SAS FORUM KOREA 2018_Cloudera_발표
|
|
- 승희 기
- 6 years ago
- Views:
Transcription
1 SAS FORUM AI / Machine Learning 시대를선도하는 SAS 사용자를위한데이터플랫폼 구축안내서 Cloudera Korea 임상배 Copyright SAS Ins1tute Inc. All rights reserved.
2 Cloudera Hadoop SAS & Cloudera 활용방법
3 Cloudera Hadoop Overview 하둡따라잡기 Hadoop: 2003년 Google에서발표한 Google File System Whitepaper에기반한분산처리프레임워크 The Old Way The Hadoop Way Compute (RDBMS, EDW) Network Data Storage (SAN, NAS) Compute (CPU) Memory z z Storage (Disk) Hard to scale Network inevitably becomes a bolleneck Only handles structured/relanonal data Difficult to add new fields & data types Scales out indefinitely Network eliminated as a bottleneck Easy to ingest any type of data Agile schema-on-read data access
4 Cloudera Hadoop Overview 하둡따라잡기 데이터이동을최소화, 경제성높은대용량데이터저장 / 분석플랫폼 Then Bring Data to Compute Now Bring Compute to Data Compute Compute Data Compute Data Dat a Dat a Process-centric businesses use: Structured data Internal data only Important data only Compute Compute Compute Data Information-centric businesses use all Data: Multi-structured, Internal & external data of all types Copyright SAS Ins1tute Inc. All rights reserved.
5 Cloudera Hadoop Overview 하둡따라잡기 여러대의서버를통한분산처리구조 분산처리를통해기존시스템보다빠르고많은데이터처리 ( 필요시전체데이터셋분석 ) 정형 / 비정형구분없이모든유형, 모든볼륨의데이터에대한처리가가능 하둡은국내 / 외대부분의데이터분석시스템구축시최우선으로도입하는표준데이터플랫폼 기존분석환경 (SAS) 과연계를통해기투자 IT 자산및보유인력의 Skill-set 활용극대화필요
6 Hadoop: Transforming Enterprise Data Architecture 신규데이터탐색데이터기반기업개방형아키텍처 Designed for 3Vs of new data NaGve security Significantly lower cost Multiple analytic engines Agile development tools Extremely fast performance Rapid innovation Large ecosystem No vendor lock-in
7 Cloudera 엔터프라이즈급머신러닝및분석플랫폼지원 Machine Learning Pattern recognition Anomaly detection Prediction Customers Run on Cloudera Analytics Self-service intelligence Real-time analytics Secure reporting Customers Run IMPALA on Cloudera
8 Big Data App / Customer Care Churn Analytics Discover Unknowns Big data application PredicHve AnalyHcs Pro achvely respond to issues PredicHve Maintenance Predict customer behaviour Analytics / Self Service BI Combine different workloads on common data (i.e. SQL + Search) Optimize infrastructure usage Reduce Outages Reduce BI backlog requests EDW Optimization System Logs, Maintenance Data Set Top Box Data, Mobile Data, Online Data, 3rd Party Datasets Lowest cost storage SERVERS MARTS Teradata SAS STORAGE SEARCH ARCHIVE 1 Account/Customer/TransacHon CLICKSTREAMS, System logs, Set Top box, Mobile 3 rd Party DATA SOURCES
9 하둡플랫폼의진화 The stack is continually evolving and growing! Core Hadoop (HDFS, MapReduce) Solr Pig Core Hadoop HBase ZooKeeper Solr Pig Core Hadoop Hive Mahout HBase ZooKeeper Solr Pig Core Hadoop Sqoop Avro Hive Mahout HBase ZooKeeper Solr Pig Core Hadoop Flume Bigtop Oozie HCatalog Hue Sqoop Avro Hive Mahout HBase ZooKeeper Solr Pig YARN Core Hadoop Spark Tez Impala KaKa Drill Flume Bigtop Oozie HCatalog Hue Sqoop Avro Hive Mahout HBase ZooKeeper Solr Pig YARN Core Hadoop Parquet Sentry Spark Tez Impala Kafka Drill Flume Bigtop Oozie HCatalog Hue Sqoop Avro Hive Mahout HBase ZooKeeper Solr Pig YARN Core Hadoop Knox Flink Parquet Sentry Spark Tez Impala Kafka Drill Flume Bigtop Oozie HCatalog Hue Sqoop Avro Hive Mahout HBase ZooKeeper Solr Pig YARN Core Hadoop CDSW Altus Kudu RecordService Ibis Falcon Knox Flink Parquet Sentry Spark Tez Impala KaKa Drill Flume Bigtop Oozie HCatalog Hue Sqoop Avro Hive Mahout HBase ZooKeeper Solr Pig YARN Core Hadoop
10 요즘분석과제하면서들리는용어들 Hadoop, HDFS, Spark, Hive, Impala, Kudu
11 요즘분석과제하면서들리는용어들 용어 하둡 (Hadoop) HDFS(Hadoop Distributed File System) 설명 분산컴퓨팅프로젝트로대량의데이터를병렬분산환경에서처리하는것을목적으로합니다. 대용량파일을분산된서버에저장하고, 개별노드의하드디스크용량보다큰데이터를저장및처리하는것을지원하는파일시스템입니다. 맵리듀스 (MapReduce) 대용량데이터를배치방식으로처리하는것을지원하는프레임워크로 Map 과 Reduce 작업으로구성됩니다. 노드 (node) 보통물리적서버 1 대를의미합니다. 클러스터 (cluster) 하둡에코시스템 (Hadoop Ecosystem) 여러대의컴퓨터를마치하나의컴퓨터처럼보이도록묶음으로제공하는것을의미합니다. 하둡은코어프로젝트와서브프로젝트들로구성되어있습니다. 하둡을편하게사용하기위한다양한기능을제공하며이를생태계같다하여에코시스템이라고합니다. 플룸 (Flume) 실시간로그데이터수집기능제공합니다. 스쿱 (sqoop) 관계형데이터베이스의데이터를하둡으로가져오거나하둡의데이터를관계형데이터베이스에전송하는기능제공합니다.
12 요즘분석과제하면서들리는용어들 용어 하이브 (Hive) 임팔라 (Impala) 설명 SQL Query 엔진으로사용자가 SQL 을작성하면맵리듀스방식으로데이터를처리하는기능을제공합니다. 배치처리에적합합니다. 대화형 SQL Query 엔진으로기존맵리듀스방식을사용하지않으며메모리기반의고속데이터처리기능을제공합니다. 실시간질의에적합합니다. CDSW(Cloudera Data Science Workbench) ML/AI 분석작업을지원하는협업도구입니다 (R, Python, Scala). Cloudera Manager 휴 (HUE) 하둡클러스터를설치 / 업그레이드하고개별서비스를관리및모니터링하는기능을제공하며하둡클러스터관리자가사용합니다. 하둡환경에서최종사용자및관리자가사용하는 UI 도구 ( 쿼리툴, 권한설정, 작업워크플로우작성등지원 ) 입니다.
13 Anatomy of a Hadoop Cluster YARN Impala Catalog Store Masters Impala Statestore Name Node Secondary Name Node HiveServer Zookeeper Zookeeper Zookeeper Cloudera Manager Kudu Master HUE Server Kudu Master Sentry Server Kudu Master Oozie Server HMaster HMaster HMaster Manager CM Agent CM Agent CM Agent Workers CM Agent CM Agent CM Agent CM Agent CM Agent CM Agent Gateway(s) YARN Resource Pool(s) YARN Resource Pool(s) YARN Resource Pool(s) YARN Resource Pool(s) YARN Resource Pool(s) YARN Resource Pool(s) CM Agent Search HBase Region Server Data Node Search HBase Region Server Data Node Search HBase Region Server Data Node Impala Daemon Kudu Tablet Server Data Node Impala Daemon Kudu Tablet Server Data Node Impala Daemon Kudu Tablet Server Data Node User App User App User App Cloudera, Inc. All rights reserved. 13
14 HDFS Standby Name Node Name Node Secondary Name Node File Q B X B Y B Z Data Node A Data Node B Data Node C Data Node D B X1 B X2 B X3 B Y1 B Y3 B Y2 B Z2 B Z3 B Z1 Default block size = 128MB, 256MB Rack 1 Rack 2 Rack 3 Cloudera, Inc. All rights reserved. 14
15 Hive Don t forget who won the race, Bucko! Spins up processes under the control of Yarn Can handle the failure of a machines Will overflow joins to HDFS HiveServer2 Location Hive Metastore Thrift Service Beeline CLI Schema File Format SerDe Driver Compiler Executor Session A Driver Compiler Executor Session B JDBC ODBC HDFS BLOB Other Cloudera, Inc. All rights reserved. 15
16 Impala (the fastest of the Antelopes) Written in C++, No JVM J Uses the Hive Metastore Employs algorithms from MPP databases But, I left you in the dust at the starting line, Grandpa! SQL App ODBC Hive Metastore Hadoop NN Statestore Query Planner Query Planner Query Planner Query Coordinator Query Coordinator Query Coordinator Query Executor Query Executor Query Executor HDFS DN HDFS DN HDFS DN Cloudera, Inc. All rights reserved. 16
17 Spark In-Memory Caching Optimized Scheduler Query optimizer A: B: B: Easy Development Rich & flexible APIs for Scala, Java, and Python Seamlessly interleave SQL syntax with code Interactive shell Batch, Stream & Machine Learning Unified framework for batch and stream processing Rich collection of distributed ML algorithms map groupby C: D: E: take join map filter = RDD = cached partition F: Cloudera, Inc. All rights reserved. 17
18 Big Data Pipelines 프로젝트단계별사용 ecosystem Data Ingestion Data Engineering Data Stewardship Data Science Data Analy1cs Capture Cleanse Store Model BI Move Conform Secure Score Online Stream Transform Govern Enrich APIs Enrich Tag Predict Copyright SAS Ins1tute Inc. All rights reserved.
19 SAS & Cloudera Partner Ecosystem ISVs & SOLUTIONS Cloudera 는 2,800 개이상의파트너생태계를구축 RESELLERS CLOUD & PLATFORM SYSTEM INTEGRATORS SAS & Cloudera enable organizations to achieve competitive advantage by gaining value from all their data, through a proven combination of enterpriseready storage, processing, analytics, and data management. Copyright SAS Ins1tute Inc. All rights reserved.
20 SAS & Cloudera Joint Customer Successes Optimize Discover Empower With SAS Visual Analytics, busine ss executives at Telecom Italia can compare the performance betwe en all operators for a key indicato r such as accessibility or percent age of dropped calls on a single screen for a quick overview of per tinent strengths and weaknesses. Epsilon built a next-generation marketing application, leveraging Cloudera and taking advantage of SAS capabilities by our data science/analytics team, that provides its clients with a 360- degree view of their customer AMERAN provides 360-degree vi ews into energy usage parerns and similar household comparis ons to help consumers save ener gy.
21 SAS & Cloudera 활용방법 이미 SAS를잘사용하고있으시고 하둡이도입되었거나도입예정이시라면 하둡에저장된데이터는어떤방식으로사용해야할지 우선하둡에저장된데이터는 SAS 사용자에게또하나의 Library HDFS, Hive, Impala 등접근방식은다양 빠른대화형쿼리수행은impala 사용을권장 ETL은 hive, hive on spark 권장
22 Business Users Executives Data analysts Applica9ons Impala Spark HIVE on Spark Cloud Databases Data Warehouses Flafka Web Logs Click Stream Data Semi-Structured Data
23 Other data sources 활용사례예 LASR SAS Visual Analytics Embedded Process (EP) Data Loader vapp SAS/Access for Hadoop Server Tier SAS Studio SAS EBI & SAS Solutions SAS Data Loader SAS Visual Analytics
24 SAS integrations with Cloudera From, with, In SAS accesses and extracts data from Cloudera Enterprise to a SAS server for processing and writes results back From Cloudera SAS accesses and process Cloudera Enterprise data on SAS distributed servers; lii data to SAS in-memory environment With Cloudera SAS accesses and process data directly in Cloudera Enterprise In Cloudera
25 SAS integrations with Cloudera SAS/Access to Hadoop SAS/Access to Impala SAS Visual Analytics Explorer SAS In-Memory Statistics for Hadoop SAS Scoring Accelerator SAS Data Loader for Hadoop From Cloudera With Cloudera In Cloudera
26 SAS pulls data FROM Cloudera SAS/Access to Hadoop SAS/Access to Impala SAS Visual Analytics Explorer SAS In-Memory Statistics for Hadoop SAS Scoring Accelerator SAS Data Loader for Hadoop From Cloudera With Cloudera In Cloudera
27 참고자료 Copyright SAS Ins1tute Inc. All rights reserved.
28 SAS/Access to Hadoop HDFS 파일접근혹은 MapReduce 프로그래밍하면안되나요? 가능하지만생산성, 코드유지보수비용등을고려하시면 SQL 인터페이스를사용을권장 FileRef PROC Hadoop SAS/Access data files data files MapReduce + HDFS command Result set Hive QL (SQL like) Hiveserver2 Copyright SAS Ins1tute Inc. All rights reserved.
29 SAS/Access to Hadoop Features Uses exisdng SAS Interfaces Standard Libname syntax one line code change to use Hadoop Datastep and Proc SQL translated to Hive Custom SerDe support: Parquet, Avro, Text, etc. SPDE formats Integrates with YARN Use Hive or Hive-on-Spark Uses Hive and HDFS API Deployment method Connect using client jars and configuradon files REST APIs can also be used 출처 :
30 SAS/Access to Hadoop 간단한코드, 다른성능 libname mycdh hadoop server='quickstart.cloudera' user=cloudera password=cloudera; proc sql; connect to hadoop(server='quickstart.cloudera' user=cloudera); select count(*) from connecmon to hadoop (select * from mytext); quit; proc sql; connect to hadoop(server='quickstart.cloudera' user=cloudera); select * from connecmon to hadoop (select count(*) from mytext); quit; 어떤코드가더빠를까요? 출처 :
31 Complex Queries Hive(MR) vs Hive(Hive on Spark) Spark 이 Hive 보다빠른이유 Set of MR jobs in sequence MR persists full dataset to HDFS aner each job 3 disk I/ Os + 3 network I/Os Spark passes data directly - at most 1 disk I/O + 1 network I/O Unless wrivng a lot, you will hit buffer cache Fetched by next Spark stage, just like Reduce task in MapReduce From MicrosoN s Dryad paper Cuts down the extra Map tasks in MapReduce! M1-R1-R2 instead of M1-R1, M2-R2
32 Hive(MR) vs Hive(Hive on Spark) Performance Benchmark Avg. ~3X faster than Hive-on-MapReduce More Suitable Complex workloads w/ multiple MR stages e.g. filter followed by JOIN followed by GROUP BY Disk-bound w/ multiple disk reads/writes Less Suitable Simple workloads e.g. select * CPU bound workloads e.g. complex UDFs Workloads requiring mins to hours for completion Workloads typically requiring <1 min
33 SAS/Access to Impala Features Same as SAS/Access to Hadoop Massively Parallel Processing (MPP) query engine Optimized for interactive analytics/queries Uses HDFS API and Impala Deployment method Connect using client jars and configurati on files REST APIs can also be used
34 SAS/Access to Impala libname sasflt 'SAS-data-library ; libname mydblib impala host=mysrv1 db=users user=myusr1 password=mypwd1; proc sql; create table mydblib.flights98 (BULKLOAD=YES BL_DATAFILE='/tmp/mytable.dat' BL_HOST=' x.x' BL_PORT=50070) as select * from sasflt.flt98; quit; libname myimp impala server="quickstart.cloudera" user=cloudera password=cloudera dbconinit="set mem_limit=1g"; 옵션의의미? set disable_unsafe_spills=true 출처 :
35 SAS/Access to Impala Pass-Through 사용예 Explicit Pass-Through proc sql; connect to impala (server="quickstart.cloudera" user=cloudera password=cloudera); execute(create mytable(mycol varchar(20)) by impala; disconnect from impala; quit; proc sql; connect to impala (server="quickstart.cloudera" user=cloudera password=cloudera); select * from connection to impala (select * from mytable where mycol= xx ); quit; 대부분의대용량테이블은파티션되어있어꼭파티션키를지정!!!
36 impala-/p 얼마나많은 count(dis/nct 컬럼 ) 을수행해야.. 모델개발전에다수의 count(distinct 컬럼 ) SQL 수행 거의유사한정확도로빨리수행할수있다면? 구글의 hyperloglog 참고 [ip ap-northeast-2.compute.internal:21000] > select count(*) from big_pageview; Query: select count(*) from big_pageview Query submitted at: :52:27 (Coordinator: Query progress can be monitored at: 2.compute.internal:25000/query_plan?query_id=e c8779e3:6d347a count(*) 1 억건정도의소규모테이블 Fetched 1 row(s) in 0.21s
37 [ip ap-northeast-2.compute.internal:21000] > select count(distinct m_timestamp) from big_pageview; Query: select count(distinct m_timestamp) from big_pageview Query submitted at: :53:20 (Coordinator: Query progress can be monitored at: count(distinct m_timestamp) Fetched 1 row(s) in 4.17s impala-/p 얼마나많은 count(dis/nct 컬럼 ) 을수행해야.. 3,513,600 건 / 약 4.16 초 [ip ap-northeast-2.compute.internal:21000] > select count(distinct m_timestamp) from big_pageview; Query: select count(distinct m_timestamp) from big_pageview Query submitted at: :53:28 (Coordinator: Query progress can be monitored at: count(distinct m_timestamp) Fetched 1 row(s) in 4.16s
38 impala-tip 옵션하나로이걸빠르게. 적은메모리로 [ip ap-northeast-2.compute.internal:21000] > set appx_count_distinct=true; APPX_COUNT_DISTINCT set to true [ip ap-northeast-2.compute.internal:21000] >select count(distinct m_timestamp) from big_pageview; Query: select count(distinct m_timestamp) from big_pageview Query submitted at: :58:07 (Coordinator: Query progress can be monitored at: count(distinct m_timestamp) Fetched 1 row(s) in 1.03s set appx_count_distinct=false; 3,434,319 건 / 약 1 초 count(discnct m_cmestamp) Fetched 1 row(s) in 4.17s 약 98% 정확도, 4 배의성능 3,513,600 건 / 약 4.16 초
39 SAS process data WITH Cloudera SAS/Access to Cloudera SAS/Access to Impala SAS Visual AnalyEcs Explorer SAS In-Memory StaEsEcs for Hadoop SAS Scoring Accelerator SAS Data Loader for Hadoop From Cloudera With Cloudera In Cloudera
40 SAS WITH Cloudera architecture
41 SAS WITH Cloudera products Client applicaaons SAS Visual Analytics Explorer SAS Visual Statistics SAS In-memory Statistics for Hadoop Backend application SAS LASR Server
42 SAS WITH Cloudera products Features Read and write directly to HDFS using SASHDAT format or as plain-text fi les Uses HDFS API Using EP allows accessing Hive tables and custom SerDE formats (parqu et..) Integrates with Yarn (***preconfigured) Deployment method LASR can be deployed on separate SAS server or co-located Cloudera En terprise server
43 Features Data exploration at massive scale Intuitive visual analytics SAS Visual Analytics Explorer
44 SAS In-Memory Statistics for Hadoop Feature Programming interface for model development
45 Cloudera + SAS 장점기검증된시스템도입, 빠른개발, 데이터이동최소화 Improved Business Outcomes Accelerated Timeto-Value Better decisions by analyzing more data Solve the hard problems with interactive and iterative analytics Unlimited variables for analysis, i.e. No column restrictions In-memory data and analytics processing for faster performance. SAS simplifies working with Hadoop, Cloudera Manager simplifies system admin. Reduced Risk SAS & Cloudera integration minimizes data movement & improves governance Cloudera & SAS are stable market leaders aligned across R&D (dedicated Cloudera engineer), product mgt., services, education, and tech support More Innovation More analytic exploration of data that previously was too costly to store or troublesome to format Cloudera & SAS integrated technologies make Big Data Analytics approachable and can support innovative use cases
46 AI/Machine Learning 시스템구축시고려사항주변인프라규모와복잡도 (from Google) 출처 :
47 SAS FORUM 감사합니다.
김기남_ATDC2016_160620_[키노트].key
metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational
More informationIntra_DW_Ch4.PDF
The Intranet Data Warehouse Richard Tanler Ch4 : Online Analytic Processing: From Data To Information 2000. 4. 14 All rights reserved OLAP OLAP OLAP OLAP OLAP OLAP is a label, rather than a technology
More information슬라이드 1
Data-driven Industry Reinvention All Things Data Con 2016, Opening speech SKT 종합기술원 최진성원장 Big Data Landscape Expansion Big Data Tech/Biz 진화방향 SK Telecom Big Data Activities Lesson Learned and Other Topics
More informationOracle Database 10g: Self-Managing Database DB TSC
Oracle Database 10g: Self-Managing Database DB TSC Agenda Overview System Resource Application & SQL Storage Space Backup & Recovery ½ Cost ? 6% 12 % 6% 6% 55% : IOUG 2001 DBA Survey ? 6% & 12 % 6% 6%
More informationsolution map_....
SOLUTION BROCHURE RELIABLE STORAGE SOLUTIONS ETERNUS FOR RELIABILITY AND AVAILABILITY PROTECT YOUR DATA AND SUPPORT BUSINESS FLEXIBILITY WITH FUJITSU STORAGE SOLUTIONS kr.fujitsu.com INDEX 1. Storage System
More informationService-Oriented Architecture Copyright Tmax Soft 2005
Service-Oriented Architecture Copyright Tmax Soft 2005 Service-Oriented Architecture Copyright Tmax Soft 2005 Monolithic Architecture Reusable Services New Service Service Consumer Wrapped Service Composite
More informationPortal_9iAS.ppt [읽기 전용]
Application Server iplatform Oracle9 A P P L I C A T I O N S E R V E R i Oracle9i Application Server e-business Portal Client Database Server e-business Portals B2C, B2B, B2E, WebsiteX B2Me GUI ID B2C
More informationPowerPoint 프레젠테이션
In-memory 클러스터컴퓨팅프레임워크 Hadoop MapReduce 대비 Machine Learning 등반복작업에특화 2009년, UC Berkeley AMPLab에서 Mesos 어플리케이션으로시작 2010년 Spark 논문발표, 2012년 RDD 논문발표 2013년에 Apache 프로젝트로전환후, 2014년 Apache op-level Project
More informationOpen Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤
Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤 (byounggon.kim@opence.org) 빅데이터분석및서비스플랫폼 모바일 Browser 인포메이션카탈로그 Search 인포메이션유형 보안등급 생성주기 형식
More informationCONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내 빅데이터 산 학 연 관
방송 통신 전파 KOREA COMMUNICATIONS AGENCY MAGAZINE 2013 VOL.174 09+10 CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내
More informationecorp-프로젝트제안서작성실무(양식3)
(BSC: Balanced ScoreCard) ( ) (Value Chain) (Firm Infrastructure) (Support Activities) (Human Resource Management) (Technology Development) (Primary Activities) (Procurement) (Inbound (Outbound (Marketing
More informationPCServerMgmt7
Web Windows NT/2000 Server DP&NM Lab 1 Contents 2 Windows NT Service Provider Management Application Web UI 3 . PC,, Client/Server Network 4 (1),,, PC Mainframe PC Backbone Server TCP/IP DCS PLC Network
More information<C0CCBCBCBFB52DC1A4B4EBBFF82DBCAEBBE7B3EDB9AE2D313939392D382E687770>
i ii iii iv v vi 1 2 3 4 가상대학 시스템의 국내외 현황 조사 가상대학 플랫폼 개발 이상적인 가상대학시스템의 미래상 제안 5 웹-기반 가상대학 시스템 전통적인 교수 방법 시간/공간 제약을 극복한 학습동기 부여 교수의 일방적인 내용전달 교수와 학생간의 상호작용 동료 학생들 간의 상호작용 가상대학 운영 공지사항,강의록 자료실, 메모 질의응답,
More informationRUCK2015_Gruter_public
Apache Tajo 와 R 을연동한빅데이터분석 고영경 / 그루터 ykko@gruter.com 목차 : R Tajo Tajo RJDBC Tajo Tajo UDF( ) TajoR Demo Q&A R 과빅데이터분석 ' R 1) R 2) 3) R (bigmemory, snowfall,..) 4) R (NoSQL, MapReduce, Hive / RHIPE, RHive,..)
More informationOracle9i Real Application Clusters
Senior Sales Consultant Oracle Corporation Oracle9i Real Application Clusters Agenda? ? (interconnect) (clusterware) Oracle9i Real Application Clusters computing is a breakthrough technology. The ability
More informationPowerPoint 프레젠테이션
Reasons for Poor Performance Programs 60% Design 20% System 2.5% Database 17.5% Source: ORACLE Performance Tuning 1 SMS TOOL DBA Monitoring TOOL Administration TOOL Performance Insight Backup SQL TUNING
More informationHadoop 10주년과 Hadoop3.0의 등장_Dongjin Seo
Hadoop 10 th Birthday and Hadoop 3 Alpha Dongjin Seo Cloudera Korea, SE 1 Agenda Ⅰ. Hadoop 10 th Birthday Ⅱ. Hadoop 3 Alpha 2 Apache Hadoop at 10 Apache Hadoop 3 Apache Hadoop s Timeline The Invention
More informationWeb Application Hosting in the AWS Cloud Contents 개요 가용성과 확장성이 높은 웹 호스팅은 복잡하고 비용이 많이 드는 사업이 될 수 있습니다. 전통적인 웹 확장 아키텍처는 높은 수준의 안정성을 보장하기 위해 복잡한 솔루션으로 구현
02 Web Application Hosting in the AWS Cloud www.wisen.co.kr Wisely Combine the Network platforms Web Application Hosting in the AWS Cloud Contents 개요 가용성과 확장성이 높은 웹 호스팅은 복잡하고 비용이 많이 드는 사업이 될 수 있습니다. 전통적인
More informationMS-SQL SERVER 대비 기능
Business! ORACLE MS - SQL ORACLE MS - SQL Clustering A-Z A-F G-L M-R S-Z T-Z Microsoft EE : Works for benchmarks only CREATE VIEW Customers AS SELECT * FROM Server1.TableOwner.Customers_33 UNION ALL SELECT
More informationCloudera Toolkit (Dark) 2018
하둡에날개를달아주는 SAS 엔터프라이즈머신러닝플랫폼 SAS Korea / 김근태이사 CLOUDERA & SAS : OVERVIEW 2 FORCES SHAPING ANALYTICS Analytics embraces open Everyone wants to be a data scientist Changing data landscape Machine learning
More informationDomino Designer Portal Development tools Rational Application Developer WebSphere Portlet Factory Workplace Designer Workplace Forms Designer
Domino, Portal & Workplace WPLC FTSS Domino Designer Portal Development tools Rational Application Developer WebSphere Portlet Factory Workplace Designer Workplace Forms Designer ? Lotus Notes Clients
More information04-다시_고속철도61~80p
Approach for Value Improvement to Increase High-speed Railway Speed An effective way to develop a highly competitive system is to create a new market place that can create new values. Creating tools and
More informationAGENDA 01 02 03 모바일 산업의 환경변화 모바일 클라우드 서비스의 등장 모바일 클라우드 서비스 융합사례
모바일 클라우드 서비스 융합사례와 시장 전망 및 신 사업전략 2011. 10 AGENDA 01 02 03 모바일 산업의 환경변화 모바일 클라우드 서비스의 등장 모바일 클라우드 서비스 융합사례 AGENDA 01. 모바일 산업의 환경 변화 가치 사슬의 분화/결합 모바일 업계에서도 PC 산업과 유사한 모듈화/분업화 진행 PC 산업 IBM à WinTel 시대 à
More informationCache_cny.ppt [읽기 전용]
Application Server iplatform Oracle9 A P P L I C A T I O N S E R V E R i Improving Performance and Scalability with Oracle9iAS Cache Oracle9i Application Server Cache... Oracle9i Application Server Web
More informationCloudera Toolkit (Dark) 2018
BIG DATA LAKE 구축사례 굿모닝아이텍 / 박근봉상무 AGENDA 1. BIGDATA 현황 2. Cloudera Bigdata Lake 3. BIG DATA LAKE 구축사례 2 BIGDATA 현황 3 BIGDATA 현황 2020 년국내빅데이터시장약 9 억달러 2006 년 빅데이터 (Big Data) 가구글검색어로처음등장한이래 2012 년다보스포럼에선그해가장중요한기술중하나로빅데이터를꼽았다.
More informationThe Self-Managing Database : Automatic Health Monitoring and Alerting
The Self-Managing Database : Automatic Health Monitoring and Alerting Agenda Oracle 10g Enterpirse Manager Oracle 10g 3 rd Party PL/SQL API Summary (Self-Managing Database) ? 6% 6% 12% 55% 6% Source: IOUG
More information13 Who am I? R&D, Product Development Manager / Smart Worker Visualization SW SW KAIST Software Engineering Computer Engineering 3
13 Lightweight BPM Engine SW 13 Who am I? R&D, Product Development Manager / Smart Worker Visualization SW SW KAIST Software Engineering Computer Engineering 3 BPM? 13 13 Vendor BPM?? EA??? http://en.wikipedia.org/wiki/business_process_management,
More informationBackup Exec
(sjin.kim@veritas.com) www.veritas veritas.co..co.kr ? 24 X 7 X 365 Global Data Access.. 100% Storage Used Terabytes 9 8 7 6 5 4 3 2 1 0 2000 2001 2002 2003 IDC (TB) 93%. 199693,000 TB 2000831,000 TB.
More information1217 WebTrafMon II
(1/28) (2/28) (10 Mbps ) Video, Audio. (3/28) 10 ~ 15 ( : telnet, ftp ),, (4/28) UDP/TCP (5/28) centralized environment packet header information analysis network traffic data, capture presentation network
More information빅데이터분산컴퓨팅-5-수정
Apache Hive 빅데이터분산컴퓨팅 박영택 Apache Hive 개요 Apache Hive 는 MapReduce 기반의 High-level abstraction HiveQL은 SQL-like 언어를사용 Hadoop 클러스터에서 MapReduce 잡을생성함 Facebook 에서데이터웨어하우스를위해개발되었음 현재는오픈소스인 Apache 프로젝트 Hive 유저를위한
More informationWindows Embedded Compact 2013 [그림 1]은 Windows CE 로 알려진 Microsoft의 Windows Embedded Compact OS의 history를 보여주고 있다. [표 1] 은 각 Windows CE 버전들의 주요 특징들을 담고
OT S / SOFTWARE 임베디드 시스템에 최적화된 Windows Embedded Compact 2013 MDS테크놀로지 / ES사업부 SE팀 김재형 부장 / jaei@mdstec.com 또 다른 산업혁명이 도래한 시점에 아직도 자신을 떳떳이 드러내지 못하고 있는 Windows Embedded Compact를 오랫동안 지켜보면서, 필자는 여기서 그와 관련된
More informationDW 개요.PDF
Data Warehouse Hammersoftkorea BI Group / DW / 1960 1970 1980 1990 2000 Automating Informating Source : Kelly, The Data Warehousing : The Route to Mass Customization, 1996. -,, Data .,.., /. ...,.,,,.
More informationvm-웨어-앞부속
VMware vsphere 4 This document was created using the official VMware icon and diagram library. Copyright 2009 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright
More informationuntitled
PowerBuilder 連 Microsoft SQL Server database PB10.0 PB9.0 若 Microsoft SQL Server 料 database Profile MSS 料 (Microsoft SQL Server database interface) 行了 PB10.0 了 Sybase 不 Microsoft 料 了 SQL Server 料 PB10.0
More informationETL_project_best_practice1.ppt
ETL ETL Data,., Data Warehouse DataData Warehouse ETL tool/system: ETL, ETL Process Data Warehouse Platform Database, Access Method Data Source Data Operational Data Near Real-Time Data Modeling Refresh/Replication
More information1.장인석-ITIL 소개.ppt
HP 2005 6 IT ITIL Framework IT IT Framework Synchronized Business and IT Business Information technology Delivers: Simplicity, Agility, Value IT Complexity Cost Scale IT Technology IT Infrastructure IT
More informationPowerPoint 프레젠테이션
CRM Fair 2004 Spring Copyright 2004 DaumSoft All rights reserved. INDEX Copyright 2004 DaumSoft All rights reserved. Copyright 2004 DaumSoft All rights reserved. Copyright 2004 DaumSoft All rights reserved.
More information따끈따끈한 한국 Azure 데이터센터 서비스를 활용한 탁월한 데이터 분석 방안 (To be named)
오늘그리고미래의전략적자산 데이터. 데이터에서인사이트까지 무엇이? 왜? 그리고? 그렇다면? Insight 데이터의변화 CONNECTED DIGITAL ANALOG 1985 1990 1995 2000 2005 2010 2015 2020 데이터의변화 CONNECTED DIGITAL ANALOG 1985 1990 1995 2000 2005 2010 2015 2020
More informationBasic Template
Hadoop EcoSystem 을홗용한 Hybrid DW 구축사례 2013-05-02 KT cloudware / NexR Project Manager 정구범 klaus.jung@{kt nexr}.com KT의대용량데이터처리이슈 적재 Data의폭발적인증가 LTE 등초고속무선 Data 통싞 : 트래픽이예상보다빨리 / 많이증가 비통싞 ( 컨텐츠 / 플랫폼 /Bio/
More information歯I-3_무선통신기반차세대망-조동호.PDF
KAIST 00-03-03 / #1 1. NGN 2. NGN 3. NGN 4. 5. 00-03-03 / #2 1. NGN 00-03-03 / #3 1.1 NGN, packet,, IP 00-03-03 / #4 Now: separate networks for separate services Low transmission delay Consistent availability
More informationDB진흥원 BIG DATA 전문가로 가는 길 발표자료.pptx
빅데이터의기술영역과 요구역량 줌인터넷 ( 주 ) 김우승 소개 http://zum.com 줌인터넷(주) 연구소 이력 줌인터넷 SK planet SK Telecom 삼성전자 http://kimws.wordpress.com @kimws 목차 빅데이터살펴보기 빅데이터에서다루는문제들 NoSQL 빅데이터라이프사이클 빅데이터플랫폼 빅데이터를위한역량 빅데이터를위한역할별요구지식
More informationSW¹é¼Ł-³¯°³Æ÷ÇÔÇ¥Áö2013
SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING
More informationuntitled
3 IBM WebSphere User Conference ESB (e-mail : ljm@kr.ibm.com) Infrastructure Solution, IGS 2005. 9.13 ESB 를통한어플리케이션통합구축 2 IT 40%. IT,,.,, (Real Time Enterprise), End to End Access Processes bounded by
More information±èÇö¿í Ãâ·Â
Smartphone Technical Trends and Security Technologies The smartphone market is increasing very rapidly due to the customer needs and industry trends with wireless carriers, device manufacturers, OS venders,
More informationFMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2
FMX FMX 20062 () wwwexellencom sales@exellencom () 1 FMX 1 11 5M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2 FMX FMX D E (one
More informationPowerPoint 프레젠테이션
ㆍ Natural Language Understanding 관련기술 ㆍ Semantic Parsing Conversational AI Natural Language Understanding / Machine Learning ㆍEntity Extraction and Resolution - Machine Learning 관련기술연구개발경험보유자ㆍStatistical
More informationCD-RW_Advanced.PDF
HP CD-Writer Program User Guide - - Ver. 2.0 HP CD-RW Adaptec Easy CD Creator Copier, Direct CD. HP CD-RW,. Easy CD Creator 3.5C, Direct CD 3.0., HP. HP CD-RW TEAM ( 02-3270-0803 ) < > 1. CD...3 CD...5
More informationSchoolNet튜토리얼.PDF
Interoperability :,, Reusability: : Manageability : Accessibility :, LMS Durability : (Specifications), AICC (Aviation Industry CBT Committee) : 1988, /, LMS IMS : 1997EduCom NLII,,,,, ARIADNE (Alliance
More informationORANGE FOR ORACLE V4.0 INSTALLATION GUIDE (Online Upgrade) ORANGE CONFIGURATION ADMIN O
Orange for ORACLE V4.0 Installation Guide ORANGE FOR ORACLE V4.0 INSTALLATION GUIDE...1 1....2 1.1...2 1.2...2 1.2.1...2 1.2.2 (Online Upgrade)...11 1.3 ORANGE CONFIGURATION ADMIN...12 1.3.1 Orange Configuration
More information목차 BUG offline replicator 에서유효하지않은로그를읽을경우비정상종료할수있다... 3 BUG 각 partition 이서로다른 tablespace 를가지고, column type 이 CLOB 이며, 해당 table 을 truncate
ALTIBASE HDB 6.1.1.5.6 Patch Notes 목차 BUG-39240 offline replicator 에서유효하지않은로그를읽을경우비정상종료할수있다... 3 BUG-41443 각 partition 이서로다른 tablespace 를가지고, column type 이 CLOB 이며, 해당 table 을 truncate 한뒤, hash partition
More informationAnalyst Briefing
. Improve your Outlook on Email and File Management iseminar.. 1544(or 6677)-3355 800x600. iseminar Chat... Improve your Outlook on Email and File Management :, 2003 1 29.. Collaboration Suite - Key Messages
More information목차 1. 제품 소개... 4 1.1 특징... 4 1.2 개요... 4 1.3 Function table... 5 2. 기능 소개... 6 2.1 Copy... 6 2.2 Compare... 6 2.3 Copy & Compare... 6 2.4 Erase... 6 2
유영테크닉스( 주) 사용자 설명서 HDD014/034 IDE & SATA Hard Drive Duplicator 유 영 테 크 닉 스 ( 주) (032)670-7880 www.yooyoung-tech.com 목차 1. 제품 소개... 4 1.1 특징... 4 1.2 개요... 4 1.3 Function table... 5 2. 기능 소개... 6 2.1 Copy...
More information1. 회사소개 및 연혁 - 회사소개 회사소개 회사연혁 대표이사: 한종열 관계사 설립일 : 03. 11. 05 자본금 : 11.5억원 인 원 : 18명 에스오넷 미도리야전기코리 아 미도리야전기(일본) 2008 2007 Cisco Premier Partner 취득 Cisco Physical Security ATP 취득(진행) 서울시 강남구 도심방범CCTV관제센터
More informationAzure Stack – What’s Next in Microsoft Cloud
Microsoft Azure Stack Dell EMC 와함께하는하이브리드클라우드전략 Microsoft Korea, Cloud+Enterprise 사업부진찬욱부장 Sr. Product Marketing Manager, Azure Stack Azure Momentum 120,000 New Azure customer subscriptions/month 715 Million
More informationModel Investor MANDO Portal Site People Customer BIS Supplier C R M PLM ERP MES HRIS S C M KMS Web -Based
e- Business Web Site 2002. 04.26 Model Investor MANDO Portal Site People Customer BIS Supplier C R M PLM ERP MES HRIS S C M KMS Web -Based Approach High E-Business Functionality Web Web --based based KMS/BIS
More information160322_ADOP 상품 소개서_1.0
상품 소개서 March, 2016 INTRODUCTION WHO WE ARE WHAT WE DO ADOP PRODUCTS : PLATON SEO SOULTION ( ) OUT-STREAM - FOR MOBILE ADOP MARKET ( ) 2. ADOP PRODUCTS WHO WE ARE ADOP,. 2. ADOP PRODUCTS WHAT WE DO ADOP,.
More information목순 차서 v KM의 현황 v Web2.0 의 개념 v Web2.0의 도입 사례 v Web2.0의 KM 적용방안 v 고려사항 1/29
Web2.0의 EKP/KMS 적용 방안 및 사례 2008. 3. OnTheIt Consulting Knowledge Management Strategic Planning & Implementation Methodology 목순 차서 v KM의 현황 v Web2.0 의 개념 v Web2.0의 도입 사례 v Web2.0의 KM 적용방안 v 고려사항 1/29 현재의
More information분산처리 프레임워크를 활용한대용량 영상 고속분석 시스템
분산처리프레임워크를활용한 대용량영상고속분석시스템 2015.07.16 SK C&C 융합기술본부오상문 (sangmoon.oh@sk.com) 목차 I. 영상분석서비스 II. Apache Storm III.JNI (Java Native Interface) IV. Image Processing Libraries 2 1.1. 배경및필요성 I. 영상분석서비스 현재대부분의영상관리시스템에서영상분석은
More information슬라이드 1
웹 2.0 분석보고서 Year 2006. Month 05. Day 20 Contents 1 Chapter 웹 2.0 이란무엇인가? 웹 2.0 의시작 / 웹 1.0 에서웹 2.0 으로 / 웹 2.0 의속성 / 웹 2.0 의영향 Chapter Chapter 2 3 웹 2.0 을가능케하는요소 AJAX / Tagging, Folksonomy / RSS / Ontology,
More information디지털포렌식학회 논문양식
ISSN : 1976-5304 http://www.kdfs.or.kr Virtual Online Game(VOG) 환경에서의 디지털 증거수집 방법 연구 이 흥 복, 정 관 모, 김 선 영 * 대전지방경찰청 Evidence Collection Process According to the Way VOG Configuration Heung-Bok Lee, Kwan-Mo
More information歯목차45호.PDF
CRM CRM (CRM : Customer Relationship Management ). CRM,,.,,.. IMF.,.,. (CRM: Customer Relationship Management, CRM )., CRM,.,., 57 45 (2001 )., CRM...,, CRM, CRM.. CRM 1., CRM,. CRM,.,.,. (Volume),,,,,,,,,,
More informationuntitled
Memory leak Resource 力 金 3-tier 見 Out of Memory( 不 ) Memory leak( 漏 ) 狀 Application Server Crash 理 Server 狀 Crash 類 JVM 說 例 行說 說 Memory leak Resource Out of Memory Memory leak Out of Memory 不論 Java heap
More informationSlide 1
빅데이터기술의이해 2016. 8. 23 장형석 충북대비즈니스데이터융합학과교수 chjang1204@nate.com 장형석교수 # 경력 ( 현직 ) - 충북대학교비즈니스데이터융합학과 - 국민대학교빅데이터경영 MBA 과정겸임교수 - 연세대학교데이터사이언스과정외래교수 # 저서및역서 - [ 실전하둡운용가이드 ] 한빛미디어, 2013.07 - [ 빅데이터컴퓨팅기술 ]
More informationPowerPoint 프레젠테이션
Synergy EDMS www.comtrue.com opyright 2001 ComTrue Technologies. All right reserved. - 1 opyright 2001 ComTrue Technologies. All right reserved. - 2 opyright 2001 ComTrue Technologies. All right reserved.
More information¨ìÃÊÁ¡2
2 Worldwide Converged Mobile Device Shipment Share by Operating System, 2005 and 2010 Paim OS (3.6%) BiackBerry OS (7.5%) 2005 Other (0.3%) Linux (21.8%) Symbian OS (60.7%) Windows Mobile (6.1%) Total=56.52M
More informationVoice Portal using Oracle 9i AS Wireless
Voice Portal Platform using Oracle9iAS Wireless 20020829 Oracle Technology Day 1 Contents Introduction Voice Portal Voice Web Voice XML Voice Portal Platform using Oracle9iAS Wireless Voice Portal Video
More information목 차
Oracle 9i Admim 1. Oracle RDBMS 1.1 (System Global Area:SGA) 1.1.1 (Shared Pool) 1.1.2 (Database Buffer Cache) 1.1.3 (Redo Log Buffer) 1.1.4 Java Pool Large Pool 1.2 Program Global Area (PGA) 1.3 Oracle
More informationMicrosoft Word - 조병호
포커스 클라우드 컴퓨팅 서비스 기술 및 표준화 추진 동향 조병호* 2006년에 클라우딩 컴퓨팅이란 용어가 처음 생겨난 이래 글로벌 IT 기업 CEO들이 잇달아 차 기 핵심 기술로 클라우드 컴퓨팅을 지목하면서 전세계적으로 클라우드 컴퓨팅이라는 새로운 파 라다임에 관심이 고조되고 있다. 클라우드 컴퓨팅 기술을 이용하면 효율적인 IT 자원을 운용할 수 있으며 비용절감
More informationChap7.PDF
Chapter 7 The SUN Intranet Data Warehouse: Architecture and Tools All rights reserved 1 Intranet Data Warehouse : Distributed Networking Computing Peer-to-peer Peer-to-peer:,. C/S Microsoft ActiveX DCOM(Distributed
More informationSpecial Theme _ 모바일웹과 스마트폰 본 고에서는 모바일웹에서의 단말 API인 W3C DAP (Device API and Policy) 의 표준 개발 현황에 대해서 살펴보고 관 련하여 개발 중인 사례를 통하여 이해를 돕고자 한다. 2. 웹 애플리케이션과 네이
모바일웹 플랫폼과 Device API 표준 이강찬 TTA 유비쿼터스 웹 응용 실무반(WG6052)의장, ETRI 선임연구원 1. 머리말 현재 소개되어 이용되는 모바일 플랫폼은 아이폰, 윈 도 모바일, 안드로이드, 심비안, 모조, 리모, 팜 WebOS, 바다 등이 있으며, 플랫폼별로 버전을 고려하면 그 수 를 열거하기 힘들 정도로 다양하게 이용되고 있다. 이
More information서현수
Introduction to TIZEN SDK UI Builder S-Core 서현수 2015.10.28 CONTENTS TIZEN APP 이란? TIZEN SDK UI Builder 소개 TIZEN APP 개발방법 UI Builder 기능 UI Builder 사용방법 실전, TIZEN APP 개발시작하기 마침 TIZEN APP? TIZEN APP 이란? Mobile,
More informationHTML5* Web Development to the next level HTML5 ~= HTML + CSS + JS API
WAC 2.0 & Hybrid Web App 권정혁 ( @xguru ) 1 HTML5* Web Development to the next level HTML5 ~= HTML + CSS + JS API Mobile Web App needs Device APIs Camera Filesystem Acclerometer Web Browser Contacts Messaging
More informationAmazon EBS (Elastic Block Storage) Amazon EC2 Local Instance Store (Ephemeral Volumes) Amazon S3 (Simple Storage Service) / Glacier Elastic File Syste (EFS) Storage Gateway AWS Import/Export 1 Instance
More informationData Industry White Paper
2017 2017 Data Industry White Paper 2017 1 3 1 2 3 Interview 1 ICT 1 Recommendation System * 98 2017 Artificial 3 Neural NetworkArtificial IntelligenceAI 2 AlphaGo 1 33 Search Algorithm Deep Learning IBM
More informationthesis-shk
DPNM Lab, GSIT, POSTECH Email: shk@postech.ac.kr 1 2 (1) Internet World-Wide Web Web traffic Peak periods off-peak periods peak periods off-peak periods 3 (2) off-peak peak Web caching network traffic
More informationPowerPoint 프레젠테이션
CRM Data Quality Management 2003 2003. 11. 11 (SK ) hskim226@skcorp.com Why Quality Management? Prologue,,. Water Source Management 2 Low Quality Water 1) : High Quality Water 2) : ( ) Water Quality Management
More informationCopyright 2012, Oracle and/or its affiliates. All rights reserved.,.,,,,,,,,,,,,.,...,. U.S. GOVERNMENT END USERS. Oracle programs, including any oper
Windows Netra Blade X3-2B( Sun Netra X6270 M3 Blade) : E37790 01 2012 9 Copyright 2012, Oracle and/or its affiliates. All rights reserved.,.,,,,,,,,,,,,.,...,. U.S. GOVERNMENT END USERS. Oracle programs,
More information03.Agile.key
CSE4006 Software Engineering Agile Development Scott Uk-Jin Lee Division of Computer Science, College of Computing Hanyang University ERICA Campus 1 st Semester 2018 Background of Agile SW Development
More informationabout_by5
WWW.BY5IVE.COM BYFIVE CO. DESIGN PARTNERS MAKE A DIFFERENCE BRAND EXPERIENCE CONSULTING & DESIGN PACKAGE / OFF-LINE EDITING CONSULTING & DESIGN USER EXPERIENCE (UI/GUI) / ON-LINE EDITING CONSULTING & DESIGN
More information슬라이드 1
Data Warehouse 통합솔루션 회사연혁 Teradata Corporation (NYSE: TDC) 은 30 년이상업계를선도하며, 전세계적으로 Big Data 및데이터웨어하우스관련 Analytic 솔루션과컨설팅서비스를제공하는최고의기술을보유한 Global 기업 Teradata 본사 한국 Teradata 미국오하이오주 Dayton에세계최초의금전등록기제조사
More informationSlide 1
SAS Visual Analytics: In-Memory 분석엔진기반의 Big Data 시각적분석 박현옥부장 SAS Korea Agenda Big Data Analysis - Issues Case Study Big Data Analytics를위한 SAS 분석아키텍쳐 SAS Visual Analytics의특징 데모 활용방안 Big Data Analytics -
More informationvm-웨어-01장
Chapter 16 21 (Agenda). (Green),., 2010. IT IT. IT 2007 3.1% 2030 11.1%, IT 2007 1.1.% 2030 4.7%, 2020 4 IT. 1 IT, IT. (Virtualization),. 2009 /IT 2010 10 2. 6 2008. 1970 MIT IBM (Mainframe), x86 1. (http
More informationSolaris Express Developer Edition
Solaris Express Developer Edition : 2008 1 Solaris TM Express Developer Edition Solaris OS. Sun / Solaris, Java, Web 2.0,,. Developer Solaris Express Developer Edition System Requirements. 768MB. SPARC
More information15_3oracle
Principal Consultant Corporate Management Team ( Oracle HRMS ) Agenda 1. Oracle Overview 2. HR Transformation 3. Oracle HRMS Initiatives 4. Oracle HRMS Model 5. Oracle HRMS System 6. Business Benefit 7.
More information이제는 쓸모없는 질문들 1. 스마트폰 열기가 과연 계속될까? 2. 언제 스마트폰이 일반 휴대폰을 앞지를까? (2010년 10%, 2012년 33% 예상) 3. 삼성의 스마트폰 OS 바다는 과연 성공할 수 있을까? 지금부터 기업들이 관심 가져야 할 질문들 1. 스마트폰은
Enterprise Mobility 경영혁신 스마트폰, 웹2.0 그리고 소셜라이프의 전략적 활용에 대하여 Enterpise2.0 Blog : www.kslee.info 1 이경상 모바일생산성추진단 단장/경영공학박사 이제는 쓸모없는 질문들 1. 스마트폰 열기가 과연 계속될까? 2. 언제 스마트폰이 일반 휴대폰을 앞지를까? (2010년 10%, 2012년 33%
More information강의10
Computer Programming gdb and awk 12 th Lecture 김현철컴퓨터공학부서울대학교 순서 C Compiler and Linker 보충 Static vs Shared Libraries ( 계속 ) gdb awk Q&A Shared vs Static Libraries ( 계속 ) Advantage of Using Libraries Reduced
More informationInterstage5 SOAP서비스 설정 가이드
Interstage 5 Application Server ( Solaris ) SOAP Service Internet Sample Test SOAP Server Application SOAP Client Application CORBA/SOAP Server Gateway CORBA/SOAP Gateway Client INTERSTAGE SOAP Service
More information_LG히다찌 브로슈어
SOLUTION GUIDE BOOK G ITACHI OLUTION UIDE OOK ABOUT US UCP www.lghitachi.co.kr T 070 8290 3700 F 02 3272 9746 02 CONTENTS 04 05 10 13 18 29 BUSINESS AREA FINANCE SOLUTION FINTECH SOLUTION CONVERGED SOLUTION
More informationIntro to Servlet, EJB, JSP, WS
! Introduction to J2EE (2) - EJB, Web Services J2EE iseminar.. 1544-3355 ( ) iseminar Chat. 1 Who Are We? Business Solutions Consultant Oracle Application Server 10g Business Solutions Consultant Oracle10g
More informationPowerPoint 프레젠테이션
Flamingo Big Data Performance Management Product Documentation It s the Best Big Data Performance Management Solution. Maximize Your Hadoop Cluster with Flamingo. Monitoring, Analyzing, and Visualizing.
More informationMicrosoft Word - KSR2014S042
2014 년도 한국철도학회 춘계학술대회 논문집 KSR2014S042 안전소통을 위한 모바일 앱 서비스 개발 Development of Mobile APP Service for Safety Communication 김범승 *, 이규찬 *, 심재호 *, 김주희 *, 윤상식 **, 정경우 * Beom-Seung Kim *, Kyu-Chan Lee *, Jae-Ho
More informationuntitled
SAS Korea / Professional Service Division 2 3 Corporate Performance Management Definition ý... is a system that provides organizations with a method of measuring and aligning the organization strategy
More informationRED HAT JBoss Data Grid (JDG)? KANGWUK HEO Middleware Solu6on Architect Service Team, Red Hat Korea 1
RED HAT JBoss Data Grid (JDG)? KANGWUK HEO Middleware Solu6on Architect Service Team, Red Hat Korea 1 Agenda TITLE SLIDE: HEADLINE 1.? 2. Presenter Infinispan JDG 3. Title JBoss Data Grid? 4. Date JBoss
More informationPowerChute Personal Edition v3.1.0 에이전트 사용 설명서
PowerChute Personal Edition v3.1.0 990-3772D-019 4/2019 Schneider Electric IT Corporation Schneider Electric IT Corporation.. Schneider Electric IT Corporation,,,.,. Schneider Electric IT Corporation..
More informationDE1-SoC Board
실습 1 개발환경 DE1-SoC Board Design Tools - Installation Download & Install Quartus Prime Lite Edition http://www.altera.com/ Quartus Prime (includes Nios II EDS) Nios II Embedded Design Suite (EDS) is automatically
More informationAgenda 오픈소스 트렌드 전망 Red Hat Enterprise Virtualization Red Hat Enterprise Linux OpenStack Platform Open Hybrid Cloud
오픈소스 기반 레드햇 클라우드 기술 Red Hat, Inc. Senior Solution Architect 최원영 부장 wchoi@redhat.com Agenda 오픈소스 트렌드 전망 Red Hat Enterprise Virtualization Red Hat Enterprise Linux OpenStack Platform Open Hybrid Cloud Red
More information05(533-537) CPLV12-04.hwp
모바일 OS 환경의 사용자 반응성 향상 기법 533 모바일 OS 환경의 사용자 반응성 향상 기법 (Enhancing Interactivity in Mobile Operating Systems) 배선욱 김정한 (Sunwook Bae) 엄영익 (Young Ik Eom) (Junghan Kim) 요 약 사용자 반응성은 컴퓨팅 시스템에서 가장 중요 한 요소 중에 하나이고,
More informationuntitled
Push... 2 Push... 4 Push... 5 Push... 13 Push... 15 1 FORCS Co., LTD A Leader of Enterprise e-business Solution Push (Daemon ), Push Push Observer. Push., Observer. Session. Thread Thread. Observer ID.
More informationDBMS & SQL Server Installation Database Laboratory
DBMS & 조교 _ 최윤영 } 데이터베이스연구실 (1314 호 ) } 문의사항은 cyy@hallym.ac.kr } 과제제출은 dbcyy1@gmail.com } 수업공지사항및자료는모두홈페이지에서확인 } dblab.hallym.ac.kr } 홈페이지 ID: 학번 } 홈페이지 PW:s123 2 차례 } } 설치전점검사항 } 설치단계별설명 3 Hallym Univ.
More information#Ȳ¿ë¼®
http://www.kbc.go.kr/ A B yk u δ = 2u k 1 = yk u = 0. 659 2nu k = 1 k k 1 n yk k Abstract Web Repertoire and Concentration Rate : Analysing Web Traffic Data Yong - Suk Hwang (Research
More information