위세아이텍_iOLAP_
|
|
- 영아 용
- 5 years ago
- Views:
Transcription
1 빅데이터관리와분석을위한 플랫폼융합활용사례 BI Forum
2 분석시스템구축 Review(1/2) 1
3 분석시스템구축 Review(2/2) 분석속도가느리다면? 정보요구사항이변하거나 추가된다면? 데이터량이너무많다면? 2
4 과거의빅데이터저장 데이터량이너무많다 그러나 RDBMS 에서관리하는것은 막대한비용소요 지금까지의처리방안 1. 데이터간에우선순위부여 신용카드데이터 > 상품데이터 > 웹로그데이터 수집하지않거나 ( 버리거나 ) 상세수준으로저장하지않는다 2. 데이터시점에우선순위부여 최근 3 년치만 RDBMS 에나머지는테이프에 3. 데이터접근수준차등화 집계데이터만전사공유, 세부데이터는각부서별로보관 3
5 최근의빅데이터저장 RDBMS 를벗어나서비용부담없고확장성있는방식을찾자! 데이터저장방향 그냥모든데이터를 ( 있는그대로 ) 저장하자 원래형태그대로상세수준그대로저장 문서, 동영상과같은비정형데이터도그대로저장 가장현실적인대안은? Hadoop Hadoop은무료이고필요한머신과 SW는저렴 검증된성능 - 하둡의최대이용자인야후는 5만개의노드로구성된하둡네트워크를배치하여사용중 4
6 Hadoop Review - Hadoop Framework HDFS: 하둡분산형파일시스템 HCatalog: 하둡데이터용테이블및스토리지관리서비스 Pig: 맵리듀스용프로그래밍및데이터플로우인터페이스 Hive: SQL과유사한언어인 HiveQL을이용해하둡데이터쿼리를생성하는솔루션 (DW) 출처 : Brian Proffitt, ITWorld 5
7 Hadoop Framework - HDFS RDBMS 를벗어나서비용부담없고확장성있는방식을찾자! HDFS? 하둡네크워크에연결된아무기기에나데이터를밀어넣는분산형파일시스템 (Brian Proffitt) 다수의노드로이루어진하둡시스템에데이터가자동적으로중복되게만듦. 따라서하나의노드에서고장이발생하거나느려지더라도여전히그데이터에접근할수있다 Cloudera 의제시스펙 중간수준의프로세서, 4~32 GB의메모리 각노드에대한 1 GbE 네트워크연결및 10 GbE의탑-오브-랙 (Topof-Rack) 스위치 하둡이네트워크를포화상태로만들지못하도록하는전용스위칭인프라 장비당 4~12개의드라이브및비 RAID 방식 6
8 Hadoop Framework 다양성의인식 하둡은오픈소스 구성요소는모두가변적이며 core 라도다른 SW 로대체가능하다 120여종의 NoSQL 제품 Column Family DB: Hbase, Cassandra Document DB: MongoDB, CouchDB Key/Value DB: Scalaris, Membase Graph DB: Neo4J, Dynomite 아마존의 EC2(Elastic Compute Cloud) 는 S3 채용 DataStax의 brisk는하둡배포판에서 Cassandra FS로대체 7
9 Hadoop 재검토 시스템도입책임자로서질문 하둡기술자를확보할수있는가? 하둡요소기술은다양하고계속변화하는데우리 IT 담당자들이 계속따라갈수있을까? ( 중저가라고는하지만 ) 서버를도대체몇대나구매해야하는가? 기존 RDBMS의기능과성능을대체가능한가? 정말저렴한가? ( 서버면적, 전기료, 인건비, ) 8
10 최근의동향 Hadoop 도입동향 IDC, 대형포털, 클라우드서비스제공기업에서는 Hadoop을적용 일반기업에서는도입사례적으며, 특히금융권에서는찾아보기어려움 Hadoop을전면적으로도입하기보다는보완적으로도입 업계동향 5~30 테라수준 & 빠른속도의 Appliance 확장성높은 RDBMS ( 티베로의 TMC, 100 테라이상 ) 9
11 빅데이터저장사례 사례 1 국내 Global 가전업체 전세계 Smart TV의프로그램 ( 앱, 비디오 ) 이용데이터수집 ( 서버로그, 서비스로그 ) 전세계기기별데이터의통합 사례 2 국내 Global 게임서비스업체 국내서버외에유럽, 미주서버에서게임서비스 게임이용통합분석을위한데이터취합 상기사례는현재프로젝트진행중인내용이며, 진행에따라내용이변경될수있음 10
12 국내 Global 가전업체사례 (1/2) Global Public Cloud Global Public Cloud 로그생성및저장 Mart OLAP Cube OLAP Mart Reporting 내부시스템 매출, 서비스 ODS DW 메타정보 11
13 국내 Global 가전업체사례 (2/2) Why Global Public Cloud? 데이터증가에대한유연한대처 데이터이중백업 ( 다른대륙에위치한 IDC 에백업 ) 보안위험성낮음 ( 특히 DDoS) 플랫폼변경에유연 (Hadoop 적용, 고성능업그레이드등 ) 12
14 국내 Global 게임서비스업체사례 (1/3) 지역별게임서비스데이터 ( 국내, 유럽, 미주 ) Global Public Cloud In-Memory Global Public Cloud SaaS BI DB DM Cube OLAP Log Cloud Storage EIS DBMS DW /DM Cube Social Analytics HDFS HIVE DW SNS Mart 13
15 국내 Global 게임서비스업체사례 (2/3) Why Global Public Cloud? Cloud 없이는국내서버로의데이터취합부터어려움 저렴한비용 Why Cloud BI? 유연한라이선스 저렴한비용 특정제품 (Tool) 에종속적이지않음 14
16 국내 Global 게임서비스업체사례 (3/3) 서버구매방식과비교하여 Cloud 는얼마나저렴한가? 직접비용 국내데이터규모, 5 년기준 실서버구매 (DW 용서버와 Storage, DBMS/OS 포함 ) 와비교 Public Cloud 비용은서버구매대비 40% 이하 기타비용 실서버구매시추가 SW( 보안, 백업등 ) 구매필요 서버설치관련비용 ( 임대면적, 네트웍공사, 전기료 ) 인건비 ( 서버관리자 ), 데이터저장량이예상보다늘어날경우, Cloud에서는아주적은비용으로바로대처가능 15
17 기존 BI 환경과 Hadoop 의융합 (1/2) 기존 RDB 플랫폼을유지하면서 Hadoop 을도입하고자할경우 기존 RDBMS 에서하둡으로데이터를옮기려면? 클라우데라의 Sqoop(SQL-to-Hadoop) 툴이대표적 JDBC 인터페이스를통해 RDBMS의데이터를불러올수있게함 Sqoop을이용해 RDBMS 데이터를곧바로 Hive DW로불러올수도있음 쿼리분석을하려면? Hive 하이브쿼리언어 (Hive QL) 를이용해쿼리수행하고분석 주의사항 : 하둡은배치처리시스템이기때문에하이브쿼리시상당한지연이발생할수있음 16
18 기존 BI 환경과 Hadoop 의융합 (2/2) Hadoop 데이터저장 (HDFS) ODS (Hbase/MySQL) DW(DM) (Hive) Source Sqoop HQL Map/Reduce DW(DM) ( 기존 RDBMS) SQL BI Tool 17
19 Hadoop DW 기반기존 BI 활용사례 Cloud Local System( 기존 BI System) HADOOP Name node JAVA Web Service ROLAP Report Data node HIVE HIVE SERVER ODBC 또는 JDBC Hive Table 의 Meta 정보 Meta DB (MySQL) Hive는외래키가없어서기존 BI Tool 에서직접연결시분석안됨 테이블정보입력, 가상의기본키와외래키지정필요 18
20 과거의빅데이터분석 분석속도가느리다 사용자분석속도 & 데이터적재속도모두빠른처리요구 but 속도를개선하기보다는분석범위를조정하여처리 지금까지의처리방안 집계수준조정 일단위에서주단위로, 주단위에서월단위로집계수준상향 분석주제를세분화 상세분석은특정영역에한정 리포트의배치생성 리포트를조회하는시점에서데이터를분석하는것이아니라미 리리포트를생성해놓음 분석이아니라조회용도로 BI 활용 (OLAP 을 Report 로사용 ) 19
21 최근의빅데이터분석속도향상방법 구분 Appliance In-Memory 특징 장비 +DBMS+OS+Storage 일체화 ( 전부또는일부 ) 서버또는클라이언트의메모리에데이터를업로드한후분석 비용매우높음높음 분석 DW 구성 매우빠른쿼리조회 (10 년간제품별평균매출금액조회 ) DW + Mart + (Cube) 구성구성요소는모두물리적으로구축 매우빠른분석 ( 최근가입한백만고객에대해채널별캠페인유형별성과분석 ) DW(Mart) 만물리적으로메모리에업로드 Mart(Cube) 는논리적으로구성 * 규모가작은경우는 Raw 데이터를메모리에업로드하고분석모델을모두논리적으로구성 20
22 인메모리플랫폼상의 BI(1/2) Server BI In-Memory(Server) OLAP Storage DM 압축 Cube (Model) 데이터시각화 DBMS DW /DM Cube Client In-Memory(Client) HDFS HIVE DW 압축 DM Cube (Model) 21
23 인메모리플랫폼상의 BI(2/2) 인메모리경향 서버인메모리, 클라이언트인메모리구분은 DBMS 와 BI Tool 에 좌우되는경향 대부분의시각화 Tool 은인메모리를전제로함 인메모리적용고려사항 여러차원으로상세분석하는경우필요 정책적인결정 인메모리분석대상영역결정 빠른분석, 상세분석이필요한데 이터영역만한정할것인지 메모리업로드정책결정 메모리상주또는필요시업로드여부 22
24 과거의요구사항변경대처 분석요건의변경 & 추가 반영하기에는너무큰작업. 적정 선에서타협 지금까지의처리방안 분석모델변경이미미한경우 IT 담당자 ( 유지보수담당자 ) 가작업 작업량은적어도데이터의재적재에많은시간이걸릴수있음 사용자화면 ( 리포트 ) 상의오류와이의수정작업이상당할수있음 분석모델변경이필요 & 추가사항이있는경우 요구사항정리 > 모델링 > 데이터추출 / 적재전체작업수행 리포트위주의분석시스템인경우리포트재개발까지도감안 2 차개발, 고도화등의사업화 23
25 빅데이터분석변경대처 변경이잦은영역을인메모리로분석 인메모리 해당영역의 Raw 데이터를메모리에업로드 자주변경되는 ( 논리적 ) 데이터모델만수정적용 재적재 ( 업로드 ) 없이바로수정분석 가상의데이터통합구조를이용하여필요시쿼리를생성하여 데이터허브 결과제공 사용자 : 쿼리디자인 관리 : 데이터소스와추출에대한메타정보관리 허브 : 사용자쿼리조건을실행가능한 SQL로변환 / 실행 메모리, 디스크최적화, 병렬서버등의기술기반 24
26 데이터허브와인메모리융합사례 쿼리디자인 (Client) 결과 데이터소스 데이터허브 쿼리생성 / 실행 File File 추출 가공 전송 DM Model 메타관리 In-Memory 25
27 BI 포럼의빅데이터플랫폼접근방향 26
28 BI 포럼 2010년부터활동하고있는전문중소 SW 포럼으로지식경제부, 정보통신산업진흥원, 한국소프트웨어산업협회에서후원 27
CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내 빅데이터 산 학 연 관
방송 통신 전파 KOREA COMMUNICATIONS AGENCY MAGAZINE 2013 VOL.174 09+10 CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내
More informationGlobal Bigdata 사용 현황 및 향후 활용 전망 빅데이터 미도입 이유 필요성 못느낌, 분석 가치 판단 불가 향후 투자를 집중할 분야는 보안 모니터링 분야 와 자동화 시스템 분야 빅데이터의 핵심 가치 - 트랜드 예측 과 제품 개선 도움 빅데이터 운영 애로 사항
Global Bigdata 사용 현황 및 향후 활용 전망 빅데이터 미도입 이유 필요성 못느낌, 분석 가치 판단 불가 향후 투자를 집중할 분야는 보안 모니터링 분야 와 자동화 시스템 분야 빅데이터의 핵심 가치 - 트랜드 예측 과 제품 개선 도움 빅데이터 운영 애로 사항 - 재직자 전문성, 복잡성으로 인해 알고리즘 개발 난항 본 조사 내용은 美 Techpro Research
More informationDB진흥원 BIG DATA 전문가로 가는 길 발표자료.pptx
빅데이터의기술영역과 요구역량 줌인터넷 ( 주 ) 김우승 소개 http://zum.com 줌인터넷(주) 연구소 이력 줌인터넷 SK planet SK Telecom 삼성전자 http://kimws.wordpress.com @kimws 목차 빅데이터살펴보기 빅데이터에서다루는문제들 NoSQL 빅데이터라이프사이클 빅데이터플랫폼 빅데이터를위한역량 빅데이터를위한역할별요구지식
More informationOpen Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤
Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤 (byounggon.kim@opence.org) 빅데이터분석및서비스플랫폼 모바일 Browser 인포메이션카탈로그 Search 인포메이션유형 보안등급 생성주기 형식
More informationCloud Friendly System Architecture
-Service Clients Administrator 1. -Service 구성도 : ( 좌측참고 ) LB(LoadBlancer) 2. -Service 개요 ucloud Virtual Router F/W Monitoring 개념 특징 적용가능분야 Server, WAS, DB 로구성되어 web service 를클라우드환경에서제공하기위한 service architecture
More informationCover Story 빅데이터플랫폼 Big Data 시대의엔터프라이즈인프라스트럭처 ORACLE KOREA MAGAZINE Spring 개요빅데이터를처리하는기술의가장중심기술은아파치하둡기술일것이다. 하둡기술은데이터를취득하고이를구조화시키고분석을하는일련의과정에
Cover Story 04 빅데이터플랫폼 Big Data 시대의엔터프라이즈인프라스트럭처 저자 - 홍기현상무, 한국오라클 Tech Sales Consultant(kihyun.hong@oracle.com) 빅데이터기술은데이터크기혹은증가속도가빠르고데이터저장형태도다양하여이를 모델링후분석하기에는부적합한형태의데이터를분산시스템을이용하여분석하는기술이다. 또한빅데이터로는트위터나페이스북같은소셜미디어에올라온데이터가언급되기도하지만,
More informationPowerPoint 프레젠테이션
Spider For MySQL 실전사용기 피망플러스유닛최윤묵 Spider For MySQL Data Sharding By Spider Storage Engine http://spiderformysql.com/ 성능 8 만 / 분 X 4 대 32 만 / 분 많은 DB 중에왜 spider 를? Source: 클라우드컴퓨팅구 선택의기로 Consistency RDBMS
More informationAmazon EBS (Elastic Block Storage) Amazon EC2 Local Instance Store (Ephemeral Volumes) Amazon S3 (Simple Storage Service) / Glacier Elastic File Syste (EFS) Storage Gateway AWS Import/Export 1 Instance
More informationBasic Template
Hadoop EcoSystem 을홗용한 Hybrid DW 구축사례 2013-05-02 KT cloudware / NexR Project Manager 정구범 klaus.jung@{kt nexr}.com KT의대용량데이터처리이슈 적재 Data의폭발적인증가 LTE 등초고속무선 Data 통싞 : 트래픽이예상보다빨리 / 많이증가 비통싞 ( 컨텐츠 / 플랫폼 /Bio/
More informationSQL Developer Connect to TimesTen 유니원아이앤씨 DB 기술지원팀 2010 년 07 월 28 일 문서정보 프로젝트명 SQL Developer Connect to TimesTen 서브시스템명 버전 1.0 문서명 작성일 작성자
SQL Developer Connect to TimesTen 유니원아이앤씨 DB 팀 2010 년 07 월 28 일 문서정보 프로젝트명 SQL Developer Connect to TimesTen 서브시스템명 버전 1.0 문서명 작성일 2010-07-28 작성자 김학준 최종수정일 2010-07-28 문서번호 20100728_01_khj 재개정이력 일자내용수정인버전
More information따끈따끈한 한국 Azure 데이터센터 서비스를 활용한 탁월한 데이터 분석 방안 (To be named)
오늘그리고미래의전략적자산 데이터. 데이터에서인사이트까지 무엇이? 왜? 그리고? 그렇다면? Insight 데이터의변화 CONNECTED DIGITAL ANALOG 1985 1990 1995 2000 2005 2010 2015 2020 데이터의변화 CONNECTED DIGITAL ANALOG 1985 1990 1995 2000 2005 2010 2015 2020
More informationPowerPoint 프레젠테이션
In-memory 클러스터컴퓨팅프레임워크 Hadoop MapReduce 대비 Machine Learning 등반복작업에특화 2009년, UC Berkeley AMPLab에서 Mesos 어플리케이션으로시작 2010년 Spark 논문발표, 2012년 RDD 논문발표 2013년에 Apache 프로젝트로전환후, 2014년 Apache op-level Project
More informationIntra_DW_Ch4.PDF
The Intranet Data Warehouse Richard Tanler Ch4 : Online Analytic Processing: From Data To Information 2000. 4. 14 All rights reserved OLAP OLAP OLAP OLAP OLAP OLAP is a label, rather than a technology
More information김기남_ATDC2016_160620_[키노트].key
metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational
More information빅데이터처리의핵심인 Hadoop 을오라클은어떻게지원하나요? Oracle Big Data Appliance Solution 01 빅데이터처리를위한전문솔루션이 Oracle Big Data Appliance 군요. Oracle Big Data Appliance 와함께라면더이
Cover Story 03 28 Oracle Big Data Solution 01_Oracle Big Data Appliance 02_Oracle Big Data Connectors 03_Oracle Exdata In-Memory Database Machine 04_Oracle Endeca Information Discovery 05_Oracle Event
More informationDBMS & SQL Server Installation Database Laboratory
DBMS & 조교 _ 최윤영 } 데이터베이스연구실 (1314 호 ) } 문의사항은 cyy@hallym.ac.kr } 과제제출은 dbcyy1@gmail.com } 수업공지사항및자료는모두홈페이지에서확인 } dblab.hallym.ac.kr } 홈페이지 ID: 학번 } 홈페이지 PW:s123 2 차례 } } 설치전점검사항 } 설치단계별설명 3 Hallym Univ.
More information빅데이터시대 Self-BI 전략 이혁재이사 비아이씨엔에스
빅데이터시대 Self-BI 전략 이혁재이사 비아이씨엔에스 Agenda 1 Oracle In-Memory 소개 2 BI 시스템구성도 3 BI on In-Memory 테스트 4 In-Memory 활용한 BI 오라클인메모리목표 규모분석에대한속도향상 빠른속도 : 혼합워크로드업무 간편함 : 어플리케이션투명성및쉬운배치 저렴함 : 일부필요데이터만인메모리에존재가능 2 메모리운용방식
More information문서의 제목 나눔고딕B, 54pt
실시간데이터수집및처리 Network Computing System Architecture Lab Dongguk University MooSeon Choi 2013.11.07 목차 1. 연구목표 2. 2차발표리뷰 3. 실시간데이터수집및처리 4. 향후연구계획 3 / 14 연구목표 ( 1 세부 데이터페더레이션을위한기술 ) 모바일기반 SNS( 비정형 ) 데이터와기존
More informationRUCK2015_Gruter_public
Apache Tajo 와 R 을연동한빅데이터분석 고영경 / 그루터 ykko@gruter.com 목차 : R Tajo Tajo RJDBC Tajo Tajo UDF( ) TajoR Demo Q&A R 과빅데이터분석 ' R 1) R 2) 3) R (bigmemory, snowfall,..) 4) R (NoSQL, MapReduce, Hive / RHIPE, RHive,..)
More informationDW 개요.PDF
Data Warehouse Hammersoftkorea BI Group / DW / 1960 1970 1980 1990 2000 Automating Informating Source : Kelly, The Data Warehousing : The Route to Mass Customization, 1996. -,, Data .,.., /. ...,.,,,.
More informationSlide 1
빅데이터기술의이해 2016. 8. 23 장형석 충북대비즈니스데이터융합학과교수 chjang1204@nate.com 장형석교수 # 경력 ( 현직 ) - 충북대학교비즈니스데이터융합학과 - 국민대학교빅데이터경영 MBA 과정겸임교수 - 연세대학교데이터사이언스과정외래교수 # 저서및역서 - [ 실전하둡운용가이드 ] 한빛미디어, 2013.07 - [ 빅데이터컴퓨팅기술 ]
More information빅데이터분산컴퓨팅-5-수정
Apache Hive 빅데이터분산컴퓨팅 박영택 Apache Hive 개요 Apache Hive 는 MapReduce 기반의 High-level abstraction HiveQL은 SQL-like 언어를사용 Hadoop 클러스터에서 MapReduce 잡을생성함 Facebook 에서데이터웨어하우스를위해개발되었음 현재는오픈소스인 Apache 프로젝트 Hive 유저를위한
More informationMicrosoft Word - th1_Big Data 시대의 기술_ _조성우
Theme Article Big Data 시대의기술 중앙연구소 Intelligent Knowledge Service 조성우 1. 시대의화두 Big Data 최근 IT 분야의화두가무엇인지물어본다면, 빅데이터가대답들중하나일것이다. 20년전의 PC의메모리, 하드디스크의용량과최신 PC, 노트북사양을비교해보면과거에비해데이터가폭발적으로늘어났다는것을실감할수있을것이다. 특히스마트단말및소셜미디어등으로대표되는다양한정보채널의등장과이로인한정보의생산,
More informationCRM Fair 2004
easycrm Workbench ( ) 2004.04.02 I. CRM 1. CRM 2. CRM 3. II. easybi(business Intelligence) Framework 1. 2. - easydataflow Workbench - easycampaign Workbench - easypivot Reporter. 1. CRM 1.?! 1.. a. & b.
More information.
데이터통합의미래, 실시간데이터통합가상화솔루션 DataHub 3.0 2015. 03. 2015 TmaxSoft Co., Ltd. All Rights Reserved. Ⅰ Ⅱ Ⅲ BI 플랫폼의변화 데이터가상화플랫폼 : DataHub DataHub 의특장점및사례 BI 비즈니스환경의변화 복잡한비즈니스환경, IT 인프라의발전으로보다많은데이터로부터보다빠른의사결정이 요구되는상황임
More informationPowerPoint Template
Market & Issue 분석 Report 2012. 7. 17 [ 빅데이터처리기술현황및전망 ] 차세대방송 모바일미래인터넷융합기술정보보호전파위성방송통신시장방송통신정책 본보고서의내용은집필자개인의견해로서한국방송통신전파진흥원의공식입장과는무관합니다. I. 개요 빅데이터 (Big Data) 는기존데이터베이스관리도구의데이터수집, 관리, 분석역량을넘어서는대량의데이터셋
More informationBeyond Relational SQL Server, Windows Server 에디션비교 씨앤토트 SW 기술팀장세원
Beyon Relational SQL Server, Winows Server 에디션비교 씨앤토트 SW 기술팀장세원 SQL Server 2012 Eition 비교 요약 항목 Enterprise Business Intelligence Stanar H/W 지원 고가용성 확장성및성능 보안 관리생산성 SQL Server Integration Services Master
More informationPlatformDay2009-Hadoop_OSBI-YoungwooKim
Hadoop 과오픈소스소프트웨어를이용한비지니스인텔리전스플랫폼구축 (Building Business Intelligence Platform Using Hadoop and OpenSource Tools) PlatFromDay2009 2009. 6. 12 김영우 warwithin@daumcorp.com 다음커뮤니케이션 프리젠테이션개요 비즈니스인텔리전스그리고데이터웨어하우스
More informationPowerPoint Presentation
하둡전문가로가는길 심탁길 terryshim@naver.com 목차 1. 하둡과에코시스템개요 2. 홗용사례붂석 3. 하둡젂문가의필요성 4. 무엇을어떻게준비할까? 5. 하둡기반추천시스템데모 하둡개요 구글인프라 배치애플리케이션 온라인서비스 MapReduce Bigtable GFS Client API Chubby Cluster Mgmt 주요소프트웨어스택 Google
More information빅데이터_DAY key
Big Data Near You 2016. 06. 16 Prof. Sehyug Kwon Dept. of Statistics 4V s of Big Data Volume Variety Velocity Veracity Value 대용량 다양한 유형 실시간 정보 (불)확실성 가치 tera(1,0004) - peta -exazetta(10007) bytes in 2020
More information들어가는글 2012년 IT 분야에서최고의관심사는아마도빅데이터일것이다. 관계형데이터진영을대표하는오라클은 2011년 10월개최된 오라클오픈월드 2011 에서오라클빅데이터어플라이언스 (Oracle Big Data Appliance, 이하 BDA) 를출시한다고발표하였다. 이와
Oracle Data Integrator 와 Oracle Big Data Appliance 저자 - 김태완부장, 한국오라클 Fusion Middleware(taewan.kim@oracle.com) 오라클은최근 Big Data 분약에 End-To-End 솔루션을지원하는벤더로급부상하고있고, 기존관계형데이터저장소와새로운트랜드인비정형빅데이터를통합하는데이터아키텍처로엔터프로이즈시장에서주목을받고있다.
More informationWeb Application Hosting in the AWS Cloud Contents 개요 가용성과 확장성이 높은 웹 호스팅은 복잡하고 비용이 많이 드는 사업이 될 수 있습니다. 전통적인 웹 확장 아키텍처는 높은 수준의 안정성을 보장하기 위해 복잡한 솔루션으로 구현
02 Web Application Hosting in the AWS Cloud www.wisen.co.kr Wisely Combine the Network platforms Web Application Hosting in the AWS Cloud Contents 개요 가용성과 확장성이 높은 웹 호스팅은 복잡하고 비용이 많이 드는 사업이 될 수 있습니다. 전통적인
More informationU.Tu System Application DW Service AGENDA 1. 개요 4. 솔루션 모음 1.1. 제안의 배경 및 목적 4.1. 고객정의 DW구축에 필요한 메타정보 생성 1.2. 제품 개요 4.2. 사전 변경 관리 1.3. 제품 특장점 4.3. 부품화형
AGENDA 1. 개요 4. 솔루션 모음 1.1. 제안의 배경 및 목적 4.1. 고객정의 DW구축에 필요한 메타정보 생성 1.2. 제품 개요 4.2. 사전 변경 관리 1.3. 제품 특장점 4.3. 부품화형 언어 변환 1.4. 기대 효과 4.4. 프로그램 Restructuring 4.5. 소스 모듈 관리 2. SeeMAGMA 적용 전략 2.1. SeeMAGMA
More informationCover Story 01 20 Oracle Big Data Vision 01_Big Data의 배경 02_Big Data의 정의 03_Big Data의 활용 방안 04_Big Data의 가치
Oracle Big Data 오라클 빅 데이터 이야기 Cover Story 01 20 Oracle Big Data Vision 01_Big Data의 배경 02_Big Data의 정의 03_Big Data의 활용 방안 04_Big Data의 가치 최근 빅 데이터에 대한 관심이 커지고 있는데, 그 배경이 무엇일까요? 정말 다양한 소스로부터 엄청난 데이터들이 쏟아져
More informationETL_project_best_practice1.ppt
ETL ETL Data,., Data Warehouse DataData Warehouse ETL tool/system: ETL, ETL Process Data Warehouse Platform Database, Access Method Data Source Data Operational Data Near Real-Time Data Modeling Refresh/Replication
More information<49534F20323030303020C0CEC1F520BBE7C8C4BDC9BBE720C4C1BCB3C6C320B9D7204954534D20BDC3BDBAC5DB20B0EDB5B5C8AD20C1A6BEC8BFE4C3BBBCAD2E687770>
ISO 20000 인증 사후심사 컨설팅 및 ITSM 시스템 고도화를 위한 제 안 요 청 서 2008. 6. 한 국 학 술 진 흥 재 단 이 자료는 한국학술진흥재단 제안서 작성이외의 목적으로 복제, 전달 및 사용을 금함 목 차 Ⅰ. 사업개요 1 1. 사업명 1 2. 추진배경 1 3. 목적 1 4. 사업내용 2 5. 기대효과 2 Ⅱ. 사업추진계획 4 1. 추진체계
More information슬라이드 1
제 2 장 빅데이터기술 2015.02 조완섭충북대학교경영정보학과대학원비즈니스데이터융합학과 wscho@chungbuk.ac.kr 043-261-3258 010-2487-3691 목차 개요 빅데이터기술 클라우드컴퓨팅 Hadoop & Databases 데이터분석기술 다차원분석 통계분석 : R 데이터마이닝 빅데이터시각화기술 2015-07-23 2 개요 빅데이터 -
More information통신회사에서가장중요한데이터자원이라고하면뭐니뭐니해도고객들의통화기록이라할수있다. 이를 Call Detail Record(CDR) 라고하며, 고객들이유선전화나휴대폰을사용하여통화할때마다통화위치, 통화대상, 통화시간등이로그데이터로기록된다. 매통화마다기록되므로 1일발생량은수억건에
White Paper Big Data Case Study 통신회사에서가장중요한데이터자원이라고하면뭐니뭐니해도고객들의통화기록이라할수있다. 이를 Call Detail Record(CDR) 라고하며, 고객들이유선전화나휴대폰을사용하여통화할때마다통화위치, 통화대상, 통화시간등이로그데이터로기록된다. 매통화마다기록되므로 1일발생량은수억건에달하는그야말로대표적인빅데이터라고할수있다.
More information슬라이드 1
장비지원사례연구 ( 세종대학교인공지능 - 빅데이터연구센터중심으로 ) 신병주 bjshin@sejong.ac.kr 문제 기업의빅데이터인력및시스템투자예산 데이터분석역량및경험부족 19.6% 시스템구축비, 관리비등예산부족 19.4% 정보보호및안정성에대한우려 17.5% 투자대비수익 (ROI) 의불투명성 15.1% 빅데이터에준비되지않은기업문화 15.9% 적합한데이터관리솔루션의부재
More information슬라이드 1
[ CRM Fair 2004 ] CRM 1. CRM Trend 2. Customer Single View 3. Marketing Automation 4. ROI Management 5. Conclusion 1. CRM Trend 1. CRM Trend Operational CRM Analytical CRM Sales Mgt. &Prcs. Legacy System
More information슬라이드 1
Big Architecture 2014.10.23 SK C&C Platform 사업팀이정일차장 Table of 1. Big 개요 2. Big 플랫폼아키텍처 3. 아키텍처수립시고려사항 4. 하둡배포판기반아키텍처 5. Case Study 1. Big 개요 Big 란 Big Big Big Big 3 1. Big 개요 Big 의특성 3V 데이터의크기 (Volume)
More information이도경, 최덕재 Dokyeong Lee, Deokjai Choi 1. 서론
이도경, 최덕재 Dokyeong Lee, Deokjai Choi 1. 서론 2. 관련연구 2.1 MQTT 프로토콜 Fig. 1. Topic-based Publish/Subscribe Communication Model. Table 1. Delivery and Guarantee by MQTT QoS Level 2.1 MQTT-SN 프로토콜 Fig. 2. MQTT-SN
More information[Brochure] KOR_TunA
LG CNS LG CNS APM (TunA) LG CNS APM (TunA) 어플리케이션의 성능 개선을 위한 직관적이고 심플한 APM 솔루션 APM 이란? Application Performance Management 란? 사용자 관점 그리고 비즈니스 관점에서 실제 서비스되고 있는 어플리케이션의 성능 관리 체계입니다. 이를 위해서는 신속한 장애 지점 파악 /
More informationCloudera Toolkit (Dark) 2018
BIG DATA LAKE 구축사례 굿모닝아이텍 / 박근봉상무 AGENDA 1. BIGDATA 현황 2. Cloudera Bigdata Lake 3. BIG DATA LAKE 구축사례 2 BIGDATA 현황 3 BIGDATA 현황 2020 년국내빅데이터시장약 9 억달러 2006 년 빅데이터 (Big Data) 가구글검색어로처음등장한이래 2012 년다보스포럼에선그해가장중요한기술중하나로빅데이터를꼽았다.
More informationWindows 8에서 BioStar 1 설치하기
/ 콘텐츠 테이블... PC에 BioStar 1 설치 방법... Microsoft SQL Server 2012 Express 설치하기... Running SQL 2012 Express Studio... DBSetup.exe 설정하기... BioStar 서버와 클라이언트 시작하기... 1 1 2 2 6 7 1/11 BioStar 1, Windows 8 BioStar
More information[Brochure] KOR_LENA WAS_
LENA Web Application Server LENA Web Application Server 빠르고확장가능하며장애를선대응할수있는운영중심의고효율차세대 Why 클라우드환경과데이터센터운영의노하우가결집되어편리한 관리기능과대용량트랜잭션을빠르고쉽게구현함으로고객의 IT Ownership을강화하였습니다. 고객의고민사항 전통 의 Issue Complexity Over
More information歯목차45호.PDF
CRM CRM (CRM : Customer Relationship Management ). CRM,,.,,.. IMF.,.,. (CRM: Customer Relationship Management, CRM )., CRM,.,., 57 45 (2001 )., CRM...,, CRM, CRM.. CRM 1., CRM,. CRM,.,.,. (Volume),,,,,,,,,,
More informationBigdata가 제공하는 구체적인 혜택과 변화 양상 기업의 데이터 기반의 의사결정 시스템 구축 의지 확대 양상 빅데이터를 활용한 경영 및 마케팅 지속적인 증가세 뚜렷 빅데이터를 도입한 기업은 사전 기대를 뛰어넘는 효과를 경험 본 조사 내용은 美 BARC- Researc
Bigdata가 제공하는 구체적인 혜택과 변화 양상 기업의 데이터 기반의 의사결정 시스템 구축 의지 확대 양상 빅데이터를 활용한 경영 및 마케팅 지속적인 증가세 뚜렷 빅데이터를 도입한 기업은 사전 기대를 뛰어넘는 효과를 경험 본 조사 내용은 美 BARC- Researcht 社 가 2015년 대륙별 표본을 추출한 글로벌 546개사를 대상으로 리서치를 수행하여
More information놀이동산미아찾기시스템
TinyOS를이용한 놀이동산미아찾기시스템 윤정호 (mo0o1234@nate.com) 김영익 (youngicks7@daum.net) 김동익 (dongikkim@naver.com) 1 목차 1. 프로젝트개요 2. 전체시스템구성도 3. Tool & Language 4. 데이터흐름도 5. Graphic User Interface 6. 개선해야할사항 2 프로젝트개요
More informationSpring Boot/JDBC JdbcTemplate/CRUD 예제
Spring Boot/JDBC JdbcTemplate/CRUD 예제 오라클자바커뮤니티 (ojc.asia, ojcedu.com) Spring Boot, Gradle 과오픈소스인 MariaDB 를이용해서 EMP 테이블을만들고 JdbcTemplate, SimpleJdbcTemplate 을이용하여 CRUD 기능을구현해보자. 마리아 DB 설치는다음 URL 에서확인하자.
More information쉽게 풀어쓴 C 프로그래밊
Power Java 제 27 장데이터베이스 프로그래밍 이번장에서학습할내용 자바와데이터베이스 데이터베이스의기초 SQL JDBC 를이용한프로그래밍 변경가능한결과집합 자바를통하여데이터베이스를사용하는방법을학습합니다. 자바와데이터베이스 JDBC(Java Database Connectivity) 는자바 API 의하나로서데이터베이스에연결하여서데이터베이스안의데이터에대하여검색하고데이터를변경할수있게한다.
More informationPowerPoint 프레젠테이션
[3S 소프트 ] Ⅰ Ⅱ chapter I. 회사소개 회사소개 - 일반현황 - 4 - 회사소개 - 3S 소프트 공공, 제조, 통신, 금융, 유통등다양한분야에서기술력과신뢰를바탕으로기업인프라솔루션과 IT 컨설팅 / 서비스를제공해온견실한 IT 솔루션전문기업입니다. 주요연혁 229.8 246 2016 인프론티브 ( 인터넷 PC) 와 Reseller 체결 131 161
More information오픈데크넷서밋_Spark Overview _SK주식회사 이상훈
Spark Overview ( 아파치스파크를써야하는이유 ) SK 주식회사 C&C 이상훈 빅데이터플랫폼 Spark Overview Spark 란? Spark Streaming 고급분석 빅데이터플랫폼 빅데이터플랫폼의필요성 Client UX Log HTTP Server WAS Biz Logic Data Legacy DW Report IoT Mobile Sensor
More informationFileMaker 15 ODBC 및 JDBC 설명서
FileMaker 15 ODBC JDBC 2004-2016 FileMaker, Inc.. FileMaker, Inc. 5201 Patrick Henry Drive Santa Clara, California 95054 FileMaker FileMaker Go FileMaker, Inc.. FileMaker WebDirect FileMaker, Inc... FileMaker.
More information<4D F736F F F696E74202D203137C0E55FBFACBDC0B9AEC1A6BCD6B7E7BCC72E707074>
SIMATIC S7 Siemens AG 2004. All rights reserved. Date: 22.03.2006 File: PRO1_17E.1 차례... 2 심벌리스트... 3 Ch3 Ex2: 프로젝트생성...... 4 Ch3 Ex3: S7 프로그램삽입... 5 Ch3 Ex4: 표준라이브러리에서블록복사... 6 Ch4 Ex1: 실제구성을 PG 로업로드하고이름변경......
More informationBusiness Agility () Dynamic ebusiness, RTE (Real-Time Enterprise) IT Web Services c c WE-SDS (Web Services Enabled SDS) SDS SDS Service-riented Architecture Web Services ( ) ( ) ( ) / c IT / Service- Service-
More informationPowerPoint 프레젠테이션
제품소개 Solution Consulting Team 2015. Agenda 1. 소개 2. 소개 3. 2 소개 DBMS 에접속해서프로그램을개발하고데이터베이스를관리하는 DB 클라이언트툴 DBMS 제품명지원 DBMS for Oracle for SQL Server for IBM DB2 for Sybase Oracle : 8.0.6; 8.1.7, 9i, 9i R2,
More informationaws
Amazon Web Services AWS MIGRATION MANAGED SERVICE FOR AWS 베스핀글로벌 S AWS OFFERING 베스핀글로벌과 Amazon Web Services (AWS) 가 여러분의 비즈니스에 클라우드 날개를 달아드립니다. AWS에 높은 이해도를 갖춘 베스핀글로벌의 클라우드 전문가가 다양한 산업 영역에서의 구축 경험과 노하우를
More informationMicrosoft PowerPoint - S4_통계분석시스템.ppt
Oracle 10g 기반의통계분석시스템사례 디비코아 ( 주 ) BI (Business Intelligence) 란? BI 란데이터와정보의가치를극대화하는것 Data? Information : 정제, 정렬, 조합, 결합된 Data 예 ) 특정상품구매자에대한성별, 수입별, 지역별고객리스트 Intelligence : 유기체적인특징 조직내에서증식 예 ) 구매정보를활용한마케팅팀의프로모션
More informationMicrosoft PowerPoint - 3주차.pptx
2016.08 조완섭충북대학교경영정보학과대학원비즈니스데이터융합학과 wscho@chungbuk.ac.kr 043-261-3258 010-2487-3691 빅데이터기술 목차 개요 빅데이터기술 클라우드컴퓨팅 Hadoop & Databases 데이터분석기술 다차원분석 통계분석 : R 데이터마이닝 빅데이터시각화기술 2016-09-30 Wan-Sup Cho (wscho@cbnu.ac.kr)
More information항목
Cloud 컴퓨팅기반분산파일시스템개요 개발실 UPDATE : 2012. 11 18 INDEX 1. 가용성 2. 확장성 3. PrismFS 4. Q&A 2 가용성 3 Gmail 장애 2011년 2월 27일 34000명의 Gmail 사용자들이일어나보니메일, 주소록, 채팅기록등이사라진것을발견 2011년 2월 28일 스토리지소프트웨어업데이트를진행하는중 Bug로인해발생했다고공지
More information출원국 권 리 구 분 상 태 권리번호 KR 특허 등록 10-2012-0092520 10-2012-0092518 10-2007-0071793 10-2012-0092517
기술사업성평가서 경쟁정보분석서비스 제공 기술 2014 8 출원국 권 리 구 분 상 태 권리번호 KR 특허 등록 10-2012-0092520 10-2012-0092518 10-2007-0071793 10-2012-0092517 Ⅰ 기술 구현 메커니즘 - 1 - 경쟁정보분석서비스 항목 - 2 - 핵심 기술 특징 및 주요 도면
More information진정한토종벤처를꿈꾸는기업 저희시큐레이어는최근사회적화두로부각되고있는빅데이터를기반으로한통합로그수집 / 분석및통합보안관제분야에순수국산기술적자립으로외산과당당히겨루는소프트웨어를만들자는이념의전문소프트웨어기업입니다. 이러한이념을달성하기위한치열한열정과노력으로주요시장에서긍정적으로 평가
eyecloudsim 진정한토종벤처를꿈꾸는기업 저희시큐레이어는최근사회적화두로부각되고있는빅데이터를기반으로한통합로그수집 / 분석및통합보안관제분야에순수국산기술적자립으로외산과당당히겨루는소프트웨어를만들자는이념의전문소프트웨어기업입니다. 이러한이념을달성하기위한치열한열정과노력으로주요시장에서긍정적으로 평가받는 eyecloudsim 제품군을결실로만들어가고있습니다. 시큐레이어대표이사전주호
More information: Hadoop 출간 은 출판 분 2013 년 10 월 3 윤 퍼플 주 울 종 종 1 1번 윤 2013 본 전부 반 부를 재 권 동를 셔 면 OpenWithNet 총 상 술 워크 (2006 년) : Hadoop 세만 NoSQL 웹 분
빅 데이 Hadoop과 분석법(Analytics) 지은이 윤형 : Hadoop 출간 은 출판 분 2013 년 10 월 3 윤 퍼플 주 울 종 종 1 1번 www.kyobobook.co.kr 윤 2013 본 전부 반 부를 재 권 동를 셔 면 OpenWithNet 총 상 술 워크 (2006 년) : Hadoop 세만 NoSQL 웹 분 (2013 년) 세 인넷 (근간)
More informationFileMaker ODBC 및 JDBC 가이드
FileMaker ODBC JDBC 2004-2019 FileMaker, Inc.. FileMaker, Inc. 5201 Patrick Henry Drive Santa Clara, California 95054 FileMaker, FileMaker Cloud, FileMaker Go FileMaker, Inc.. FileMaker WebDirect FileMaker,
More informationOZ-LMS TM OZ-LMS 2008 OZ-LMS 2006 OZ-LMS Lite Best IT Serviece Provider OZNET KOREA Management Philosophy & Vision Introduction OZNETKOREA IT Mission Core Values KH IT ERP Web Solution IT SW 2000 4 3 508-2
More information슬라이드 1
2015( 제 8 회 ) 한국소프트웨어아키텍트대회 OSS 성능모니터링을위한 Open Source SW 2015. 07. 16 LG CNS 김성조 Tomcat & MariaDB 성능모니터링 Passion Open Source Software Open Hadoop IT Service Share Communication Enterprise Source Access
More information5 주차 -mongodb 설치잠깐! CAP 이론 NoSQL이나온이유와 MongoDB NoSQL의데이터저장구조에따른세가지분류 RDBMS와 NoSQL특성비교 RDBMS와 NoSQL의사용시기 MongoDB 소개및특징 MongoDB와 RDBMS와의공통 MongoDB CRUD
5 주차 -mongodb 설치잠깐! CAP 이론 NoSQL이나온이유와 MongoDB NoSQL의데이터저장구조에따른세가지분류 RDBMS와 NoSQL특성비교 RDBMS와 NoSQL의사용시기 MongoDB 소개및특징 MongoDB와 RDBMS와의공통 MongoDB CRUD Data Modeling 참고 MongoDB CRUD Operations MongoDB 실습설치환경구동확인
More information슬라이드 1
Data Warehouse 통합솔루션 회사연혁 Teradata Corporation (NYSE: TDC) 은 30 년이상업계를선도하며, 전세계적으로 Big Data 및데이터웨어하우스관련 Analytic 솔루션과컨설팅서비스를제공하는최고의기술을보유한 Global 기업 Teradata 본사 한국 Teradata 미국오하이오주 Dayton에세계최초의금전등록기제조사
More informationMicrosoft PowerPoint - CNVZNGWAIYSE.pptx
대용량데이터처리를위한 Sharding 2013.1. 이동현 DBMS 개발랩 /NHN Business Platform SQL 기술전략세미나 2 대용량데이터를위한솔루션은 NoSQL 인가, RDBMS 인가? 모든경우에대해어떤하나의선택을하자는게아닙니다. SQL 기술전략세미나 3 언제, 그리고왜 RDBMS 를선택해야하는가? NoSQL 과다른 RDBMS 만의특징이필요할때
More informationPowerPoint 프레젠테이션
How Hadoop Works 박영택 컴퓨터학부 HDFS Basic Concepts HDFS 는 Java 로작성된파일시스템 Google 의 GFS 기반 기존파일시스템의상위에서동작 ext3, ext4 or xfs HDFS 의 file 저장방식 File 은 block 단위로분할 각 block 은기본적으로 64MB 또는 128MB 크기 데이터가로드될때여러 machine
More informationWindows 10 General Announcement v1.0-KO
Windows 10 Fuji Xerox 장비와의호환성 v1.0 7 July, 2015 머리말 Microsoft 는 Windows 10 이 Windows 자동업데이트기능을통해예약되어질수있다고 6 월 1 일발표했다. 고객들은 윈도우 10 공지알림을받기 를표시하는새로운아이콘을알아차릴수있습니다. Fuji Xerox 는 Microsoft 에서가장최신운영시스템인 Windows
More informationIBMDW성공사례원고
한국아이비엠주식회사 Your Possible Solution IBM DataWarehouse Appliance Impossible? I'm possible! 04 06 08 14 20 26 What BAO? 44x 3x 5x 05 04 Why DataWarehouse Appliance? Your Choice : Simplicity, Flexibility IBM
More information2017 1
2017 2017 Data Industry White Paper 2017 1 1 1 2 3 Interview 1 4 1 3 2017IT 4 20161 4 2017 4 * 22 2017 4 Cyber Physical SystemsCPS 1 GEGE CPS CPS Industrial internet, IoT GE GE Imagination at Work2012
More informationSamsung SDS Enterprise Cloud Networking CDN Load Balancer WAN
Samsung SDS Enterprise Cloud Networking CDN Load Balancer WAN Enterprise Cloud Networking CDN (Content Delivery Network) 전 세계에 배치된 콘텐츠 서버를 통해 빠른 전송을 지원하는 서비스 전 세계에 전진 배치된 CDN 서버를 통해 사용자가 요청한 콘텐츠를 캐싱하여
More informationPowerPoint 프레젠테이션
SSAS Tabular Mode 와활용 인브레인조현재수석 발표자소개 조현재 인브레인 BI사업부 (http://www.inbrein.com) 주요영역 : DW/DM, MS BI SQL Fast Track DW 2.0 BMT, 3.0 국내최초구축 다수의 MS BI 프로젝트수행 MS BI CIE 강의진행 취미 : 등산 목차 BISM 이란무엇인가? BISM Architecture
More information<4D F736F F D20BBE7BABB202D20C3D6BDC54954B5BFC7E2>
최신 IT 동향주간기술동향 2012. 4. 11. NoSQL DB 인기도조사, 하둡진영과몽고 DB 의경쟁양상 * 비즈니스인텔리전스 (BI) 전문기업인재스퍼소프트 (Jaspersoft) 가 NoSQL DB 의인기도를알수있는빅데이터지수 (JBDI) 를발표 - 빅데이터는대규모의정형및비정형데이터를분석하는것이므로, 정형데이터를 SQL 쿼리로관리하는관계형데이터베이스관리시스템
More informationPowerPoint Presentation
RHive 와빅데이터분석 - 넥스알 Agenda 1. RHive 의소개 RHive 란? RHive 기능 & 사용법 Enterprise RHive 2. RHive 의운용사례 CloudLog CDR 2 R 분석가를 RHive 탄생배경 RHive 의소개 Big Data 플랫폼의데이터처리능력과 R 의데이터분석기능의결합필요성이대두됨 3 RHive 의정의 RHive 의소개
More informationPortal_9iAS.ppt [읽기 전용]
Application Server iplatform Oracle9 A P P L I C A T I O N S E R V E R i Oracle9i Application Server e-business Portal Client Database Server e-business Portals B2C, B2B, B2E, WebsiteX B2Me GUI ID B2C
More information1 전통 소프트웨어 가. 국내 데이터베이스 서비스 시장, 매출 규모에 따른 양극화 현상 심화 국내 데이터베이스 시장은 지속적으로 성장세를 보이고 있으나 비중이 가장 높은 데이터베이스 서 비스 시장에서 매출 규모에 따른 빈익빈 부익부 현상이 심화되는 추세 - 국내 DB사
02 소프트웨어 산업 동향 1. 전통 소프트웨어 2. 新 소프트웨어 3. 인터넷 서비스 4. 디지털콘텐츠 5. 정보보안 6. 기업 비즈니스 동향 1 전통 소프트웨어 가. 국내 데이터베이스 서비스 시장, 매출 규모에 따른 양극화 현상 심화 국내 데이터베이스 시장은 지속적으로 성장세를 보이고 있으나 비중이 가장 높은 데이터베이스 서 비스 시장에서 매출 규모에 따른
More informationPowerPoint Presentation
빅데이터아키텍쳐소개 임상배 (sangbae.lim@oracle.com) Technology Sales Consulting, Oracle Korea Agenda 빅데이터아키텍쳐트랜드 빅데이터활용단계별요소기술 사업방향및활용사례 요약 Q&A 빅데이터아키텍쳐트랜드 빅데이터아키텍쳐트랜드 오픈소스와기간계, 정보계시스템과의융합 현재빅데이터의열풍의근원은하둡 (Hadoop)
More information_LG히다찌 브로슈어
SOLUTION GUIDE BOOK G ITACHI OLUTION UIDE OOK ABOUT US UCP www.lghitachi.co.kr T 070 8290 3700 F 02 3272 9746 02 CONTENTS 04 05 10 13 18 29 BUSINESS AREA FINANCE SOLUTION FINTECH SOLUTION CONVERGED SOLUTION
More informationREDIS 이해와 활용
Redis 활용방안에따른아키텍처 LG CNS 아키텍처컨설팅팀조남웅과장 I. Why Redis? II. Redis 활용방안에따른아키텍처 1.1 NoSQL 관점에서의 Redis Ⅰ. WHY Redis? 1.1.1 NoSQL DBMS 의특징 NoSQL 의대표적인 Data Model 은아래와같으며, 복잡도가증가할수록성능은저하됨 Data Model Data Model
More informationSAS FORUM KOREA 2018_Cloudera_발표
SAS FORUM AI / Machine Learning 시대를선도하는 SAS 사용자를위한데이터플랫폼 구축안내서 Cloudera Korea 임상배 Copyright SAS Ins1tute Inc. All rights reserved. Cloudera Hadoop SAS & Cloudera 활용방법 Cloudera Hadoop Overview 하둡따라잡기 Hadoop:
More information백봉현, 하일규, 안병철 Bong-Hyun Back, Ilkyu Ha, ByoungChul Ahn 1. 서론 최근들어소셜네트워크활성화로 에서발생하는대량의데이터 로부터정보를추출하여이를정치 경제 개인서비 스 연애등다양한분야에활용하고자하는노력이 계속되고있다 상의데이터를빠르게
백봉현, 하일규, 안병철 Bong-Hyun Back, Ilkyu Ha, ByoungChul Ahn 1. 서론 최근들어소셜네트워크활성화로 에서발생하는대량의데이터 로부터정보를추출하여이를정치 경제 개인서비 스 연애등다양한분야에활용하고자하는노력이 계속되고있다 상의데이터를빠르게분석하여 의미있는정보를추출하고 이를통해대중들이요구 하는의견과생각들을실시간으로파악하여 제품을
More informationPowerPoint 프레젠테이션
빅 데이터 플랫폼 이론과 사례 - 보안 로그 분석 중심으로 - 큐비트시큐리티 신승민 CEO Buzzword Best of Breed Brick-and-mortar Log Tail 6 sigma Startup 4G Valued-add Blog HTML5 Cloud Big Data computing Web 2.0 프롤로그 빅 데이터는 어떻게 사용되고 있나? 멜론의
More information第 1 節 組 織 11 第 1 章 檢 察 의 組 織 人 事 制 度 등 第 1 項 大 檢 察 廳 第 1 節 組 대검찰청은 대법원에 대응하여 수도인 서울에 위치 한다(검찰청법 제2조,제3조,대검찰청의 위치와 각급 검찰청의명칭및위치에관한규정 제2조). 대검찰청에 검찰총장,대
第 1 章 檢 察 의 組 織 人 事 制 度 등 第 1 節 組 織 11 第 1 章 檢 察 의 組 織 人 事 制 度 등 第 1 項 大 檢 察 廳 第 1 節 組 대검찰청은 대법원에 대응하여 수도인 서울에 위치 한다(검찰청법 제2조,제3조,대검찰청의 위치와 각급 검찰청의명칭및위치에관한규정 제2조). 대검찰청에 검찰총장,대검찰청 차장검사,대검찰청 검사,검찰연구관,부
More informationHallym Communication Policy Research Center 15 빅데이터기술은대용량의데이터를다룰때, 여러과정을거치게되는데, 데이터수집및데이터전처리, 저장, 분석, 활용 ( 시각화 ) 까지의과정을 거치게되며각과정별로핵심기술이존재한다. 빅데이터기술은대용
14 한림 ICT 정책저널 H a l l y m I C T P o l i c y J o u r n a l 빅데이터기술동향 전략적클라우드림 김광호이재준이사교수 빅데이터기술이란? 빅데이터기술은기존의데이터분석기법에비해 100배이상많은데이터를다루는기술이다. 빅데이터기술이다루는데이터의성격은다양하다. 예를들어시스템운영을통해산출되는로그데이터와구매기록데이터등의정형데이터뿐만아니라,
More information<4D F736F F F696E74202D20B5A5C0CCC5CDBAA3C0CCBDBA5F3130C1D6C2F75F32C2F7BDC32E >
6. ASP.NET ASP.NET 소개 ASP.NET 페이지및응용프로그램구조 Server Controls 데이터베이스와연동 8 장. 데이터베이스응용개발 (Page 20) 6.1 ASP.NET 소개 ASP.NET 동적웹응용프로그램을개발하기위한 MS 의웹기술 현재 ASP.NET 4.5까지출시.Net Framework 4.5 에포함 Visual Studio 2012
More informationSAMSUNG SDS Cloud Database EPAS PostgreSQL Microsoft SQL Server MariaDB MySQL ScyllaDB MongoDB
SAMSUNG SDS Cloud Database EPAS PostgreSQL Microsoft SQL Server MariaDB MySQL ScyllaDB MongoDB Cloud Database EPAS 오픈소스 PostgreSQL 기반엔터프라이즈급관계형데이터베이스 EPAS(EDB Postgres Advanced Server) 는오픈소스인 PostgreSQL
More informationAltibase Starting User's Manual
ALTIBASE HDB Tools & Utilities Altibase Hadoop Connector User's Manual Release 6 (April 17, 2015) ----------------------------------------------------------- ALTIBASE Tools & Utilities Altibase Hadoop
More informationSW 2015. 02 5-1 89
SW 2015. 02 88 SW 2015. 02 5-1 89 SW 2015. 02 5-2 5-3 90 SW 2015. 02 5-4 91 SW 2015. 02 5-5 5-6 92 5-7 SW 2015. 02 93 SW 2015. 02 5-8 5-1 94 SW 2015. 02 5-9 95 SW 2015. 02 5-10 5-2 96 SW 2015. 02 5-11
More information1 SW 2015. 02 26
02 1 SW 2015. 02 26 2-1 SW 2015. 02 27 SW 2015. 02 2-1 28 SW 2015. 02 29 2 SW 2015. 02 2-2 30 2-2 SW 2015. 02 31 SW 2015. 02 32 2-3 SW 2015. 02 33 3 SW 2015. 02 2-3 34 2-4 SW 2015. 02 35 4 SW 2015. 02
More informationPowerPoint 프레젠테이션
빅데이터분석활용센터 분석활용인프라매뉴얼 목 차 1 분석활용인프라 1. 개요 1.1 개요 1 2. 메뉴구조도 2.1 메뉴구조도 2 3.1 플라밍고로그인 3 3.2 데스크탑화면 8 3.3 대시보드 9 3.4 워크플로우디자이너 13 3.5 파일시스템브라우저 27 3.6 Apache Hive 편집기 42 3.7 Apache Pig 편집기 48 3.8 BI Matrix
More information제목을 입력하십시오
Big Data Analytics BK21+ Kick-off Meeting Jong Uk, Lee eastwest9@korea.ac.kr 2013. 10. 21 Section I) Data! Section Ⅱ) Big Data! Section Ⅲ) Big Data Technology Section Ⅳ) Big Data Use Case and Proposal
More information슬라이드 1
www.altsoft.co.kr www.clunix.com COMSOL4.0a Cluster 성능테스트 2010 년 10 월 클루닉스 / 알트소프트 개요 개요 목차 BMT 환경정보 BMT 시나리오소개 COMSOL4.0a MPP 해석실행조건 BMT 결과 COMSOL4.0a 클러스터분석결과 ( 메모리 / 성능 ) COMSOL4.0a 클러스터최종분석결과 -2- 개요
More information빅데이터 라이프사이클관리 심탁길
빅데이터 라이프사이클관리 심탁길 terryshim@naver.com 목차 1. 빅데이터개요 2. 빅데이터라이프사이클 3. 주요오픈소스기술소개 빅데이터개요 빅데이터란? Big Data 데이터베이스관점업무관점 기존의방식으로 저장 / 관리분석하기어려울정도의큰규모의자료 일반적인데이터베이스 SW 가저장, 관리분석할수있는범위를초과하는규모의데이터 ( 맥킨지, 2011)
More informationSlide 1
Java 기반의오픈소스 GIS(GeoServer, udig) 를지원하는국내공간 DBMS 드라이버의개발 2013. 08. 28. 김기웅 (socoooooool@gmail.com) 임영현 (yhlim0129@gmail.com) 이민파 (mapplus@gmail.com) PAGE 1 1 기술개발의목표및내용 2 기술개발현황 3 커뮤니티운영계획 4 활용방법및시연 PAGE
More information고객 지향적인 IT 투자와 운영이 요구되는 시대! 2014년 현재 유통, 서비스 업계의 정보화 화두는 BYOD 수용과 고객의 마음을 읽는 분석 입니다. Market Overview _ Cross Industry 의 정보화 동향 유통과 서비스 업계의 IT 환경은 발 빠르
무엇이든 물어보세요! 4 3 고객 지향적인 IT 투자와 운영이 요구되는 시대! 2014년 현재 유통, 서비스 업계의 정보화 화두는 BYOD 수용과 고객의 마음을 읽는 분석 입니다. Market Overview _ Cross Industry 의 정보화 동향 유통과 서비스 업계의 IT 환경은 발 빠르게 고객 지향적인 방향으로 발전해 가고 있다. 제품과 서비스를
More information