼 Big Data 시대의엔터프라이즈인프라스트럭처 ORACLE KOREA MAGAZINE Spring 개요빅데이터를처리하는기술의가장중심기술은아파치하둡기술일것이다. 하둡기술은데이터를취득하고이를구조화시키고분석을하는일련의과정에
Cover Story 04 빅데이터플랫폼 Big Data 시대의엔터프라이즈인프라스트럭처 저자 - 홍기현상무, 한국오라클 Tech Sales Consultant(kihyun.hong@oracle.com) 빅데이터기술은데이터크기혹은증가속도가빠르고데이터저장형태도다양하여이를 모델링후분석하기에는부적합한형태의데이터를분산시스템을이용하여분석하는기술이다. 또한빅데이터로는트위터나페이스북같은소셜미디어에올라온데이터가언급되기도하지만,
More information歯김한석.PDF
HSN 2001 Workshop Session IX Service Providers and Business Model Future Business Models for Telecom Industry 1. Internet Economy 2. E-business 3. Internet Economy 4.? 1 1. Internet Economy 1.1 Internet
More informationdbms_snu.PDF
DBMS : Past, Present, and the Future hjk@oopsla.snu.ac.kr 1 Table of Contents 2 DBMS? 3 DBMS Architecture naive users naive users programmers application casual users casual users administrator database
More informationDE1-SoC Board
실습 1 개발환경 DE1-SoC Board Design Tools - Installation Download & Install Quartus Prime Lite Edition http://www.altera.com/ Quartus Prime (includes Nios II EDS) Nios II Embedded Design Suite (EDS) is automatically
More informationuntitled
Form 20-F () Annual Report(2006) 69 6 2, 2007. 6. 28. Securities and Exchange Commission(SEC) Form 20-F Annual Report(2006)., Form 20-F Annual Report(2006) Investor Relations-SEC Filings-Form 20- F(US
More informationIBM Business Intelligence Solution Seminar 2005 Choose the Right Data Integration Solution ; Best Practices on EII/EAI/ETL IBM DB2 Technical Sales BI
Choose the Right Data Integration Solution ; Best Practices on EII/EAI/ETL IBM DB2 Technical Sales BI Team (byrhee@kr.ibm.com) 2005 IBM Corporation Agenda I. II. ETL, EII, EAI III. ETL, EII, EAI Best Practice
More information......CF0_16..c01....
Greetings Curriculum Internal Audit / Compliance Corporate Govemance IR / Value Reporting Valuation / M&A Investment Strategy Education Process Resume ERP / SEM Value Based Corporate Finance Incentives
More information歯3이화진
http://www.kbc.go.kr/ Abstract Terrestrial Broadcasters Strategies in the Age of Digital Broadcasting Wha-Jin Lee The purpose of this research is firstly to investigate the
More informationAgenda 2
(SRM Strategic Sourcing) Procurement/PLM Leader IBM GBS SCM Seungmin Hong Agenda 2 / /, Procurement Competency Performance Human ( /,, Resource Physical/Virtual) Sourcing Spend Analysis, Virtual Team /
More informationvm-웨어-01장
Chapter 16 21 (Agenda). (Green),., 2010. IT IT. IT 2007 3.1% 2030 11.1%, IT 2007 1.1.% 2030 4.7%, 2020 4 IT. 1 IT, IT. (Virtualization),. 2009 /IT 2010 10 2. 6 2008. 1970 MIT IBM (Mainframe), x86 1. (http
More information시안
ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE SCHOOL OF TECHNOLOGY & INNOVATION MANAGEMENT 울산과학기술원 기술경영전문대학원 http://mot.unist.ac.kr 02 03 Global Study Mission CURRICULUM 2 Practicality Global
More information00내지1번2번
www.keit.re.kr 2011. 11 Technology Level Evaluation ABSTRACT The Technology Level Evaluation assesses the current level of industrial technological development in Korea and identifies areas that are underdeveloped
More informationVoice Portal using Oracle 9i AS Wireless
Voice Portal Platform using Oracle9iAS Wireless 20020829 Oracle Technology Day 1 Contents Introduction Voice Portal Voice Web Voice XML Voice Portal Platform using Oracle9iAS Wireless Voice Portal Video
More information13 Who am I? R&D, Product Development Manager / Smart Worker Visualization SW SW KAIST Software Engineering Computer Engineering 3
13 Lightweight BPM Engine SW 13 Who am I? R&D, Product Development Manager / Smart Worker Visualization SW SW KAIST Software Engineering Computer Engineering 3 BPM? 13 13 Vendor BPM?? EA??? http://en.wikipedia.org/wiki/business_process_management,
More information김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월
지능정보연구제 17 권제 4 호 2011 년 12 월 (pp.241~254) Support vector machines(svm),, CRM. SVM,,., SVM,,.,,. SVM, SVM. SVM.. * 2009() (NRF-2009-327- B00212). 지능정보연구제 17 권제 4 호 2011 년 12 월 김경재 안현철 지능정보연구제 17 권제 4 호
More information_LG히다찌 브로슈어
SOLUTION GUIDE BOOK G ITACHI OLUTION UIDE OOK ABOUT US UCP www.lghitachi.co.kr T 070 8290 3700 F 02 3272 9746 02 CONTENTS 04 05 10 13 18 29 BUSINESS AREA FINANCE SOLUTION FINTECH SOLUTION CONVERGED SOLUTION
More information