Cloudera Toolkit (Dark) 2018

Size: px
Start display at page:

Download "Cloudera Toolkit (Dark) 2018"

Transcription

1 BIG DATA LAKE 구축사례 굿모닝아이텍 / 박근봉상무

2 AGENDA 1. BIGDATA 현황 2. Cloudera Bigdata Lake 3. BIG DATA LAKE 구축사례 2

3 BIGDATA 현황 3

4 BIGDATA 현황 2020 년국내빅데이터시장약 9 억달러 2006 년 빅데이터 (Big Data) 가구글검색어로처음등장한이래 2012 년다보스포럼에선그해가장중요한기술중하나로빅데이터를꼽았다. 21 세기원유 라고불리며새로운성장동력으로자리잡은빅데이터. 4

5 BIGDATA 현황 기업에서의활용도 5

6 BIGDATA 현황걸림돌 6

7 BIGDATA 현황 가트너그룹 The Big data Value Model(2015) Customer Insight, Product & Process Efficiency, Digital Products & Service, Operational Excellence, Digital Marketing, Risk Management & Compliance 7

8 BIGDATA 현황 전체도입기업의 95% 는향후에도빅데이터활용범위와수준을최대한늘려나가겠다는의사를표시하였으며향후에빅데이터활용을줄이겠다는반응을보이는기업은 5% 정도로나타나많은기업들이빅데이터활용에대해서는성과를내거나기대하고있는것으로나타남 빅데이터활용단계를 Experimental( 실험적활용수준 ), Strategic( 전략적활용수준 ), Transformational( 혁신적활용수준 ) 으로구분할때, 2016 년부터 2018 년에이르기까지 Transformational( 혁신적활용수준 ) 비중이크게증가 8

9 BIGDATA 현황 전체빅데이터활용기업의 66% 는업계의판도를바꾸려는의도를가지고고급데이터분석및결과를비즈니스에활용하고있음. 반면실험적이거나소규모형태의활용이주요활용목적이라고응답한기업은 34% 로나타남 빅데이터활용의핵심목적은 전략적대비 또는 업계판도교체 라고응답 9

10 BIGDATA 현황 데이터기반의의사결정. 10

11 BIGDATA 현황 빅데이터가核心역활 IoT, 인공지능 AI ICT 의중심에빅터이터!! 데이터기반의사전예측 :11:56 / 박기록 rock@ddaily.co.kr ( 발췌 ) Connected Vehicles Industrial IoT Smart Cities Oil & Gas Usage Based Insurance Predictive Maintenance Aerospace & Aviation Smart Healthcare 11

12 CLOUDERA DATA LAKE 12

13 CLOUDERA DELIVER THE MODERN PLATFORM Bigdata 적용업무의변화 New workloads expanding Hadoop's enterprise appeal Phase I : Early Adopters Phase II : Early Enterprise Phase III : Line of Business Phase IV : Advanced Enterprise Real-time Streaming, Machine Learning, Predictive Analytics 하둡사용처 : 데이터변환및 ETL 작업및일부배치업무에적용 Data profiling, Data Cleansing 및 Data matching 업무로 Hadoop 적용확산 BI 및시각화도구를활용한빅데이터분석시대도래 빅데이터기반의새로운비즈니스 Insight 도출로업무확산 We are here * Source: Ovum Decision Matrix : Selecting a Hadoop Platform,

14 CLOUDERA DELIVER THE MODERN PLATFORM General Things of Big Data 영업시스템 거래, 매매내역등 88% 전통적인쿼리및모니터링 88% 로그데이터 웹로그등 73% 이벤트데이터 59% 이메일 57% 소셜미디어 43% 데이터마이닝 77% 데이터시각화 71% 예측모델링 67% 최적화 65% 센서 42% 외부데이터 42% RFID & POS 데이터 41% 텍스트파일 41% 빅데이터소스 시뮬레이션 56% 검색 자연어텍스트 52% 지리공간적분석 43% 스트리밍분석 35% 위치정보 40% 오디오 / 비디오 38% 비디오분석 26% 음성분석 25% 빅데이터분석영역 14

15 CLOUDERA DELIVER THE MODERN PLATFORM Evolution of the Hadoop Platform Core Hadoop (HDFS, MapReduce) Solr Pig Core Hadoop HBase ZooKeeper Solr Pig Core Hadoop Hive Mahout HBase ZooKeeper Solr Pig Core Hadoop Sqoop Avro Hive Mahout HBase ZooKeeper Solr Pig Core Hadoop Flume Bigtop Oozie HCatalog Hue Sqoop Avro Hive Mahout HBase ZooKeeper Solr Pig YARN Core Hadoop Spark Tez Impala Kafka Drill Flume Bigtop Oozie HCatalog Hue Sqoop Avro Hive Mahout HBase ZooKeeper Solr Pig YARN Core Hadoop Parquet Sentry Spark Tez Impala Kafka Drill Flume Bigtop Oozie HCatalog Hue Sqoop Avro Hive Mahout HBase ZooKeeper Solr Pig YARN Core Hadoop Knox Flink Parquet Sentry Spark Tez Impala Kafka Drill Flume Bigtop Oozie HCatalog Hue Sqoop Avro Hive Mahout HBase ZooKeeper Solr Pig YARN Core Hadoop Kudu RecordService Ibis Falcon Knox Flink Parquet Sentry Spark Tez Impala Kafka Drill Flume Bigtop Oozie HCatalog Hue Sqoop Avro Hive Mahout HBase ZooKeeper Solr Pig YARN Core Hadoop

16 CLOUDERA DELIVER THE MODERN PLATFORM Cloudera Enterprise Cloudera Enterprise 는제품업그레이드를 Major, Minor, Dot patch 의체계로가져갑니다. Major 업그레이드는 18 ~ 3 년을주기로, Minor 업그레이드는 3 개월을주기로, Dot Patches 필요시수시로진행됩니다. 16

17 CLOUDERA DELIVER THE MODERN PLATFORM Data Warehouse Vision ~1999 Oracle Data Mart BI ERP ETL Enterprise Data Warehouse ETL Data Mart BI Mainframe Data Mart BI 17

18 CLOUDERA DELIVER THE MODERN PLATFORM Data Warehouse Reality: Today 20% of Flows cause 80% of issues Oracle Data Mart BI Files ERP ETL Enterprise Data Warehouse(s) ETL Data Mart 6-9mths BI Mainframe Real-Time Data Mart BI Impossible to Govern 18

19 CLOUDERA DELIVER THE MODERN PLATFORM Traditional EDW VS Hybrid EDW w/t Cloudera Traditional EDW ~ Today Hybrid EDW ~ Tomorrow 비즈니스요구사항및더많은데이터를수용하기위해서는지속적인초기투자비용을요구하고있습니다. 전통적인 EDW Architecture 를 Hadoop 을활용하여 Modernization 하면, TCO 을최소화하면서다양한요구사항을수용할수있습니다. EDW Cloudera 100% TB Data Growth 100 TB 100 TB 100 TB Lower Value Data High value Data 50 TB 100 TB 50 TB 범용하드웨어사용으로 TCO 최적화 데이터증가에따른능동적대처가능 Data Warehouse Data Warehouse 증설 Keep the Right Data in EDW Use Hadoop for More Business Value added $xx ~ $xxx / TB Total Investment : x2 배증가 Latest Data Operational Analytics Historical Data Data Processing Reporting Ad-hoc Exploratory Business Analytics Transformation / Batch 경제적인가격으로증가되는데이터를수용할수있습니다. 19

20 CLOUDERA DELIVER THE MODERN PLATFORM CLOUDERA ENTERPRISE The modern platform for machine learning and analytics optimized for the cloud Core Services DATA SCIENCE DATA WAREHOUSE OPERATIONAL DATABASE DATA ENGINEERING EXTENSIBLE SERVICES SECURITY GOVERNANCE WORKLOAD MANAGEMENT INGEST & REPLICATION DATA CATALOG Storage Services Amazon S3 Microsoft ADLS HDFS KUDU 20

21 CLOUDERA DELIVER THE MODERN PLATFORM Cloudera Data Lake 관리체계 21

22 CLOUDERA DELIVER THE MODERN PLATFORM Cloudera Manager Key Features Backup & Disaster Recovery Zero Downtime Rolling Updata 22

23 CLOUDERA DELIVER THE MODERN PLATFORM Big Data Meets Data Governance Cloudera Navigator Minimize risk and maintain compliance with the only native end-to-end data governance solution for Apache Hadoop. Unique Capabilities: Auditing Lineage Metadata Tagging and Discovery Lifecycle Management 23

24 CLOUDERA DELIVER THE MODERN PLATFORM Machine Learning / DeepLearning Process Ingest Sqoop, Flume, Kafka Transform MapReduce, Hive, Pig, Spark Discover Analytic Database Impala Search Solr Model Machine Learning SAS, R, Spark, Mahout Security and Administration Serve NoSQL Database HBase Streaming Spark Streaming YARN, Cloudera Manager, Cloudera Navigator Unlimited Storage HDFS, HBase Batch, Interactive, and Real-Time. Leading performance and usability in one platform. End-to-end analytic workflows Access more data Work with data in new ways Enable new users 24

25 DATA LAKE _USE CASE 구분사업명사업기간비고 빅데이터플랫폼구축 ~ 금융 빅데이터플랫폼구축 ~ 빅데이트플랫폼구축 ~ 금융분야 9~20 여대노드사용 빅데이터플랫폼구축 ~ 빅데이터플랫폼구축 실시간영상처리빅데이터개발장비도입 ~ 바이오빅데이터플랫폼구축및유지보수 ~ 현재 공공 검사실업무프로세스분석컨설팅 ~ 의약품의료정보연계분석사업 ~ 공공분야 36대이상노드구축및운영 공간정보빅데이터인프라구축 빅데이터하둡관리소프트웨어연간라이센스계약 부산창조혁신센터빅데이터플랫폼구축 Smart Factory Hadoop Tuning Consulting Smart Factory License 연간라이센스공급 기업 슈퍼컴빅데이터분석기법개발 ~ 기업분야 250대노드운영중 빅데이터 SW 도입구축 ~ DW 모델링및 ETL 개발 ~ 로그데이터분석을위한빅데이터플랫폼유지보수 ~ SSG.Com ETL 개발용역 로그분석을위한빅데이터플랫폼구축

26 DATA LAKE _USE CASE Public 마이크로그리드시스템운영자데이터관리자시설팀관리자연구자일반사용자시스템운영자 에너지빅데이터센터수집기반구축 수집데이터의다양한분석환경제공 에너지빅데이터포탈구축 연구원 A 사에너지빅데이터포털 일반사용자 이기종센서전력사용량예측인공지능데이터분석사용자권한인증분석정보제공및활용데이터저장소활용 센서데이터분석환경 [Data Analysis System] WorkBench JDBC Python ( 개발언어 ) R ( 분석 TOOL) SCALA ( 개발언어 ) Mahout ( 기계학습 ) Tensorflow 데이터 데이터 이기종센서및외부데이터 센서데이터 센서데이터 D 사 D 사센서데이터수집 B 사센서데이터 외부데이터소스 Data Repository System API API API FTP 데이터수집 Flume ( 비정형 ) Monitoring System 시설팀 Microgrid System Monitoring System API Hue HUE 데이터목록조회및검색데이터다운로드 MapReduce ( 분산처리 ) Spark ( 인메모리 ) Cloudera Manager( 클러스터관리 ) Impala ( 질의 ) YARN( 리소소관리 ) Solr ( 검색 ) Hive ( 질의 ) 데이터입출력및편집 입력 출력 (API지원) 수정 삭제 사용자보안및작업관리 Ozzie ( 작업관리 ) Kerberos ( 사용자인증 ) 메타데이터관리 Sentry ( 권한관리 ) 26

27 DATA LAKE _USE CASE Public 에너지센서정보의분석 (Dash Board) 27

28 DATA LAKE _USE CASE Banking 실시간데이터수집활용빅데이터표준아키텍처도입및분석환경제공분석모델링고도화및신규개발 데이터소스 외부 소셜 (SNS) 통신 제휴 / 비식별 비정형 고객상담 웹 / 모바일로그 정형 모델 실시간데이터처리 대용량배치처리 빅데이터통합인프라 실시간데이터적재 고속색인데이터처리 빅데이터허브 ( 저장소 ) 하둡기반 Data Lake 통합데이터사이언스플랫폼 빅데이터허브 ( 저장소 ) 사용자별머신러닝 / 딥러닝통합분석환경및포털제공 모델 머신러닝모델링 분석모델링 통합 VOC 모델 개인화추천모델 개인별맞춤형마케팅 가맹점추천 카드추천 고객 가맹점 ( 소상공인 / 개인사업자포함 ) 경영진 / 일반사용자 데이터엔지니어 데이터사이언티스트 활용영역챗봇 CRM 스마트오퍼링 Biz 분석가 28

29 DATA LAKE _USE CASE Telco 공통빅데이터플랫폼 논리아키텍처 공통플랫폼 Analytical Sandbox 서비스발굴이나기존서비스개선을위한 Offline Pilot 환경제공 Data Dictionary 관리 데이터의정의 / 위치 / 관계를관리하고현업에게데이터검색제공 Data Lake 전사데이터에대한통합적인수집 / 정제 / 제공 서비스별원천데이터수집및 2 차결과데이터장기보관 데이터수집 전사 / 서비스별정제 / 분석데이터 신규시스템 L1: Ad-Hoc, 외부연계 API L2: Data Dictionary, Portal L3: Data Lake(Data Mart, Analytic Model) L4: Data 인터페이스 L5: N/W 토폴로지 전용선 L6: Sand Box(Pilot 분석, 신규분석레이어연동 ) L7: 표준분석도구 - BI 서비스별플랫폼 #th 서비스 대고객서비스제공 최소한의분석만제공 서비스별발생하는데이터의 1 차수집및서비스제공을위한단기보관 기존시스템 29

30 DATA LAKE _USE CASE Telco 프로젝트목적 : 이전현황모니터링중심의리포트활용에서통합 ALL 데이터에대한분석과제중심으로데이터활용및 Raw 데이터탐색으로프로세스가변경하여데이터중심으로업무를개선하고자함 주개선 : 기존 DW 및분석환경유지 기존기술적제약사항해결 기시스템변경최소화 Archiving 데이터활용 분석모델변경에능동적대처 데이터기반신규서비스발굴 Data Lake Layer 제공 전사데이터에대한통합적인수집 / 정제 / 제공계층구축 서비스별원천데이터및 2 차결과데이터에대한장기보관 AS-IS TO-BE 단발성의표준화되지않은데이터분석및활용 일, 주, 월단위의주기적이고표준화된데이터분석및활용 가구화분석 VoC 분석해지방어 가구화 DB VoC DB 해지방어 DB Batch Batch Batch 주시스템 EDW 기타시스템 분석과제 DBM, 가구화 VOC, 해지방어 빅데이터플랫폼 DBM 모형 고객모형 통합분석플랫폼 상품모형 + 잠재고객 맞춤형검색. 통합 DW 플랫폼 기타모형 분석과제 ( 신규 ) DB File Haddop IT 서비스네트워크.. 고객빌링과금 CDR 고객. 빌링과금 CDR. LQM xcdr... 30

31 DATA LAKE _USE CASE FDS & RMS Challenges 금융환경변화에따른데이터폭증 엄격해지고늘어나는규제의준수어려움 이상거래방지 : 신규금융상품, 거래에서발생되는데이터를기존시스템으로추적 / 탐지하기어려움 위험관리 : 증가하는리스크모델링에대한수요를기존샘플링기반으로충족되지않음 Business Objectives 기업내존재하는다양한데이터의통합필요 변화하는규제및관리예측모델에대한신속한대응체계구축 모든고객및거래대상 Detection 지속적인 Fraud 의심대상추적관리필요 대용량데이터수용및처리가능 : 기존시스템에서수용하지못했던다양한데이터사용가능 구축효과 이상징후정확도개선 : 샘플링기법에서전수조사방식으로 Fraud Detection 전환및이상징후탐지율개선 통합환경제공 : 시스템연계를위한별도솔루션도입없이, Hadoop Ecosystem 컴포넌트를활용하여 40 여개의연계시스템과연계통합구축 빠른이상징후감지및위험예측가능 : 기존배치기반의데이터사용지연현상탈피및 Near-Real Time 분석가능 지속 Fraud 의심대상추적가능 : 200 여개의분석기능구현을통해다양한서비스로진화 31

32 DATA LAKE _USE CASE Logistic Challenges Business Objectives 데이터 Silo: 전세계다양한점포에서생성되는데이터가이기종환경에산재되어존재 분산분석환경 : 기존이기종환경을통합한분석플랫폼구축어려움 데이터손실현상발생 : 이기종환경에서데이터통합처리시, 성능 bottleneck 구간존재및이로인한데이터유실발생 데이터통합환경개선 : 일평균 500 백만 TLOG 처리시발생된병목현상을제거한데이터통합환경구축 데이터확장성 : 최초 200TB 규모의개방형데이터플랫폼으로출발하여, 연평균 50TB 수용가능한구조 Legacy 시스템부하완화 : 기존인프라의부하를 20% 이상완화 구축효과 Customer 360 실현 : 전세계 점포별회원별성향분석환경 필요 : 상품전열등활용 통합분석플랫폼 : 이기종 시스템에서생성되는다양한 데이터의통합요구 분석성능 : 기존 16~24 시간 소요되는쿼리성능개선필요 분석환경제공 : 점포별 Product Manager 에게맞춤형분석환경 제공 구축비용절감 : 기존 Infra 확장대비 100% 절감된비용으로데이터플랫폼구축 분석시간단축 : 기존 16~24 시간소요된분석업무를 14 분으로단축 1,000 배개선 다양한분석데이터활용 : 회원별 5 년치사용패턴을분석하여상품전시로수익개선 32

33 DATA LAKE _USE CASE Logistic_EDW offloading Challenges 데이터증가에따른비용증가 : 추가데이터를수용하기위해 EDW appliance 노드증설에따른비용부담 협업부서요구사항증가 : 기존시스템의성능저하에따른빈번한불만접수및추가데이터수용에대한요구증대 Business Objectives 비용절감 : 운영및자본비용을절감하여 고객에게더좋은오퍼링제공을목표로함 단계별접근요구 : 최초 EDW Offload 로시작하여최종 Hadoop 기반의분석시스템구축요구 구축효과 비용절감 : 기존 Infra 확장대비 $9.3M 절감 (3 년간데이터누적에따른투자비용 ) EDW Offload: 데이터처리부하를제거하여분석업무효과개선 (Phase I) DW Modernization: Hadoop 기반의분석시스템구축을통한다양한데이터수용및분석업무효율성증대 33

34 DATA LAKE _USE CASE Retails Challenges 정형데이터기반분석한계 : 제한된데이터기반분석한계로잦은재고부족으로인한품절및재고관리문제발생과같은이슈발생 분산분석환경 : 기존이기종환경을통합한분석플랫폼구축어려움 데이터손실현상발생 : 이기종환경에서데이터통합처리시, 성능 bottleneck 구간존재및이로인한데이터유실발생 Business Objectives 마켓바스켓분석및가격최적화 : 고객성향에맞는판매제품선정및가격책정자동화시스템도입목표 통합분석플랫폼구축 : 실시간제품판매데이터, 공급만재고수준, 광고지출정보등의통합하여분석할수있는심층분석시스템구축을목표로함 구축효과 다양한데이터수용 : 자사 300 여브랜드와 100 여지역거점에서발생되는모든데이터통합 데이터확장성 : 최초 200TB 규모의개방형데이터플랫폼으로출발하여, 연평균 50TB 수용가능한구조 Legacy 시스템부하완화 : 기존인프라의부하를 20% 이상완화 실시간의사결정시스템활용 : 기업내 / 외대량데이터를통합하여분석해주는시스템을활용해, 임직원회의시전사운영분석및실시간의사결정가능한환경제공 Geographic 확대적용 : 전세계주요 50 개거점별브랜치에통합분석시스템을활용 34

35 DATA LAKE _USE CASE Healthcare EDW Optimization Challenges 데이터제약 : 정보계시스템제약사항으로인해모든정보저장불가 ( 아카이빙 ) 성능이슈 : 배치작업의성능이슈로인해애플리케이션및리포트생성지연현상발생 Business Objectives EDW 최적화 : 오래된데이터및 ETL 워크로드를 Hadoop으로전환하여운영시스템최적화 Active-Active : Archive 데이러를 Hadoop으로마이그하여과거데이터를활용 구축효과 다양한데이터를활용한분석가능 : 아카이빙정보들에대한접근 / 분석가능 데이터확장성 : 더많은데이터셋을통한향후 Use Case 확장가능플랫폼제공 EDW 개선 : EDW 성능제약사항을해소하여분석계시스템개선 분석계활용도개선 : 데이터수집후접근이기존 1 일에서 Near-Real Time 으로개선되어협업사용량증가 Technology ROI : 기존시스템대비비약적성능개선 (20ms VS 1 시간 ) 비용절감 : 기존시스템확장대비연간 $250K 비용절감 35

36 THANK YOU

슬라이드 1

슬라이드 1 Data-driven Industry Reinvention All Things Data Con 2016, Opening speech SKT 종합기술원 최진성원장 Big Data Landscape Expansion Big Data Tech/Biz 진화방향 SK Telecom Big Data Activities Lesson Learned and Other Topics

More information

김기남_ATDC2016_160620_[키노트].key

김기남_ATDC2016_160620_[키노트].key metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational

More information

Basic Template

Basic Template Hadoop EcoSystem 을홗용한 Hybrid DW 구축사례 2013-05-02 KT cloudware / NexR Project Manager 정구범 klaus.jung@{kt nexr}.com KT의대용량데이터처리이슈 적재 Data의폭발적인증가 LTE 등초고속무선 Data 통싞 : 트래픽이예상보다빨리 / 많이증가 비통싞 ( 컨텐츠 / 플랫폼 /Bio/

More information

Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤

Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤 Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤 (byounggon.kim@opence.org) 빅데이터분석및서비스플랫폼 모바일 Browser 인포메이션카탈로그 Search 인포메이션유형 보안등급 생성주기 형식

More information

Hadoop 10주년과 Hadoop3.0의 등장_Dongjin Seo

Hadoop 10주년과 Hadoop3.0의 등장_Dongjin Seo Hadoop 10 th Birthday and Hadoop 3 Alpha Dongjin Seo Cloudera Korea, SE 1 Agenda Ⅰ. Hadoop 10 th Birthday Ⅱ. Hadoop 3 Alpha 2 Apache Hadoop at 10 Apache Hadoop 3 Apache Hadoop s Timeline The Invention

More information

CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내 빅데이터 산 학 연 관

CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내 빅데이터 산 학 연 관 방송 통신 전파 KOREA COMMUNICATIONS AGENCY MAGAZINE 2013 VOL.174 09+10 CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내

More information

DB진흥원 BIG DATA 전문가로 가는 길 발표자료.pptx

DB진흥원 BIG DATA 전문가로 가는 길 발표자료.pptx 빅데이터의기술영역과 요구역량 줌인터넷 ( 주 ) 김우승 소개 http://zum.com 줌인터넷(주) 연구소 이력 줌인터넷 SK planet SK Telecom 삼성전자 http://kimws.wordpress.com @kimws 목차 빅데이터살펴보기 빅데이터에서다루는문제들 NoSQL 빅데이터라이프사이클 빅데이터플랫폼 빅데이터를위한역량 빅데이터를위한역할별요구지식

More information

따끈따끈한 한국 Azure 데이터센터 서비스를 활용한 탁월한 데이터 분석 방안 (To be named)

따끈따끈한 한국 Azure 데이터센터 서비스를 활용한 탁월한 데이터 분석 방안 (To be named) 오늘그리고미래의전략적자산 데이터. 데이터에서인사이트까지 무엇이? 왜? 그리고? 그렇다면? Insight 데이터의변화 CONNECTED DIGITAL ANALOG 1985 1990 1995 2000 2005 2010 2015 2020 데이터의변화 CONNECTED DIGITAL ANALOG 1985 1990 1995 2000 2005 2010 2015 2020

More information

ETL_project_best_practice1.ppt

ETL_project_best_practice1.ppt ETL ETL Data,., Data Warehouse DataData Warehouse ETL tool/system: ETL, ETL Process Data Warehouse Platform Database, Access Method Data Source Data Operational Data Near Real-Time Data Modeling Refresh/Replication

More information

AI/DL Program

AI/DL Program HPE AI STRATEGY, PORTFOLIO & SOLUTIONS 민병기부장 / PonitNext A&PS HPE Cloudera, Inc. All rights reserved. 폭증하는데이터에대한기업의고민 기업의고민 폭증하는데이터 화된데이터 에따른분석요구증대 데이터관리비용폭증 데이터처리성능의한계 데이터처리이슈 기업내시스템로그센서설비데이터의용량이수수십용량으로기하급수적인증가

More information

빅데이터_DAY key

빅데이터_DAY key Big Data Near You 2016. 06. 16 Prof. Sehyug Kwon Dept. of Statistics 4V s of Big Data Volume Variety Velocity Veracity Value 대용량 다양한 유형 실시간 정보 (불)확실성 가치 tera(1,0004) - peta -exazetta(10007) bytes in 2020

More information

Business Agility () Dynamic ebusiness, RTE (Real-Time Enterprise) IT Web Services c c WE-SDS (Web Services Enabled SDS) SDS SDS Service-riented Architecture Web Services ( ) ( ) ( ) / c IT / Service- Service-

More information

2017 1

2017 1 2017 2017 Data Industry White Paper 2017 1 1 1 2 3 Interview 1 4 1 3 2017IT 4 20161 4 2017 4 * 22 2017 4 Cyber Physical SystemsCPS 1 GEGE CPS CPS Industrial internet, IoT GE GE Imagination at Work2012

More information

Global Bigdata 사용 현황 및 향후 활용 전망 빅데이터 미도입 이유 필요성 못느낌, 분석 가치 판단 불가 향후 투자를 집중할 분야는 보안 모니터링 분야 와 자동화 시스템 분야 빅데이터의 핵심 가치 - 트랜드 예측 과 제품 개선 도움 빅데이터 운영 애로 사항

Global Bigdata 사용 현황 및 향후 활용 전망 빅데이터 미도입 이유 필요성 못느낌, 분석 가치 판단 불가 향후 투자를 집중할 분야는 보안 모니터링 분야 와 자동화 시스템 분야 빅데이터의 핵심 가치 - 트랜드 예측 과 제품 개선 도움 빅데이터 운영 애로 사항 Global Bigdata 사용 현황 및 향후 활용 전망 빅데이터 미도입 이유 필요성 못느낌, 분석 가치 판단 불가 향후 투자를 집중할 분야는 보안 모니터링 분야 와 자동화 시스템 분야 빅데이터의 핵심 가치 - 트랜드 예측 과 제품 개선 도움 빅데이터 운영 애로 사항 - 재직자 전문성, 복잡성으로 인해 알고리즘 개발 난항 본 조사 내용은 美 Techpro Research

More information

Model Investor MANDO Portal Site People Customer BIS Supplier C R M PLM ERP MES HRIS S C M KMS Web -Based

Model Investor MANDO Portal Site People Customer BIS Supplier C R M PLM ERP MES HRIS S C M KMS Web -Based e- Business Web Site 2002. 04.26 Model Investor MANDO Portal Site People Customer BIS Supplier C R M PLM ERP MES HRIS S C M KMS Web -Based Approach High E-Business Functionality Web Web --based based KMS/BIS

More information

15_3oracle

15_3oracle Principal Consultant Corporate Management Team ( Oracle HRMS ) Agenda 1. Oracle Overview 2. HR Transformation 3. Oracle HRMS Initiatives 4. Oracle HRMS Model 5. Oracle HRMS System 6. Business Benefit 7.

More information

PowerPoint Presentation

PowerPoint Presentation 1 2 Enterprise AI 인공지능 (AI) 을업무에도입하는최적의제안 Taewan Kim Solution Engineer Data & Analytics @2045 Imagine the endless possibilities to learn from 2.5 quintillion bytes of data generated every day AI REVOLUTION

More information

歯목차45호.PDF

歯목차45호.PDF CRM CRM (CRM : Customer Relationship Management ). CRM,,.,,.. IMF.,.,. (CRM: Customer Relationship Management, CRM )., CRM,.,., 57 45 (2001 )., CRM...,, CRM, CRM.. CRM 1., CRM,. CRM,.,.,. (Volume),,,,,,,,,,

More information

DW 개요.PDF

DW 개요.PDF Data Warehouse Hammersoftkorea BI Group / DW / 1960 1970 1980 1990 2000 Automating Informating Source : Kelly, The Data Warehousing : The Route to Mass Customization, 1996. -,, Data .,.., /. ...,.,,,.

More information

슬라이드 1

슬라이드 1 Data Warehouse 통합솔루션 회사연혁 Teradata Corporation (NYSE: TDC) 은 30 년이상업계를선도하며, 전세계적으로 Big Data 및데이터웨어하우스관련 Analytic 솔루션과컨설팅서비스를제공하는최고의기술을보유한 Global 기업 Teradata 본사 한국 Teradata 미국오하이오주 Dayton에세계최초의금전등록기제조사

More information

Intra_DW_Ch4.PDF

Intra_DW_Ch4.PDF The Intranet Data Warehouse Richard Tanler Ch4 : Online Analytic Processing: From Data To Information 2000. 4. 14 All rights reserved OLAP OLAP OLAP OLAP OLAP OLAP is a label, rather than a technology

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 ㆍ Natural Language Understanding 관련기술 ㆍ Semantic Parsing Conversational AI Natural Language Understanding / Machine Learning ㆍEntity Extraction and Resolution - Machine Learning 관련기술연구개발경험보유자ㆍStatistical

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 빅 - 데이터분석에서데이터전 - 처리방법및트리팩타소개 데이터브릭 / 신동원 2 I. 데이터전 - 처리 3 1. 데이터전 - 처리정의및필요성 정의 필요성 4 2. 기존데이터전 - 처리문제점 80 % 5 2. 기존전 - 처리문제점 - IT 중심 이슈 수주에서수개월소요 1. 빠른인 - 사이트생성불가 2. 신속한업무적용불가 3. 결과물의정확성회의 6 2. 기존전 -

More information

Oracle Apps Day_SEM

Oracle Apps Day_SEM Senior Consultant Application Sales Consulting Oracle Korea - 1. S = (P + R) x E S= P= R= E= Source : Strategy Execution, By Daniel M. Beall 2001 1. Strategy Formulation Sound Flawed Missed Opportunity

More information

이제는 쓸모없는 질문들 1. 스마트폰 열기가 과연 계속될까? 2. 언제 스마트폰이 일반 휴대폰을 앞지를까? (2010년 10%, 2012년 33% 예상) 3. 삼성의 스마트폰 OS 바다는 과연 성공할 수 있을까? 지금부터 기업들이 관심 가져야 할 질문들 1. 스마트폰은

이제는 쓸모없는 질문들 1. 스마트폰 열기가 과연 계속될까? 2. 언제 스마트폰이 일반 휴대폰을 앞지를까? (2010년 10%, 2012년 33% 예상) 3. 삼성의 스마트폰 OS 바다는 과연 성공할 수 있을까? 지금부터 기업들이 관심 가져야 할 질문들 1. 스마트폰은 Enterprise Mobility 경영혁신 스마트폰, 웹2.0 그리고 소셜라이프의 전략적 활용에 대하여 Enterpise2.0 Blog : www.kslee.info 1 이경상 모바일생산성추진단 단장/경영공학박사 이제는 쓸모없는 질문들 1. 스마트폰 열기가 과연 계속될까? 2. 언제 스마트폰이 일반 휴대폰을 앞지를까? (2010년 10%, 2012년 33%

More information

SAS FORUM KOREA 2018_Cloudera_발표

SAS FORUM KOREA 2018_Cloudera_발표 SAS FORUM AI / Machine Learning 시대를선도하는 SAS 사용자를위한데이터플랫폼 구축안내서 Cloudera Korea 임상배 Copyright SAS Ins1tute Inc. All rights reserved. Cloudera Hadoop SAS & Cloudera 활용방법 Cloudera Hadoop Overview 하둡따라잡기 Hadoop:

More information

Microsoft PowerPoint - 3.공영DBM_최동욱_본부장-중소기업의_실용주의_CRM

Microsoft PowerPoint - 3.공영DBM_최동욱_본부장-중소기업의_실용주의_CRM 中 규모 기업의 실용주의CRM 전략 (CRM for SMB) 공영DBM 솔루션컨설팅 사업부 본부장 최동욱 2007. 10. 25 Agenda I. 중소기업의 고객관리, CRM의 중요성 1. 국내외 CRM 동향 2. 고객관리, CRM의 중요성 3. CRM 도입의 기대효과 II. CRM정의 및 우리회사 적합성 1. 중소기업에 유용한 CRM의 정의 2. LTV(Life

More information

Cover Story 01 20 Oracle Big Data Vision 01_Big Data의 배경 02_Big Data의 정의 03_Big Data의 활용 방안 04_Big Data의 가치

Cover Story 01 20 Oracle Big Data Vision 01_Big Data의 배경 02_Big Data의 정의 03_Big Data의 활용 방안 04_Big Data의 가치 Oracle Big Data 오라클 빅 데이터 이야기 Cover Story 01 20 Oracle Big Data Vision 01_Big Data의 배경 02_Big Data의 정의 03_Big Data의 활용 방안 04_Big Data의 가치 최근 빅 데이터에 대한 관심이 커지고 있는데, 그 배경이 무엇일까요? 정말 다양한 소스로부터 엄청난 데이터들이 쏟아져

More information

KRG. IT Research & Consulting... Providing INSIGHT Into IT Market.. Developing Business STRATEGY.. Supporting Marketing ACTIVITY 주요 수행 프로젝트 IT기업 성장성 평

KRG. IT Research & Consulting... Providing INSIGHT Into IT Market.. Developing Business STRATEGY.. Supporting Marketing ACTIVITY 주요 수행 프로젝트 IT기업 성장성 평 2009 IT Service 시장 전망 2009.1.22 Knowledge Research Group www.krgweb.com KRG. IT Research & Consulting... Providing INSIGHT Into IT Market.. Developing Business STRATEGY.. Supporting Marketing ACTIVITY

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 CRM Data Quality Management 2003 2003. 11. 11 (SK ) hskim226@skcorp.com Why Quality Management? Prologue,,. Water Source Management 2 Low Quality Water 1) : High Quality Water 2) : ( ) Water Quality Management

More information

Data Industry White Paper

Data Industry White Paper 2017 2017 Data Industry White Paper 2017 1 3 1 2 3 Interview 1 ICT 1 Recommendation System * 98 2017 Artificial 3 Neural NetworkArtificial IntelligenceAI 2 AlphaGo 1 33 Search Algorithm Deep Learning IBM

More information

AGENDA 01 02 03 모바일 산업의 환경변화 모바일 클라우드 서비스의 등장 모바일 클라우드 서비스 융합사례

AGENDA 01 02 03 모바일 산업의 환경변화 모바일 클라우드 서비스의 등장 모바일 클라우드 서비스 융합사례 모바일 클라우드 서비스 융합사례와 시장 전망 및 신 사업전략 2011. 10 AGENDA 01 02 03 모바일 산업의 환경변화 모바일 클라우드 서비스의 등장 모바일 클라우드 서비스 융합사례 AGENDA 01. 모바일 산업의 환경 변화 가치 사슬의 분화/결합 모바일 업계에서도 PC 산업과 유사한 모듈화/분업화 진행 PC 산업 IBM à WinTel 시대 à

More information

I. - II. DW ETT Best Practice

I. - II. DW ETT Best Practice IBM Business Intelligence Solution Seminar 2005 - IBM Business Consulting Service (cslee@kr.ibm.com) I. - II. DW ETT Best Practice (DW)., (EDW). Time 1980 ~1990 1995 2000 2005 * 1980 IBM Information Warehouse

More information

PowerPoint Presentation

PowerPoint Presentation Data Protection Rapid Recovery x86 DR Agent based Backup - Physical Machine - Virtual Machine - Cluster Agentless Backup - VMware ESXi Deploy Agents - Windows - AD, ESXi Restore Machine - Live Recovery

More information

OZ-LMS TM OZ-LMS 2008 OZ-LMS 2006 OZ-LMS Lite Best IT Serviece Provider OZNET KOREA Management Philosophy & Vision Introduction OZNETKOREA IT Mission Core Values KH IT ERP Web Solution IT SW 2000 4 3 508-2

More information

E-BI Day Presentation

E-BI Day Presentation E-Business Intelligence Agenda Issue E-BI Architecture ORACLE E-BI Solutions ORACLE E-BI ORACLE E-BI I. Issue? KPI. (KPI ). Jeff Henley, CFO, Oracle Corporation I. Issue? I. Issue Many Sources, Users,and

More information

Slide 1

Slide 1 빅데이터기술의이해 2016. 8. 23 장형석 충북대비즈니스데이터융합학과교수 chjang1204@nate.com 장형석교수 # 경력 ( 현직 ) - 충북대학교비즈니스데이터융합학과 - 국민대학교빅데이터경영 MBA 과정겸임교수 - 연세대학교데이터사이언스과정외래교수 # 저서및역서 - [ 실전하둡운용가이드 ] 한빛미디어, 2013.07 - [ 빅데이터컴퓨팅기술 ]

More information

자동화된 소프트웨어 정의 데이터센터

자동화된 소프트웨어 정의 데이터센터 사례로보는 Big Data 프로젝트의 Success Factor 한지수이사 한국이엠씨컴퓨터시스템즈 1 목차 Big Data는무엇인가? BI/DW와 Big Data의차이점? Big Data프로젝트의목표 Big Data 프로젝트수행의 3가지어려움 Big Data 프로젝트사례와시사점 Key Success Factor Big Data 수행을위한조직 Big Data

More information

IBM Business Intelligence Solution Seminar 2005 Choose the Right Data Integration Solution ; Best Practices on EII/EAI/ETL IBM DB2 Technical Sales BI

IBM Business Intelligence Solution Seminar 2005 Choose the Right Data Integration Solution ; Best Practices on EII/EAI/ETL IBM DB2 Technical Sales BI Choose the Right Data Integration Solution ; Best Practices on EII/EAI/ETL IBM DB2 Technical Sales BI Team (byrhee@kr.ibm.com) 2005 IBM Corporation Agenda I. II. ETL, EII, EAI III. ETL, EII, EAI Best Practice

More information

Portal_9iAS.ppt [읽기 전용]

Portal_9iAS.ppt [읽기 전용] Application Server iplatform Oracle9 A P P L I C A T I O N S E R V E R i Oracle9i Application Server e-business Portal Client Database Server e-business Portals B2C, B2B, B2E, WebsiteX B2Me GUI ID B2C

More information

Agenda

Agenda Agenda 코타나인텔리전스소개 Gallery, Solution Template 데모1. ML Tutorial : Classification 데모2. HDI 생성방법, Spark notebook demo, Power BI 시각화 데모3. 인지서비스 Live demo, Intelligent Kiosk 데모4. 챗봇 Skype Preview + LUIS Digital

More information

untitled

untitled 3 IBM WebSphere User Conference ESB (e-mail : ljm@kr.ibm.com) Infrastructure Solution, IGS 2005. 9.13 ESB 를통한어플리케이션통합구축 2 IT 40%. IT,,.,, (Real Time Enterprise), End to End Access Processes bounded by

More information

Service-Oriented Architecture Copyright Tmax Soft 2005

Service-Oriented Architecture Copyright Tmax Soft 2005 Service-Oriented Architecture Copyright Tmax Soft 2005 Service-Oriented Architecture Copyright Tmax Soft 2005 Monolithic Architecture Reusable Services New Service Service Consumer Wrapped Service Composite

More information

SECTION TITLE A PURE PRIMER (AI), // 1

SECTION TITLE A PURE PRIMER (AI), // 1 SECTION TITLE A PURE PRIMER (AI), // 1 ,...,.,,. AI Enlitic.. Aipoly Microsoft Seeing AI.,, " ",. 4. 4..,.,?.. AI Drive.ai Lyft. // 1 .,.. 1. 2. 3.,. 50~100,., (AI) 4.,,.,.. // 2 ,,. 1 (HAL VARIAN) //,

More information

Bigdata가 제공하는 구체적인 혜택과 변화 양상 기업의 데이터 기반의 의사결정 시스템 구축 의지 확대 양상 빅데이터를 활용한 경영 및 마케팅 지속적인 증가세 뚜렷 빅데이터를 도입한 기업은 사전 기대를 뛰어넘는 효과를 경험 본 조사 내용은 美 BARC- Researc

Bigdata가 제공하는 구체적인 혜택과 변화 양상 기업의 데이터 기반의 의사결정 시스템 구축 의지 확대 양상 빅데이터를 활용한 경영 및 마케팅 지속적인 증가세 뚜렷 빅데이터를 도입한 기업은 사전 기대를 뛰어넘는 효과를 경험 본 조사 내용은 美 BARC- Researc Bigdata가 제공하는 구체적인 혜택과 변화 양상 기업의 데이터 기반의 의사결정 시스템 구축 의지 확대 양상 빅데이터를 활용한 경영 및 마케팅 지속적인 증가세 뚜렷 빅데이터를 도입한 기업은 사전 기대를 뛰어넘는 효과를 경험 본 조사 내용은 美 BARC- Researcht 社 가 2015년 대륙별 표본을 추출한 글로벌 546개사를 대상으로 리서치를 수행하여

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 [3S 소프트 ] Ⅰ Ⅱ chapter I. 회사소개 회사소개 - 일반현황 - 4 - 회사소개 - 3S 소프트 공공, 제조, 통신, 금융, 유통등다양한분야에서기술력과신뢰를바탕으로기업인프라솔루션과 IT 컨설팅 / 서비스를제공해온견실한 IT 솔루션전문기업입니다. 주요연혁 229.8 246 2016 인프론티브 ( 인터넷 PC) 와 Reseller 체결 131 161

More information

슬라이드 1

슬라이드 1 Big Architecture 2014.10.23 SK C&C Platform 사업팀이정일차장 Table of 1. Big 개요 2. Big 플랫폼아키텍처 3. 아키텍처수립시고려사항 4. 하둡배포판기반아키텍처 5. Case Study 1. Big 개요 Big 란 Big Big Big Big 3 1. Big 개요 Big 의특성 3V 데이터의크기 (Volume)

More information

슬라이드 1

슬라이드 1 [ CRM Fair 2004 ] CRM 1. CRM Trend 2. Customer Single View 3. Marketing Automation 4. ROI Management 5. Conclusion 1. CRM Trend 1. CRM Trend Operational CRM Analytical CRM Sales Mgt. &Prcs. Legacy System

More information

위세아이텍_iOLAP_

위세아이텍_iOLAP_ 빅데이터관리와분석을위한 플랫폼융합활용사례 BI Forum 분석시스템구축 Review(1/2) 1 분석시스템구축 Review(2/2) 분석속도가느리다면? 정보요구사항이변하거나 추가된다면? 데이터량이너무많다면? 2 과거의빅데이터저장 데이터량이너무많다 그러나 RDBMS 에서관리하는것은 막대한비용소요 지금까지의처리방안 1. 데이터간에우선순위부여 신용카드데이터 > 상품데이터

More information

ecorp-프로젝트제안서작성실무(양식3)

ecorp-프로젝트제안서작성실무(양식3) (BSC: Balanced ScoreCard) ( ) (Value Chain) (Firm Infrastructure) (Support Activities) (Human Resource Management) (Technology Development) (Primary Activities) (Procurement) (Inbound (Outbound (Marketing

More information

CRM Fair 2004

CRM Fair 2004 easycrm Workbench ( ) 2004.04.02 I. CRM 1. CRM 2. CRM 3. II. easybi(business Intelligence) Framework 1. 2. - easydataflow Workbench - easycampaign Workbench - easypivot Reporter. 1. CRM 1.?! 1.. a. & b.

More information

빅데이터처리의핵심인 Hadoop 을오라클은어떻게지원하나요? Oracle Big Data Appliance Solution 01 빅데이터처리를위한전문솔루션이 Oracle Big Data Appliance 군요. Oracle Big Data Appliance 와함께라면더이

빅데이터처리의핵심인 Hadoop 을오라클은어떻게지원하나요? Oracle Big Data Appliance Solution 01 빅데이터처리를위한전문솔루션이 Oracle Big Data Appliance 군요. Oracle Big Data Appliance 와함께라면더이 Cover Story 03 28 Oracle Big Data Solution 01_Oracle Big Data Appliance 02_Oracle Big Data Connectors 03_Oracle Exdata In-Memory Database Machine 04_Oracle Endeca Information Discovery 05_Oracle Event

More information

들어가는글 2012년 IT 분야에서최고의관심사는아마도빅데이터일것이다. 관계형데이터진영을대표하는오라클은 2011년 10월개최된 오라클오픈월드 2011 에서오라클빅데이터어플라이언스 (Oracle Big Data Appliance, 이하 BDA) 를출시한다고발표하였다. 이와

들어가는글 2012년 IT 분야에서최고의관심사는아마도빅데이터일것이다. 관계형데이터진영을대표하는오라클은 2011년 10월개최된 오라클오픈월드 2011 에서오라클빅데이터어플라이언스 (Oracle Big Data Appliance, 이하 BDA) 를출시한다고발표하였다. 이와 Oracle Data Integrator 와 Oracle Big Data Appliance 저자 - 김태완부장, 한국오라클 Fusion Middleware(taewan.kim@oracle.com) 오라클은최근 Big Data 분약에 End-To-End 솔루션을지원하는벤더로급부상하고있고, 기존관계형데이터저장소와새로운트랜드인비정형빅데이터를통합하는데이터아키텍처로엔터프로이즈시장에서주목을받고있다.

More information

Cloudera Toolkit (Dark) 2018

Cloudera Toolkit (Dark) 2018 하둡에날개를달아주는 SAS 엔터프라이즈머신러닝플랫폼 SAS Korea / 김근태이사 CLOUDERA & SAS : OVERVIEW 2 FORCES SHAPING ANALYTICS Analytics embraces open Everyone wants to be a data scientist Changing data landscape Machine learning

More information

Microsoft PowerPoint - S4_통계분석시스템.ppt

Microsoft PowerPoint - S4_통계분석시스템.ppt Oracle 10g 기반의통계분석시스템사례 디비코아 ( 주 ) BI (Business Intelligence) 란? BI 란데이터와정보의가치를극대화하는것 Data? Information : 정제, 정렬, 조합, 결합된 Data 예 ) 특정상품구매자에대한성별, 수입별, 지역별고객리스트 Intelligence : 유기체적인특징 조직내에서증식 예 ) 구매정보를활용한마케팅팀의프로모션

More information

비식별화 기술 활용 안내서-최종수정.indd

비식별화 기술 활용 안내서-최종수정.indd 빅데이터 활용을 위한 빅데이터 담당자들이 실무에 활용 할 수 있도록 비식별화 기술과 활용방법, 실무 사례 및 예제, 분야별 참고 법령 및 활용 Q&A 등 안내 개인정보 비식별화 기술 활용 안내서 Ver 1.0 작성 및 문의 미래창조과학부 : 양현철 사무관 / 김자영 주무관 한국정보화진흥원 : 김진철 수석 / 김배현 수석 / 신신애 부장 문의 : cckim@nia.or.kr

More information

[Brochure] KOR_TunA

[Brochure] KOR_TunA LG CNS LG CNS APM (TunA) LG CNS APM (TunA) 어플리케이션의 성능 개선을 위한 직관적이고 심플한 APM 솔루션 APM 이란? Application Performance Management 란? 사용자 관점 그리고 비즈니스 관점에서 실제 서비스되고 있는 어플리케이션의 성능 관리 체계입니다. 이를 위해서는 신속한 장애 지점 파악 /

More information

1 전통 소프트웨어 가. ERP 시장 ERP 업계, 클라우드 기반 서비스로 새로운 활력 모색 - SAP-LGCNS : SAP HANA 클라우드(SAP HEC)를 통해 국내 사례 확보 및 아태 지역 진 출 추진 - 영림원 : 아시아 클라우드 ERP 시장 공략 추진 - 더

1 전통 소프트웨어 가. ERP 시장 ERP 업계, 클라우드 기반 서비스로 새로운 활력 모색 - SAP-LGCNS : SAP HANA 클라우드(SAP HEC)를 통해 국내 사례 확보 및 아태 지역 진 출 추진 - 영림원 : 아시아 클라우드 ERP 시장 공략 추진 - 더 02 소프트웨어 산업 동향 1. 전통 소프트웨어 2. 新 소프트웨어 3. 인터넷 서비스 4. 디지털콘텐츠 5. 정보보안 6. 기업 비즈니스 동향 1 전통 소프트웨어 가. ERP 시장 ERP 업계, 클라우드 기반 서비스로 새로운 활력 모색 - SAP-LGCNS : SAP HANA 클라우드(SAP HEC)를 통해 국내 사례 확보 및 아태 지역 진 출 추진 - 영림원

More information

untitled

untitled SAS Korea / Professional Service Division 2 3 Corporate Performance Management Definition ý... is a system that provides organizations with a method of measuring and aligning the organization strategy

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 1 Excellence in Data Governance 2 Excellence in Data Governance 데이터이동경로와 산출규칙을가시화 데이터계보관리 (Data Lineage) 3 Excellence in Data Governance 데이터베이스 법규정에맞게 IT 레이어들사이의데이터의품질과금융감독현행화이슈 투명성이확보되어있는가? 현업 뷰, 테이블,

More information

Integ

Integ HP Integrity HP Chipset Itanium 2(Processor 9100) HP Integrity HP, Itanium. HP Integrity Blade BL860c HP Integrity Blade BL870c HP Integrity rx2660 HP Integrity rx3600 HP Integrity rx6600 2 HP Integrity

More information

untitled

untitled Logistics Strategic Planning pnjlee@cjcci.or.kr Difference between 3PL and SCM Factors Third-Party Logistics Supply Chain Management Goal Demand Management End User Satisfaction Just-in-case Lower

More information

슬라이드 1

슬라이드 1 4. Mobile Service Technology Mobile Computing Lecture 2012. 10. 5 안병익 (biahn99@gmail.com) 강의블로그 : Mobilecom.tistory.com 2 Mobile Service in Korea 3 Mobile Service Mobility 4 Mobile Service in Korea 5 Mobile

More information

02이승민선생_오라클.PDF

02이승민선생_오라클.PDF Oracle Internet Procurement Agenda 1 2 3 4 5 Introduction Oracle Solution Overview Oracle Internet Procurement Value Proposition Reference Conclusion e-procurement, E- Commerce Internet Automated Transactions

More information

3월2일자.hwp

3월2일자.hwp 빅데이터시장의현황및전망 8) * 1. 개요 2013년 ICT의최대이슈중하나가바로빅데이터이다. Gartner, IDC 등글로벌 ICT 리서치업체들이 2013년 ICT 산업에영향을미칠기술요소로빅데이터를선정하면서관련산업에대한관심이급증하고있다. 최근소셜미디어, 산업간융합등이확대되고, 기존의 PC뿐만아니라스마트폰, 태블릿 PC 등다양한스마트기기를통한인터넷이용이증가하면서수많은비정형데이터를발생시키고있다.

More information

The Self-Managing Database : Automatic Health Monitoring and Alerting

The Self-Managing Database : Automatic Health Monitoring and Alerting The Self-Managing Database : Automatic Health Monitoring and Alerting Agenda Oracle 10g Enterpirse Manager Oracle 10g 3 rd Party PL/SQL API Summary (Self-Managing Database) ? 6% 6% 12% 55% 6% Source: IOUG

More information

세션 3 (오이식).ppt

세션 3 (오이식).ppt 05. 7. 21 1. EAI 2. EAI Architecture 3. EAI 4. Copyright 2005 MOCOCO, Inc.. All rights reserved. Copyright 2005 MOCOCO, Inc.. All rights reserved. ntents EAI 1 EAI EAI EAI EAI EAI EAI EAI Copyright 2005

More information

RUCK2015_Gruter_public

RUCK2015_Gruter_public Apache Tajo 와 R 을연동한빅데이터분석 고영경 / 그루터 ykko@gruter.com 목차 : R Tajo Tajo RJDBC Tajo Tajo UDF( ) TajoR Demo Q&A R 과빅데이터분석 ' R 1) R 2) 3) R (bigmemory, snowfall,..) 4) R (NoSQL, MapReduce, Hive / RHIPE, RHive,..)

More information

빅데이터시대 Self-BI 전략 이혁재이사 비아이씨엔에스

빅데이터시대 Self-BI 전략 이혁재이사 비아이씨엔에스 빅데이터시대 Self-BI 전략 이혁재이사 비아이씨엔에스 Agenda 1 Oracle In-Memory 소개 2 BI 시스템구성도 3 BI on In-Memory 테스트 4 In-Memory 활용한 BI 오라클인메모리목표 규모분석에대한속도향상 빠른속도 : 혼합워크로드업무 간편함 : 어플리케이션투명성및쉬운배치 저렴함 : 일부필요데이터만인메모리에존재가능 2 메모리운용방식

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 In-memory 클러스터컴퓨팅프레임워크 Hadoop MapReduce 대비 Machine Learning 등반복작업에특화 2009년, UC Berkeley AMPLab에서 Mesos 어플리케이션으로시작 2010년 Spark 논문발표, 2012년 RDD 논문발표 2013년에 Apache 프로젝트로전환후, 2014년 Apache op-level Project

More information

Agenda I. What is SRM? II. Why SRM? Trend, III. Function / To-be - IV. V. Critical Success Factor 2

Agenda I. What is SRM? II. Why SRM? Trend, III. Function / To-be - IV. V. Critical Success Factor 2 (Procurement Engineering) - Engineering Introduction & Case study 2006. June 8 th Yoon-chang So / IBM GBS Agenda I. What is SRM? II. Why SRM? Trend, III. Function / To-be - IV. V. Critical Success Factor

More information

정보기술응용학회 발표

정보기술응용학회 발표 , hsh@bhknuackr, trademark21@koreacom 1370, +82-53-950-5440 - 476 - :,, VOC,, CBML - Abstract -,, VOC VOC VOC - 477 - - 478 - Cost- Center [2] VOC VOC, ( ) VOC - 479 - IT [7] Knowledge / Information Management

More information

Cover Story 빅데이터플랫폼 Big Data 시대의엔터프라이즈인프라스트럭처 ORACLE KOREA MAGAZINE Spring 개요빅데이터를처리하는기술의가장중심기술은아파치하둡기술일것이다. 하둡기술은데이터를취득하고이를구조화시키고분석을하는일련의과정에

Cover Story 빅데이터플랫폼 Big Data 시대의엔터프라이즈인프라스트럭처 ORACLE KOREA MAGAZINE Spring 개요빅데이터를처리하는기술의가장중심기술은아파치하둡기술일것이다. 하둡기술은데이터를취득하고이를구조화시키고분석을하는일련의과정에 Cover Story 04 빅데이터플랫폼 Big Data 시대의엔터프라이즈인프라스트럭처 저자 - 홍기현상무, 한국오라클 Tech Sales Consultant(kihyun.hong@oracle.com) 빅데이터기술은데이터크기혹은증가속도가빠르고데이터저장형태도다양하여이를 모델링후분석하기에는부적합한형태의데이터를분산시스템을이용하여분석하는기술이다. 또한빅데이터로는트위터나페이스북같은소셜미디어에올라온데이터가언급되기도하지만,

More information

출원국 권 리 구 분 상 태 권리번호 KR 특허 등록 10-2012-0092520 10-2012-0092518 10-2007-0071793 10-2012-0092517

출원국 권 리 구 분 상 태 권리번호 KR 특허 등록 10-2012-0092520 10-2012-0092518 10-2007-0071793 10-2012-0092517 기술사업성평가서 경쟁정보분석서비스 제공 기술 2014 8 출원국 권 리 구 분 상 태 권리번호 KR 특허 등록 10-2012-0092520 10-2012-0092518 10-2007-0071793 10-2012-0092517 Ⅰ 기술 구현 메커니즘 - 1 - 경쟁정보분석서비스 항목 - 2 - 핵심 기술 특징 및 주요 도면

More information

Slide 1

Slide 1 SAS Visual Analytics: In-Memory 분석엔진기반의 Big Data 시각적분석 박현옥부장 SAS Korea Agenda Big Data Analysis - Issues Case Study Big Data Analytics를위한 SAS 분석아키텍쳐 SAS Visual Analytics의특징 데모 활용방안 Big Data Analytics -

More information

서현수

서현수 Introduction to TIZEN SDK UI Builder S-Core 서현수 2015.10.28 CONTENTS TIZEN APP 이란? TIZEN SDK UI Builder 소개 TIZEN APP 개발방법 UI Builder 기능 UI Builder 사용방법 실전, TIZEN APP 개발시작하기 마침 TIZEN APP? TIZEN APP 이란? Mobile,

More information

PowerPoint Presentation

PowerPoint Presentation 하둡전문가로가는길 심탁길 terryshim@naver.com 목차 1. 하둡과에코시스템개요 2. 홗용사례붂석 3. 하둡젂문가의필요성 4. 무엇을어떻게준비할까? 5. 하둡기반추천시스템데모 하둡개요 구글인프라 배치애플리케이션 온라인서비스 MapReduce Bigtable GFS Client API Chubby Cluster Mgmt 주요소프트웨어스택 Google

More information

歯CRM개괄_허순영.PDF

歯CRM개괄_허순영.PDF CRM 2000. 8. KAIST CRM CRM CRM CRM :,, KAIST : 50%-60%, 20% 60%-80%. AMR Research 10.. CRM. 5. Harvard Business review 60%, 13%. Michaelson & Associates KAIST CRM? ( ),,, -,,, CRM needs,,, dynamically

More information

<4D6963726F736F667420576F7264202D205B4354BDC9C3FEB8AEC6F7C6AE5D3131C8A35FC5ACB6F3BFECB5E520C4C4C7BBC6C320B1E2BCFA20B5BFC7E2>

<4D6963726F736F667420576F7264202D205B4354BDC9C3FEB8AEC6F7C6AE5D3131C8A35FC5ACB6F3BFECB5E520C4C4C7BBC6C320B1E2BCFA20B5BFC7E2> 목차(Table of Content) 1. 클라우드 컴퓨팅 서비스 개요... 2 1.1 클라우드 컴퓨팅의 정의... 2 1.2 미래 핵심 IT 서비스로 주목받는 클라우드 컴퓨팅... 3 (1) 기업 내 협업 환경 구축 및 비용 절감 기대... 3 (2) N-스크린 구현에 따른 클라우드 컴퓨팅 기술 기대 증폭... 4 1.3 퍼스널 클라우드와 미디어 콘텐츠 서비스의

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Agenda 회사소개 Customer challenges Pre-Configured Solution 사례 Special offer or promotion Predictive Analytics Industry Experience Big Data 회사소개 - 일반 DS-eTrade Microsoft 의 Cloud Platform & Data Platform 파트너

More information

Hitachi Content Platform 클라우드 & 소프트웨어정의클라우드오브젝트플랫폼 Hitachi Content Platform Hitachi Data Ingestor Hitachi Content Platform Anywhere REVISION NO

Hitachi Content Platform 클라우드 & 소프트웨어정의클라우드오브젝트플랫폼 Hitachi Content Platform Hitachi Data Ingestor Hitachi Content Platform Anywhere REVISION NO 클라우드 & 소프트웨어정의클라우드오브젝트플랫폼 Ingestor Anywhere REVISION NO.3 2018 / 04 www.his21.co.kr blog.his21.co.kr www.facebook.com/hyosunginfo 가상화 및 멀티테넌시 구성 데이터 암호화 및 접근제어 클라우드 오브젝트 스토리지 다양한 프로토콜을 통한 데이터 액세스 (REST,

More information

Microsoft Word - 001.doc

Microsoft Word - 001.doc 碩 士 學 位 論 文 CRM을 활용한 마케팅 전략의 개선방안에 관한 연구 - 국내 외 기업 사례분석을 중심으로 - Study on a method to improve marketing straegies using CRM - Focusing on example analysis of the national and international enterprises -

More information

08SW

08SW www.mke.go.kr + www.keit.re.kr Part.08 654 662 709 731 753 778 01 654 Korea EvaluationInstitute of industrial Technology IT R&D www.mke.go.kr www.keit.re.kr 02 Ministry of Knowledge Economy 655 Domain-Specific

More information

PowerPoint Presentation

PowerPoint Presentation MapR Platform 2017 MapR Technologies 1 빅데이터시장동향 2017 MapR Technologies 2 빅데이터시장동향 기업 IT 환경의변화 1980 년대모든데이터를플랫파일로관리하던어려움을극복하고자데이터베이스시스템이시장에출시된이후로기업용 어플리케이션등장, 인터넷의등장, 디지털변혁접목등기업혁신의핵심에는항상데이터가중요한역할을함 1980s

More information

PowerPoint Presentation

PowerPoint Presentation Hadoop 과 Advanced Analytics 을활용한 Big Data 숨은가치창출 임상배부장 (sangbae.lim@oracle.com) Technology 사업본부, 한국오라클 Safe Harbor The following is intended to outline our general product direction. It is intended for

More information

SAP ERP SAP Korea / Public &

SAP ERP SAP Korea / Public & SAP ERP 2006.6.14 SAP Korea / Public & IT ( 1/2 )? 94% 6% SAP Korea 2006, SAP ERP 2 업무프로세스혁신을통한차별화 ( 차별화된가치 ) 가관건입니다. 하지만현실은 SAP Korea 2006, SAP ERP 3 SAP Korea 2006, SAP ERP 4 2010 The Public Sector Commitment

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Post - Internet Marketing Contents. Internet Marketing. Post - Internet Marketing Trend. Post - Internet Marketing. Paradigm. . Internet Marketing Internet Interactive Individual Interesting International

More information

PCServerMgmt7

PCServerMgmt7 Web Windows NT/2000 Server DP&NM Lab 1 Contents 2 Windows NT Service Provider Management Application Web UI 3 . PC,, Client/Server Network 4 (1),,, PC Mainframe PC Backbone Server TCP/IP DCS PLC Network

More information

슬라이드 1

슬라이드 1 장비지원사례연구 ( 세종대학교인공지능 - 빅데이터연구센터중심으로 ) 신병주 bjshin@sejong.ac.kr 문제 기업의빅데이터인력및시스템투자예산 데이터분석역량및경험부족 19.6% 시스템구축비, 관리비등예산부족 19.4% 정보보호및안정성에대한우려 17.5% 투자대비수익 (ROI) 의불투명성 15.1% 빅데이터에준비되지않은기업문화 15.9% 적합한데이터관리솔루션의부재

More information

gcp

gcp Google Cloud Platform GCP MIGRATION MANAGED SERVICE FOR GCP 베스핀글로벌 S GCP OFFERING 베스핀글로벌과 Google Cloud Platform이 여러분의 비즈니스에 클라우드 날개를 달아드립니다. GCP에 전문성을 갖춘 베스핀글로벌의 클라우드 전문가들이 다양한 산업 영역에서의 구축 경험과 노하우를 바탕으로

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Microsoft Power BI on Big Data Platform 아젠다 Ⅰ Ⅱ Ⅲ Microsoft Power BI on Big Data Platform 소개 Microsoft Power BI on Big Data Platform 구축사례 메이븐클라우드서비스소개 Microsoft Power BI on Big Data Platform 소개 Microsoft

More information

SAS Customer Intelligence SAS Customer Intelligence Suite은 기업이 당면한 다양한 마케팅 과제들을 해결하기 위한 최적의 통합 마케팅 제품군으로 전사적 마케팅 자원관리를 위한 Marketing Operation Manageme

SAS Customer Intelligence SAS Customer Intelligence Suite은 기업이 당면한 다양한 마케팅 과제들을 해결하기 위한 최적의 통합 마케팅 제품군으로 전사적 마케팅 자원관리를 위한 Marketing Operation Manageme Advanced Analytics 기반의 고객가치 극대화 SAS Customer Intelligence SAS 고객 인텔리전스 SAS Customer Intelligence SAS Customer Intelligence Suite은 기업이 당면한 다양한 마케팅 과제들을 해결하기 위한 최적의 통합 마케팅 제품군으로 전사적 마케팅 자원관리를 위한 Marketing

More information

마닝

마닝 아는것과그것을행동하는것은다르다 생각하는하는백성이야산다. - 함석헌 4 차산업혁명핵심데이터가공플랫폼 (DMP): 스마트시티사례중심 2015 EN-CORE. All rights reserved. Data Scientist : 엔코아데이터서비스센터장김옥기 Data Driven Strategy Consulting okkim@en-core.com 4 차산업혁명의핵심데이터가공플랫폼

More information

Cloudera Toolkit (Dark) 2018

Cloudera Toolkit (Dark) 2018 PENTAHO 를활용한 SMART FACTORY 구축사례 효성인포메이션시스템 / 최태욱부장 IoT and Smart Factory 2 IT 와 OT 의통합 CLOUD CITY COMMUNICATIONS IoT INDUSTRIAL ARTIFICIAL INTELLIGENCE IT INSIGHT OT BUSINESS IT SYSTEMS BIG DATA ANALYTICS

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 빅데이터플랫폼 Flamingo 를통해알아보는성공적인오픈소스비즈니스비법 빅데이터개발본부 김병곤상무 GPL 라이선스인 Ghostscript 를한컴오피스에내장 GPL 라이선스위반 Ghostscript 개발사인 Artifex 가소송 소송에서패소 ( 협의만남음 ) 여전히한컴은소스코드를 공개하지않음 오픈소스 (open source) 는소프트웨어의제작자의권리를지키면서원시코드를누구나열람할수있도록한소프트웨어혹은오픈소스라이선스에준하는모든통칭을일컫는다.

More information

세션 2-2(허태경).ppt

세션 2-2(허태경).ppt , an IBM Company 2005 IBM Corporation Discover Prepare Transform & Deliver????????? Time To Value DISCOVER ProfileStage Service-Oriented Architecture Event Management PREPARE,, QualityStage Enterprise

More information

PowerPoint Presentation

PowerPoint Presentation RHive 와빅데이터분석 - 넥스알 Agenda 1. RHive 의소개 RHive 란? RHive 기능 & 사용법 Enterprise RHive 2. RHive 의운용사례 CloudLog CDR 2 R 분석가를 RHive 탄생배경 RHive 의소개 Big Data 플랫폼의데이터처리능력과 R 의데이터분석기능의결합필요성이대두됨 3 RHive 의정의 RHive 의소개

More information

통신회사에서가장중요한데이터자원이라고하면뭐니뭐니해도고객들의통화기록이라할수있다. 이를 Call Detail Record(CDR) 라고하며, 고객들이유선전화나휴대폰을사용하여통화할때마다통화위치, 통화대상, 통화시간등이로그데이터로기록된다. 매통화마다기록되므로 1일발생량은수억건에

통신회사에서가장중요한데이터자원이라고하면뭐니뭐니해도고객들의통화기록이라할수있다. 이를 Call Detail Record(CDR) 라고하며, 고객들이유선전화나휴대폰을사용하여통화할때마다통화위치, 통화대상, 통화시간등이로그데이터로기록된다. 매통화마다기록되므로 1일발생량은수억건에 White Paper Big Data Case Study 통신회사에서가장중요한데이터자원이라고하면뭐니뭐니해도고객들의통화기록이라할수있다. 이를 Call Detail Record(CDR) 라고하며, 고객들이유선전화나휴대폰을사용하여통화할때마다통화위치, 통화대상, 통화시간등이로그데이터로기록된다. 매통화마다기록되므로 1일발생량은수억건에달하는그야말로대표적인빅데이터라고할수있다.

More information

미디어 및 엔터테인먼트 업계를 위한 Adobe Experience Manager Mobile

미디어 및 엔터테인먼트 업계를 위한 Adobe Experience Manager Mobile Adobe Experience Manager Mobile 앱 제작을 넘어 고객, 파트너 및 직원과의 유대 관계 형성 매년 모바일 디바이스에서 읽고 듣고 교류하는 사람들이 증가하고 있습니다. 미디어 및 엔터테인먼트 조직은 모바일 디바이스를 통해 고객, 직원, 파트너 및 광고주와 직접 교류할 수 있는 새로운 기회를 얻을 수 있는데, 이 기회를 민첩하게 활용하는

More information

RED HAT JBoss Data Grid (JDG)? KANGWUK HEO Middleware Solu6on Architect Service Team, Red Hat Korea 1

RED HAT JBoss Data Grid (JDG)? KANGWUK HEO Middleware Solu6on Architect Service Team, Red Hat Korea 1 RED HAT JBoss Data Grid (JDG)? KANGWUK HEO Middleware Solu6on Architect Service Team, Red Hat Korea 1 Agenda TITLE SLIDE: HEADLINE 1.? 2. Presenter Infinispan JDG 3. Title JBoss Data Grid? 4. Date JBoss

More information