Microsoft PowerPoint - 실습소개와 AI_ML_DL_배포용.pptx

Size: px
Start display at page:

Download "Microsoft PowerPoint - 실습소개와 AI_ML_DL_배포용.pptx"

Transcription

1 실습강의개요와인공지능, 기계학습, 신경망 < 인공지능입문 > 강의 허민오 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University

2 실습강의개요 노트북을꼭지참해야하는강좌 신경망소개 (2 주, 허민오 ) Python ( 프로그래밍언어 ) (2주, 김준호 ) Python으로신경망다뤄보기 (2주, 김준호 ) 딥러닝소개 (2 주, 허민오 ) Tensorflow ( 딥러닝라이브러리 ) (3주, 류제환 ) Tensorflow로분류문제풀어보기 (2주, 허유정 ) 2018, 인공지능입문, SNU CSE Biointelligence Lab.,

3 실습을진행할어벤저스 허민오김준호류제환허유정 한동식 2018, 인공지능입문, SNU CSE Biointelligence Lab.,

4 Python 과신경망 담당자 : 김준호 3~6주차계획 1. 환경세팅및 Python Introduction - 실습과제 : Codecademy 2. Numpy - 실습과제 : Codecademy 3. Perceptron - 실습과제 : 주어진데이터 classification 4. Multi-layer Perceptron (MLP)& Backpropagation - 실습과제 : Backpropagation 코드구현 2018, 인공지능입문, SNU CSE Biointelligence Lab.,

5 2018, 인공지능입문, SNU CSE Biointelligence Lab.,

6 Tensorflow 담당자 : 류제환 10~12 주차계획 1. Tensorflow 란무엇인가? 2. Tensorflow 의구성요소 3. 기본적인 Tensorflow 의연산들 1. 기계학습평가방법론소개 2. Tensorboard 소개 1. Tensorflow 로 MLP 만들기 2018, 인공지능입문, SNU CSE Biointelligence Lab.,

7 Tensorflow 로분류해보기 : MNIST 데이터 담당자 : 허유정 13~14 주차계획 1. MNIST 데이터 2. matplotlib으로영상데이터확인하기 3. Convolutional Neural Network 1. Tensorflow 로 MNIST 분류기코드읽기 / 사용하기 2018, 인공지능입문, SNU CSE Biointelligence Lab.,

8 Final Project: CIFAR-10 물체사진분류기 딥러닝실전프로젝트 Tensorflow 를써서 10 가지물체사진분류하는도구를만들고분석하기 데이터집합 : CIFAR-10 ( 2018, 인공지능입문, SNU CSE Biointelligence Lab.,

9 실습평가방법 실습점수는수업전체평가점수중 30% 매시간평가 ( 20% ) 신경망소개, 딥러닝소개 구글서베이를통해퀴즈풀어제출 ( 수업종료 5 분전에링크공개, 5 분동안문제풀기수업마치고 5~ 20 분후에제출불가로변환됩니다.) 기타실습 코드작성후에조교확인받기 Final 프로젝트 ( 10% ) 2018, 인공지능입문, SNU CSE Biointelligence Lab.,

10 2018, 인공지능입문, SNU CSE Biointelligence Lab., 질문있나요?

11 인공지능, 기계학습, 신경망 2018, 인공지능입문, SNU CSE Biointelligence Lab.,

12 인공지능 (Artificial Intelligence) 인공지능 (AI): 사람처럼생각하고사람처럼행동하는기계 ( 컴퓨터,SW, 로봇 ) 사람이기계보다잘하는일을기계가할수있도록하는연구 지능을필요로하는일을기계가할수있도록하는연구 1950: Turing Test, 1956: Artificial Intelligence (AI)

13 년대 : 붐 전문가 / 지식기반시스템 : 제5세대컴퓨터계획 (FGCS) 1990 년대 : 암흑기 AI 의역사적흐름 뉴럴넷, 유전자알고리즘, 퍼지로직 1990대후반 : 인터넷, 웹, 전자상거래정보검색, 데이터마이닝아마존, 이베이, 야후, 구글 2010 년대 : 부흥기 지능형에이전트 머신러닝 / 딥러닝 IBM Deep Blue Chess Machine Beats Human Champion (1997) 13

14 Grand Challenges of AI: Thinking Machines Deep Blue Watson AlphaGo

15 Why is AI difficult? A thinking machine? An acting machine? 환경과의상호작용에필요한것은? - 적절한행동 (Decision making + body manipulation) - 지각능력 (Perception)

16 Self-driving Cars: Acting machine? RHINO Museum Tour Guide DARPA Grand Challenge Google Self-driving Car

17 핵심인공지능기술 : 기계학습 (Machine Learning) 사람처럼 경험으로부터학습하는기계 를개발 축적되는데이터로부터스스로성능을향상하는시스템 데이터로부터모델 ( 프로그램, 패턴 / 규칙, 지식 ) 을자동생성하는기술 자동프로그래밍, 패턴인식, 지식발굴 / 습득 17

18 Artificial Intelligence AI, 기계학습, 딥러닝 Machine Learning Deep Learning Knowledge Representation - Memory - Reasoning - Action (Body Manipulation) - Decision making - Planning - Perception - Vision - Language - 18

19 What is Changed? IDC s Data Age 2025 study 19

20 What is Changed? Where does big data come from? 출처 : 20

21 What is Changed? Deep learning Major advantage of deep learning: scalability (C) , SNU Biointelligence Lab, 21

22 What is Changed? GPU(Graphics Processing Unit) Many slow cores (thousands) Originally for graphics Good at parallel computation 22

23 딥러닝성공사례 - 물체인식 심층컨볼루션신경망 (Deep Convolutional Neural Network, CNN) 이미지에서특징 (feature) 을자동으로추출함 높은층으로갈수록더복잡하고종합적인인식 ImageNet CNN 으로이미지에서다양한종류의물체를인식함 약 6 천만개의매개변수 (parameter), 65 만여개의인공신경세포를이용해 1 천종류이미지약 120 만장을분류 인간수준 ( 이상 ) 의물체인식 23

24 ex) 120 breeds of dogs 24

25 Face Identification (Facebook) [Y. Taigman et al., CVPR 2014] (C) , SNU Biointelligence Lab, 25

26 음성인식 ~2010 GMM-HMM (Dynamic Bayesian Models) ~2013 DNN-HMM (Deep Neural Networks) ~Current LSTM-RNN (Recurrent Neural Networks) 26

27 Image Captioning [X. Kelvin et al., ICML 2015] (C) , SNU Biointelligence Lab, 27

28 Lip Reading in the Wild (C) , SNU Biointelligence Lab, 28

29 Neural machine translation [Ilya Sutskever et al., NIPS 2014] 김상경, Naver Labs, DEVIEW 2016 (C) , SNU Biointelligence Lab, 29

30 Image-to-image translation Conditional Adversarial Networks (C) , SNU Biointelligence Lab, 30

31 Visual Question-Answering J.-H. Kim et al., NIPS 2016 Question Image Answer (C) , SNU Biointelligence Lab, 31

32 데이터 딥러닝의성공적적용을위한요소 다루는문제의복잡도를충분히채울만큼의많은데이터 SW 기술 : 딥러닝기술 + 알고리즘기술 하드웨어 CPU / GPU 병렬연산기술 / 분산컴퓨팅기술 32

33 딥러닝이잘다루는문제 딥러닝이잘다루는문제 데이터를표현하는인자들내에복잡성요소가포함됨 예 ) 영상데이터, 음성데이터, 언어데이터, 큰분량의데이터확보가가능한문제 상당한노이즈가있어도데이터분량이크면다룰수있음 표지 (label) 가있는데이터 현재기술수준에서는아직까지는 supervised learning 을더잘함 Label 이일반적인분류문제의 label 일필요는없음 cf) Image captioning, Neural machine translation(nmt), image-toimage translation 33

34 딥러닝이뭐길래? 딥러닝 : Deep Neural Networks 를이용한기계학습방법 차후수업시간에다룸 기존접근법과의차이 기존방법 : 데이터전처리및가공을통해문제해결에적합한특징추출후이를학습데이터로패턴분류기를훈련 딥러닝 : 특징추출을위한전처리단계를 ( 무감독학습 ) 전체학습프로세스에포함. 특징맵 (feature map) 또는표상 (representation) 을자동으로학습함 34

35 Artificial Intelligence AI, 기계학습, 딥러닝 Machine Learning Deep Learning Knowledge Representation - Memory - Reasoning - Action (Body Manipulation) - Decision making - Planning - Perception - Vision - Language - 35

36 Artificial Intelligence AI, 기계학습, 딥러닝 Machine Learning Deep Learning Knowledge Representation - Memory - Reasoning - Action (Body Manipulation) - Decision making - Planning - Perception - Vision - Language - 36

37 Artificial Intelligence AI, 기계학습, 딥러닝 Machine Learning Deep Learning Knowledge Representation - Memory - Reasoning - Action (Body Manipulation) - Decision making - Planning - Perception - Vision - Language - Neural language model Word2vec Glove Thought vector 37

38 Artificial Intelligence AI, 기계학습, 딥러닝 Machine Learning Deep Learning Knowledge Representation - Memory - Reasoning - Action (Body Manipulation) - Decision making - Planning - Perception - Vision - Language - Neural Language model Word2vec Glove Thought vector 38

39 딥러닝과인공지능 주변사용자와의상호작용에필요한것은? 사람과의상호작용에필수적인기술 보기 읽기 / 듣기 보여주기 쓰기 / 말하기 사람을대신할수도있게되는가? 39

40 Robot & Communication (C) , SNU Biointelligence Lab, 40

41 Human Need Not Apply 41

42 2018, 인공지능입문, SNU CSE Biointelligence Lab., 질문있나요?

Ch 1 머신러닝 개요.pptx

Ch 1 머신러닝 개요.pptx Chapter 1. < > :,, 2017. Slides Prepared by,, Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 1.1 3 1.2... 7 1.3 10 1.4 16 1.5 35 2 1 1.1 n,, n n Artificial

More information

제1강 인공지능 개념과 역사

제1강 인공지능 개념과 역사 인공지능개념과역사 < 인공지능입문 > 강의노트 장병탁서울대학교컴퓨터공학부 & 인지과학 / 뇌과학협동과정 http://bi.snu.ac.kr/~btzhang/ Version: 20180302 목차 인공지능의개념........ 3 연구분야............ 4 역사...... 6 패러다임........ 7 응용사례.......... 8 Reading Assignments.........

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 고령사회인공지능과로봇의미래 뉴스토마토 2016 은퇴전략포럼 2016. 9. 23 ( 목 ), 15:20~14:00 장병탁서울대학교컴퓨터공학부 & 인지과학 / 뇌과학협동과정인지로봇인공지능연구센터 (CRAIC) http://bi.snu.ac.kr/ 목차 1. 인공지능혁명............. 3 머신러닝 / 딥러닝혁명, 글로벌기업동향 2. 스마트머신의등장........

More information

<4D6963726F736F667420576F7264202D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>

<4D6963726F736F667420576F7264202D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5> 주간기술동향 2016. 5.18. 컴퓨터 비전과 인공지능 장혁 한국전자통신연구원 선임연구원 최근 많은 관심을 받고 있는 인공지능(Artificial Intelligence: AI)의 성과는 뇌의 작동 방식과 유사한 딥 러닝의 등장에 기인한 바가 크다. 이미 미국과 유럽 등 AI 선도국에서는 인공지능 연구에서 인간 뇌 이해의 중요성을 인식하고 관련 대형 프로젝트들을

More information

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB>

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB> 주간기술동향 2016. 2. 24. 최신 ICT 이슈 인공지능 바둑 프로그램 경쟁, 구글이 페이스북에 리드 * 바둑은 경우의 수가 많아 컴퓨터가 인간을 넘어서기 어려움을 보여주는 사례로 꼽혀 왔 으며, 바로 그런 이유로 인공지능 개발에 매진하는 구글과 페이스북은 바둑 프로그램 개 발 경쟁을 벌여 왔으며, 프로 9 단에 도전장을 낸 구글이 일단 한발 앞서 가는

More information

기획 1 서울공대생에게 물었다 글 재료공학부 1, 이윤구 재료공학부 1, 김유리 전기정보공학부 1, 전세환 편집 재료공학부 3, 오수봉 이번 서울공대생에게 물었다! 코너는 특별히 설문조사 형식으로 진행해 보려고 해 요. 설문조사에는 서울대학교 공대 재학생 121명, 비

기획 1 서울공대생에게 물었다 글 재료공학부 1, 이윤구 재료공학부 1, 김유리 전기정보공학부 1, 전세환 편집 재료공학부 3, 오수봉 이번 서울공대생에게 물었다! 코너는 특별히 설문조사 형식으로 진행해 보려고 해 요. 설문조사에는 서울대학교 공대 재학생 121명, 비 2015 autumn 공대상상 예비 서울공대생을 위한 서울대 공대 이야기 Vol. 13 Contents 02 기획 서울공대생에게 물었다 극한직업 공캠 촬영 편 Fashion in SNU - 단체복 편 서울대 식당, 어디까지 먹어 봤니? 12 기획 연재 기계항공공학부 기계항공공학부를 소개합니다 STEP 01 기계항공공학부에 대한 궁금증 STEP 02 동문 인터뷰

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 4 차산업혁명, 인간과로봇의미래 (The 4 th Industrial Revolution - Future of Humans and Machines 제 84 회 KISTEP 수요포럼 KISTEP 12 층국제회의실, 2018. 4. 25( 수 ) 10:00-12:00 장병탁 (Byoung-Tak Zhang) 서울대학교컴퓨터공학부및인지과학 / 뇌과학협동과정인지로봇인공지능연구센터

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 [ 인공지능입문랩 ] SEOPT ( Study on the Elements Of Python and Tensorflow ) 인공지능 + 데이터분석목적 / 방법 / 기법 / 도구 + Python Programming 기초 + NumpyArray(Tensor) youngdocseo@gmail.com 1 *3 시간 / 회 구분일자내용비고 1 회 0309

More information

제2강 생각하는 기계

제2강 생각하는 기계 제 2 강 생각하는기계 < 인공지능입문 > 강의노트 장병탁서울대학교컴퓨터공학부 & 인지과학 / 뇌과학협동과정 http://bi.snu.ac.kr/~btzhang/ Version: 20180312=> 20180313 목차 튜링테스트...... 3 중국어방논증........... 7 강인공지능과약인공지능..... 8 특이점....... 10 의식의문제와인공지능........

More information

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB>

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB> 최신 ICT 이슈 최신 ICT 이슈 알파고의 심층강화학습을 뒷받침한 H/W 와 S/W 환경의 진화 * 알파고의 놀라운 점은 바둑의 기본규칙조차 입력하지 않았지만 승리 방식을 스스로 알아 냈다는 것이며, 알파고의 핵심기술인 심층강화학습이 급속도로 발전한 배경에는 하드웨 어의 진화와 함께 오픈소스화를 통해 발전하는 AI 관련 소프트웨어들이 자리하고 있음 2014

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Chapter 1. 머신러닝개요 < 기계학습개론 > 강의서울대학교컴퓨터공학부장병탁 교재 : 장교수의딥러닝, 홍릉과학출판사, 2017. Slides Prepared by 장병탁, 김준호, 이상우 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University

More information

_KrlGF발표자료_AI

_KrlGF발표자료_AI AI 의과거와현재그리고내일 AI is the New Electricity 2017.09.15 AI! 2 Near Future of Super Intelligence? *source l http://www.motherjones.com/media/2013/05/robots-artificial-intelligence-jobs-automation 3 4 I think

More information

빅데이터_DAY key

빅데이터_DAY key Big Data Near You 2016. 06. 16 Prof. Sehyug Kwon Dept. of Statistics 4V s of Big Data Volume Variety Velocity Veracity Value 대용량 다양한 유형 실시간 정보 (불)확실성 가치 tera(1,0004) - peta -exazetta(10007) bytes in 2020

More information

( 분류및특징 ) 학습방법에따라 1 지도학습 (Supervised 2 비지도 학습 (Unsupervised 3 강화학습 (Reinforcement 으로구분 3) < 머신러닝의학습방법 > 구분 지도학습 (Supervised 비지도학습 (Unsupervised 강화학습 (

( 분류및특징 ) 학습방법에따라 1 지도학습 (Supervised 2 비지도 학습 (Unsupervised 3 강화학습 (Reinforcement 으로구분 3) < 머신러닝의학습방법 > 구분 지도학습 (Supervised 비지도학습 (Unsupervised 강화학습 ( 보안연구부 -2016-016 머신러닝 (Machine 개요및활용동향 - 금융권인공지능 (AI) 을위한머신러닝과딥러닝 - ( 보안연구부보안기술팀 / 2016.3.24.) 개요 이세돌 9단과인공지능 (AI, Artificial Intelligence) 알파고 (AlphaGo) 의대국 ( 16 년 3월 9~15일총 5국 ) 의영향으로 4차산업혁명단계 1) 진입을인식함과더불어금융권에서도인공지능기술이주목받게됨에따라,

More information

Pattern Recognition

Pattern Recognition 딥러닝이해및미디어응용 아주대학교구형일 인공지능 / 기계학습 / 딥러닝 AI 에관한 4 개의관점 Humanly Rationally Thinking Thinking Humanly Thinking Rationally Acting Acting Humanly Acting Rationally Acting Humanly 사람처럼일하는 / 행동하는기계 인공지능은사람에의해서수행될때지능이필요한일을수행하는기계를만드는기술이다.

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Visual Search At SK-Planet sk-planet Machine Intelligence Lab. 나상일 1. 개발배경 2. 첫접근방법 3. 개선된방법 A. Visual recognition technology B. Guided search C. Retrieval system 개발배경 개발배경 상품검색을좀더쉽게 Key-word 트렌치코트버튺벨트

More information

김기남_ATDC2016_160620_[키노트].key

김기남_ATDC2016_160620_[키노트].key metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 딥러닝소개 < 인공지능입문 > 강의 허민오 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University (C) 2007-2018, SNU Biointelligence Lab, http://bi.snu.ac.kr/ 1 Playground (playground.tensorflow.org)

More information

Data Industry White Paper

Data Industry White Paper 2017 2017 Data Industry White Paper 2017 1 3 1 2 3 Interview 1 ICT 1 Recommendation System * 98 2017 Artificial 3 Neural NetworkArtificial IntelligenceAI 2 AlphaGo 1 33 Search Algorithm Deep Learning IBM

More information

(JBE Vol. 24, No. 1, January 2019) (Special Paper) 24 1, (JBE Vol. 24, No. 1, January 2019) ISSN 2287-

(JBE Vol. 24, No. 1, January 2019) (Special Paper) 24 1, (JBE Vol. 24, No. 1, January 2019)   ISSN 2287- (Special Paper) 24 1 2019 1 (JBE Vol. 24 No. 1 January 2019) https//doi.org/10.5909/jbe.2019.24.1.58 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a) a) a) b) c) d) A Study on Named Entity Recognition

More information

Electronics and Telecommunications Trends 인공지능을이용한 3D 콘텐츠기술동향및향후전망 Recent Trends and Prospects of 3D Content Using Artificial Intelligence Technology

Electronics and Telecommunications Trends 인공지능을이용한 3D 콘텐츠기술동향및향후전망 Recent Trends and Prospects of 3D Content Using Artificial Intelligence Technology Electronics and Telecommunications Trends 인공지능을이용한 3D 콘텐츠기술동향및향후전망 Recent Trends and Prospects of 3D Content Using Artificial Intelligence Technology 이승욱 (S.W. Lee, tajinet@etri.re.kr) 황본우 (B.W. Hwang,

More information

슬라이드 1

슬라이드 1 서강대학교인공지능연계전공소개 목차 2 인공지능이란? 인공지능의정의와의미 딥러닝과관계 영화속인공지능 현실속인공지능 적용분야 서강대학교인공지능연계전공 교육목표 이수요건 위원회 인공지능이란? Dream 4 C3PO and R2D2 AIBO? 5 What is Artificial Intelligence? 6 Artificial Intelligence (1) 7 인간성이나지성을갖춘존재나시스템에의해만들어진지능,

More information

R을 이용한 텍스트 감정분석

R을 이용한 텍스트 감정분석 R Data Analyst / ( ) / kim@mindscale.kr (kim@mindscale.kr) / ( ) ( ) Analytic Director R ( ) / / 3/45 4/45 R? 1. : / 2. : ggplot2 / Web 3. : slidify 4. : 5. Matlab / Python -> R Interactive Plots. 5/45

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 29(7),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 29(7), THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2018 Jul.; 29(7), 550 559. http://dx.doi.org/10.5515/kjkiees.2018.29.7.550 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) Human

More information

다중 곡면 검출 및 추적을 이용한 증강현실 책

다중 곡면 검출 및 추적을 이용한 증강현실 책 1 딥러닝기반성별및연령대 추정을통한맞춤형광고솔루션 20101588 조준희 20131461 신혜인 2 개요 연구배경 맞춤형광고의필요성 성별및연령별주요관심사에적합한광고의필요성증가 제한된환경에서개인정보획득의한계 맞춤형광고의어려움 영상정보기반개인정보추정 연구목표 딥러닝기반사용자맞춤형광고솔루션구현 얼굴영상을이용한성별및연령대추정 성별및연령대를통합네트워크로학습하여추정정확도향상

More information

Delving Deeper into Convolutional Networks for Learning Video Representations - Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville arXiv:

Delving Deeper into Convolutional Networks for Learning Video Representations  -   Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville  arXiv: Delving Deeper into Convolutional Networks for Learning Video Representations Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville arxiv: 1511.06432 Il Gu Yi DeepLAB in Modu Labs. June 13, 2016 Il Gu Yi

More information

레이아웃 1

레이아웃 1 CSE NEWSLETTER 부산대학교 정보컴퓨터공학전공 뉴스레터 01 03 07 09 12 @ PNU 여름호 (통권 제15호) 2016년 6월 정컴 소식 정컴행사, 학사일정, 정컴포커스(교수, 학생, 학과) 교수 동정 칼럼 (유영환 교수) 발행처 부산대학교 정보컴퓨터공학전공 동문 동정 해외 IT기업 재직 선배 이야기 주소 부산시 금정구 부산대학로 63번길 2

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 I. 문서표준 1. 문서일반 (HY중고딕 11pt) 1-1. 파일명명체계 1-2. 문서등록정보 2. 표지표준 3. 개정이력표준 4. 목차표준 4-1. 목차슬라이드구성 4-2. 간지슬라이드구성 5. 일반표준 5-1. 번호매기기구성 5-2. 텍스트박스구성 5-3. 테이블구성 5-4. 칼라테이블구성 6. 적용예제 Machine Learning Credit Scoring

More information

Reinforcement Learning & AlphaGo

Reinforcement Learning & AlphaGo Gait recognition using a Discriminative Feature Learning Approach for Human identification 딥러닝기술및응용딥러닝을활용한개인연구주제발표 이장우 wkddn1108@kist.re.kr 2018.12.07 Overview 연구배경 관련연구 제안하는방법 Reference 2 I. 연구배경 Reinforcement

More information

Ch 8 딥강화학습

Ch 8 딥강화학습 Chapter 8. 딥강화학습 < 기계학습개론 > 강의서울대학교컴퓨터공학부장병탁 교재 : 장교수의딥러닝, 홍릉과학출판사, 2017. Slides Prepared by 장병탁, 최진영 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University Version

More information

PowerPoint Presentation

PowerPoint Presentation 기계학습을통한 시계열데이터분석및 금융시장예측응용 울산과학기술원 전기전자컴퓨터공학부최재식 얼굴인식 Facebook 의얼굴인식기 (DeepFace) 가사람과비슷한인식성능을보임 문제 : 사진에서연애인의이름을맞추기 사람의인식율 : 97.5% vs DeepFace 의인식률 : 97.35% (2014 년 3 월 ) 물체인식 ImageNet (http://image-net.org):

More information

Pattern Recognition

Pattern Recognition SELF-DRIVING CARS AND DEEP LEARNING 아주대학교구형일 Course overview (keywords) Introduction Self Driving Cars/Machine Learning/Deep Learning Machine Learning Artificial Neural Network (ANN,MLP) Convolution Neural

More information

Pattern Recognition

Pattern Recognition SELF-DRIVING CARS AND DEEP LEARNING 아주대학교구형일 Course overview Introduction Self Driving Cars/Machine Learning/Deep Learning Machine Learning Artificial Neural Network (ANN,MLP) Convolution Neural Network

More information

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018)   ISSN (Special Paper) 23 2, 2018 3 (JBE Vol. 23, No. 2, March 2018) https://doi.org/10.5909/jbe.2018.23.2.186 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a) Robust Online Object Tracking via Convolutional

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 ㆍ Natural Language Understanding 관련기술 ㆍ Semantic Parsing Conversational AI Natural Language Understanding / Machine Learning ㆍEntity Extraction and Resolution - Machine Learning 관련기술연구개발경험보유자ㆍStatistical

More information

Slide 1

Slide 1 딥러닝 (Deep Learning) 2016 04 29 변경원 1. 딥러닝이란무엇인가? 2. 인공지능이란무엇인가? 3. 딥러닝은왜필요한가? Agenda 4. 딥러닝은어떤역할을하는가? 5. 딥러닝은어떻게만들어야하는가? 6. GPU 의역할 7. 딥러닝의기여 8. AlphaGo 와 GPU 2 1. 딥러닝이란무엇인가? 2. 인공지능이란무엇인가? 3. 딥러닝은왜필요한가?

More information

Disclaimer IPO Presentation,. Presentation...,,,,, E.,,., Presentation,., Representative...

Disclaimer IPO Presentation,. Presentation...,,,,, E.,,., Presentation,., Representative... DEXTER STUDIOS INVESTOR RELATIONS 2015 Disclaimer IPO Presentation,. Presentation...,,,,, E.,,., Presentation,., Representative... Contents Prologue 01 VFX 02 China 03 Investment Highlights 04 Growth Engine

More information

Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제

Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, 2018 1 1.1 Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 6.5에서 찾아볼 수 있다. http://incompleteideas.net/book/bookdraft2017nov5.pdf

More information

방송공학회논문지 제18권 제2호

방송공학회논문지 제18권 제2호 방송공학회논문지 제 20권 6호 (2015년 11월) 특집논문 : 2015년 하계학술대회 좌장추천 우수논문 프레넬 회절을 이용한 디지털 홀로그램 암호화 알고리즘 새로운 광적응 효과 모델을 이용한 정교한 영상 화질 측정 민방위 경보 방송에 대한 정보 수용자 인식 연구 UHDTV 방송을 위한 공간 변조 다중 안테나 시스템 수신 성능 분석 홍보동영상 제작 서비스를

More information

00-CourseSyllabus

00-CourseSyllabus 웹기술및응용 : Course Syllabus 2018 년도 2 학기 Instructor: Prof. Young-guk Ha Dept. of Computer Science & Engineering Contents Introduction Major Topics Term Project Course Material Grading Policy Class Schedule

More information

4 : CNN (Sangwon Suh et al.: Dual CNN Structured Sound Event Detection Algorithm Based on Real Life Acoustic Dataset) (Regular Paper) 23 6, (J

4 : CNN (Sangwon Suh et al.: Dual CNN Structured Sound Event Detection Algorithm Based on Real Life Acoustic Dataset) (Regular Paper) 23 6, (J (Regular Paper) 23 6, 2018 11 (JBE Vol. 23, No. 6, November 2018) https://doi.org/10.5909/jbe.2018.23.6.855 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) CNN a), a), a), a), a) Dual CNN Structured Sound

More information

목 차 1. 연구 목적 2. 컴퓨팅 파워와 병렬 컴퓨팅 3. AlphaGo의 계산량 분석 4. 결 론

목 차 1. 연구 목적 2. 컴퓨팅 파워와 병렬 컴퓨팅 3. AlphaGo의 계산량 분석 4. 결 론 인공지능 컴퓨팅 환경 확보 방안 및 전략 2016. 08. 25. 2016 정보과학회 HPC연구회 하계 워크샵 추형석 소프트웨어정책연구소 선임연구원 신기술확산연구팀 목 차 1. 연구 목적 2. 컴퓨팅 파워와 병렬 컴퓨팅 3. AlphaGo의 계산량 분석 4. 결 론 1. 연구목적 배경및필요성 컴퓨팅환경확보는인공지능연구를위해선결되어야하는과제 인공지능연구에왜 컴퓨팅파워

More information

때문이다. 물론가장큰이유는, 다음절에서살펴보겠지만최근들어딥러닝구조를학습하는데필요한여러가지테크닉들이개발되었기때문이다 [6,7]. 딥러닝이산업현장에서선호되는데는몇가지이유가있다. 일단은어려운문제를잘해결한다는것이다. 예를들어서, 물체인식과음성인식등전통적인패턴인식의문제에서딥러닝

때문이다. 물론가장큰이유는, 다음절에서살펴보겠지만최근들어딥러닝구조를학습하는데필요한여러가지테크닉들이개발되었기때문이다 [6,7]. 딥러닝이산업현장에서선호되는데는몇가지이유가있다. 일단은어려운문제를잘해결한다는것이다. 예를들어서, 물체인식과음성인식등전통적인패턴인식의문제에서딥러닝 기계학습개론 / 딥러닝강의노트, 서울대학교컴퓨터공학부장병탁, Copyright 2013-2016 3 장 : 딥러닝모델과모델복잡도이론 3.1 딥러닝개념 3.2 딥러닝의혁신점 3.3 딥러닝아키텍쳐 3.4 모델복잡도이론과정규화 3.5 딥러닝모델의비교 3.1 딥러닝개념 30 년전에는인공지능의기초연구분야에속하던머신러닝이최근구글, 애플, 삼성등글로벌기업들이앞다투어확보하려는핵심산업기술로발전하고있다.

More information

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월 지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., 2004 5 2009 12 KOSPI200.,. * 2009. 지능정보연구제 16 권제 1 호 2010 년 3 월 김선웅 안현철 社 1), 28 1, 2009, 4. 1. 지능정보연구제 16 권제 1 호 2010 년 3 월 Support

More information

Slide 1

Slide 1 영상및자연어처리분야인공지능기술동향및전망 주재걸교수 고려대학교정보대학컴퓨터학과 주재걸교수 1 사진 고려대컴퓨터학과 2 3 4 2 3 연구실구성원 9 박사및석박통합과정 22 석사과정 15+ 학부연구생수행과제한국연구재단정보통신기술진흥센터한국산업기술평가관리원한국전력공사삼성리서치마이크로소프트리서치네이버웹툰 SK 텔레콤엔씨소프트자문기관신한금융투자 LG CNS 네이버 Clova

More information

03.Agile.key

03.Agile.key CSE4006 Software Engineering Agile Development Scott Uk-Jin Lee Division of Computer Science, College of Computing Hanyang University ERICA Campus 1 st Semester 2018 Background of Agile SW Development

More information

Contents 01 서울 과학교육 정책 [박문수] 1 02 외국의 과학교육 사례 비교 [정호근] 19 03 영재교육 10년, 현황과 과제 [홍덕표] 39 04 학교기획과 문서작성의 실제 [홍덕표] 51 05 교육법규의 이해 [김응길] 71 06 특수교육의 이해 [권택환] 139 07 영화를 이용한 과학수업 [한문정] 149 08 학교현장에서의 진로교육 [양운택]

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Introduction to Deep Learning and Neural Networks Vision Modeling Lab. Division of Electrical Engineering Hanyang University, ERICA Campus 2 Contents Machine learning Artificial Neural Network (ANN) 신경망의역사와최근의딥러닝

More information

Kaggle 이란? 2010 년설립된빅데이터솔루션대회플랫폼회사 2017 년 3 월구글에인수 2

Kaggle 이란? 2010 년설립된빅데이터솔루션대회플랫폼회사 2017 년 3 월구글에인수 2 Kaggle 에서얻을수있는건? 이유한 카이스트생명화학공학과 Prof. Jihan Kim 분자시뮬레이션실험실 (Molecular Simulation Laboratory) 1 Kaggle 이란? 2010 년설립된빅데이터솔루션대회플랫폼회사 2017 년 3 월구글에인수 2 Data Race for 데이터과학자! 기업, 정부기관, 단체, 연구소, 개인 Dataset

More information

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45 3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : 20049 0/45 Define ~ Analyze Define VOB KBI R 250 O 2 2.2% CBR Gas Dome 1290 CTQ KCI VOC Measure Process Data USL Target LSL Mean Sample N StDev (Within) StDev

More information

SW¹é¼Ł-³¯°³Æ÷ÇÔÇ¥Áö2013

SW¹é¼Ł-³¯°³Æ÷ÇÔÇ¥Áö2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING

More information

RNN & NLP Application

RNN & NLP Application RNN & NLP Application 강원대학교 IT 대학 이창기 차례 RNN NLP application Recurrent Neural Network Recurrent property dynamical system over time Bidirectional RNN Exploit future context as well as past Long Short-Term

More information

01 AI Definition 02 Deep Learning Theory - Linear Regression - Cost Function - Gradient Descendent - Logistic Regression - Activation Function - Conce

01 AI Definition 02 Deep Learning Theory - Linear Regression - Cost Function - Gradient Descendent - Logistic Regression - Activation Function - Conce Artificial Intelligence for Deep Learning 01 AI Definition 02 Deep Learning Theory - Linear Regression - Cost Function - Gradient Descendent - Logistic Regression - Activation Function - Concept of Neural

More information

딥러닝 첫걸음

딥러닝 첫걸음 딥러닝첫걸음 4. 신경망과분류 (MultiClass) 다범주분류신경망 Categorization( 분류 ): 예측대상 = 범주 이진분류 : 예측대상범주가 2 가지인경우 출력층 node 1 개다층신경망분석 (3 장의내용 ) 다범주분류 : 예측대상범주가 3 가지이상인경우 출력층 node 2 개이상다층신경망분석 비용함수 : Softmax 함수사용 다범주분류신경망

More information

김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월

김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월 지능정보연구제 17 권제 4 호 2011 년 12 월 (pp.241~254) Support vector machines(svm),, CRM. SVM,,., SVM,,.,,. SVM, SVM. SVM.. * 2009() (NRF-2009-327- B00212). 지능정보연구제 17 권제 4 호 2011 년 12 월 김경재 안현철 지능정보연구제 17 권제 4 호

More information

006_026_특집_정일권.indd

006_026_특집_정일권.indd 언론현장 초연결사회 부작용 치유 모색 기술 전도사 에서 문화 전도사 로 서울디지털포럼(SDF) 2011 김용철 지난 5월 25일 새벽 3시 30분 미국 CNN 방송의 전 앵커 래리 킹은 78 세의 노구를 이끌고 난생 처음 한국 땅을 밟았다. 뉴욕을 출발한 킹은 편서풍의 도움으로 예정 시간보다 조금 일찍 인천국제공항에 도착했 다. 킹은 일등석 안까지 영접을 나온

More information

<BFACB1B831382D31355FBAF2B5A5C0CCC5CD20B1E2B9DDC0C720BBE7C0CCB9F6C0A7C7E820C3F8C1A4B9E6B9FD20B9D720BBE7C0CCB9F6BBE7B0ED20BFB9C3F8B8F0C7FC20BFACB1B82D33C2F7BCF6C1A E687770>

<BFACB1B831382D31355FBAF2B5A5C0CCC5CD20B1E2B9DDC0C720BBE7C0CCB9F6C0A7C7E820C3F8C1A4B9E6B9FD20B9D720BBE7C0CCB9F6BBE7B0ED20BFB9C3F8B8F0C7FC20BFACB1B82D33C2F7BCF6C1A E687770> Ⅳ. 사이버사고예측모델개발 사이버보험시장활성화를위해서는표준데이터개발이필요하다. 이를위하여이전장에서는빅데이터기반의사이버위험측정체계를제안하였다. 본장에서는제안된사이버위험지수를이용하여사이버사고 (Cyber Incident) 를예측하는모델을개발하고자한다. 이는향후정확한보험금산출에기여할것으로기대한다. 최근빅데이터, 인공지능 (Artificial Intelligence),

More information

표상학습을이용한딥러닝이미지특성의범용분류성에대한실험적분석 지도교수장병탁 이논문을공학학사학위논문으로제출함 년 12 월 21 일 서울대학교공과대학컴퓨터공학부한동식 2016 년 2 월

표상학습을이용한딥러닝이미지특성의범용분류성에대한실험적분석 지도교수장병탁 이논문을공학학사학위논문으로제출함 년 12 월 21 일 서울대학교공과대학컴퓨터공학부한동식 2016 년 2 월 표상학습을이용한딥러닝이미지특성의범용분류성에대한실험적분석 Experimental Analyses on Generalized Discriminability of Deep Convolutional Image Features using Representational Learning 서울대학교공과대학컴퓨터공학부한동식 표상학습을이용한딥러닝이미지특성의범용분류성에대한실험적분석

More information

KAKAO AI REPORT Vol.01

KAKAO AI REPORT Vol.01 KAKAO AI REPORT Vol.01 2017.03 import kakao.ai.dataset.daisy import kakao.ai.image import kakao.ai.classifier import mxnet as mx def Conv(data, num_filter, kernel=(1, 1), stride=(1, 1), pad=(0, 0), name=none,

More information

2힉년미술

2힉년미술 제 회 Final Test 문항 수 배점 시간 개 00 점 분 다음 밑줄 친 부분의 금속 공예 가공 기법이 바르게 연결된 것은? 금, 은, 동, 알루미늄 등의 금속을 ᄀ불에 녹여 틀에 붓거나 금속판을 ᄂ구부리거나 망치로 ᄃ두들겨서 여러 가지 형태의 쓸모 있는 물건을 만들 수 있다. ᄀ ᄂ ᄃ ᄀ ᄂ ᄃ 조금 단금 주금 주금 판금 단금 단금 판금 주금 판금 단금

More information

I. 2

I. 2 ,? 1 I. 2 Youngstown, Ohio 3 20, 4 Steel Valley = American Dream 5 1970, 1977, Black Monday 6 Youngstown = regional depression / 7 ,, 8 ?? 9 10 11 12 (Georg Graetz) (Guy Michaels) 2015 Robots at Work 13

More information

<4D F736F F D20B1E2C8B9BDC3B8AEC1EE2DB0FBB3EBC1D8>

<4D F736F F D20B1E2C8B9BDC3B8AEC1EE2DB0FBB3EBC1D8> 딥러닝기술동향 - CNN 과 RNN 을중심으로 - 곽노준박성헌 * 김대식 * 서울대학교교수서울대학교박사과정 * 본고에서는딥러닝의여러가지분야중최근영상인식분야에서기존방법들보다월등한성능을보이고있는컨볼루션신경망 (Convolutional Neural Networks: CNN) 과음성인식이나자연어처리등에적용되어뛰어난성능을보이는순환신경망 (Recurrent Neural

More information

화판

화판 1 The Economist Intelligence Unit Limited 2009 2 The Economist Intelligence Unit Limited 2009 3 The Economist Intelligence Unit Limited 2009 4 The Economist Intelligence Unit Limited 2009 5 The Economist

More information

아트앤플레이군 (2년제) Art & Play Faculty 95 교육목표 95 군 공통(네트워크) 교과과정표 96 드로잉과 페인팅 Drawing & Painting Major Track 97 매체예술 Media Art Major Track 98 비디오 & 사운드 Video & Sound Major Track 99 사진예술 PHOTOGRAPHIC ART Major

More information

1-1-basic-43p

1-1-basic-43p A Basic Introduction to Artificial Neural Network (ANN) 도대체인공신경망이란무엇인가? INDEX. Introduction to Artificial neural networks 2. Perceptron 3. Backpropagation Neural Network 4. Hopfield memory 5. Self Organizing

More information

02본문

02본문 46 특집 : 딥러닝기반방송미디어기술 특집 딥러닝기반방송미디어기술 딥러닝기반의음성 / 오디오기술 Speech/Audio Processing based on Deep Learning 이영한 / KETI Ⅰ. 서론 인간의두뇌를모델링하는뉴럴네트워크연구는 1940 년대신경세포의모델링부터시작하여현재까지다양한기술이축적되어왔다. 특히 backpropagation 이제안된이후에

More information

논단 : 제조업 고부가가치화를 통한 산업 경쟁력 강화방안 입지동향 정책동향 <그림 1> ICT융합 시장 전망 1.2 2.0 3.8 681 1,237 365 2010년 2015년 2020년 <세계 ICT융합 시장(조 달러)> 2010년 2015년 2020년 <국내 ICT

논단 : 제조업 고부가가치화를 통한 산업 경쟁력 강화방안 입지동향 정책동향 <그림 1> ICT융합 시장 전망 1.2 2.0 3.8 681 1,237 365 2010년 2015년 2020년 <세계 ICT융합 시장(조 달러)> 2010년 2015년 2020년 <국내 ICT 산업입지 Vol.61 ICT융합을 통한 제조업의 고부가가치화 방안 정보통신산업진흥원 수석연구원 김 민 수 1. 머리말 2. 국내외 ICT융합동향 3. ICT융합을 통한 국내 제조업의 고부가가치화 사례 4. 맺음말 1. 머리말 융합(convergence)이 세계적으로 화두가 된 것은 2002년 미국 국가과학재단(NsF)의 인간수행능력 향상을 위한 융합 기술 전략

More information

미래 지능형 엔도모픽 시스템 기반의 재난로봇 (2014. 6. 30) 목 Ⅰ. 배경 및 현황 / 1 차 Ⅱ. 극한 로봇 / 5 Ⅲ. 로봇 기술 현황/ 7 Ⅳ. 재난 로봇 활용 현황/ 14 Ⅴ. 국내 로봇 정책 현황/ 20 Ⅵ. 시사점 / 23 개략 Why Robot? 재난 안전사고 대형화와 극한 상황에 인간을 대신하여 투입된 로봇의 경우가 재난대응이라는 특수

More information

(JBE Vol. 24, No. 2, March 2019) (Special Paper) 24 2, (JBE Vol. 24, No. 2, March 2019) ISSN

(JBE Vol. 24, No. 2, March 2019) (Special Paper) 24 2, (JBE Vol. 24, No. 2, March 2019)   ISSN (Special Paper) 24 2, 2019 3 (JBE Vol. 24, No. 2, March 2019) https://doi.org/10.5909/jbe.2019.24.2.234 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) SIFT a), a), a), a) SIFT Image Feature Extraction

More information

Effects of baseball expertise and stimulus speeds on coincidence-anticipation timing accuracy of batting Jong-Hwa Lee, Seok-Jin Kim, & Seon-Jin Kim* Seoul National University [Purpose] [Methods] [Results]

More information

융합WEEKTIP data_up

융합WEEKTIP data_up 2016 MAY vol.19 19 융합 인지과학 연구동향 이아름 융합연구정책센터 발행일 2016. 05. 09. 발행처 융합정책연구센터 융합 2016 MAY vol.19 인지과학 연구동향 이아름 융합연구정책센터 선정 배경 최근 구글의 인공지능 프로그램인 알파고가 이세돌 9단과의 바둑대결에서 압승을 거둔 이후 전세계적으로 인공지능에 대한 관심이 증대 - 인간

More information

09.01배화b75탔犢?p8

09.01배화b75탔犢?p8 (02)3453-9964 (02)3453-9964 English Language School www.baewha.ac.kr / www.ybmuniv.com English Language School (Reading) (Listening) 1 2 3 4 5 6 Question &Answer Baewha Women s College www.baewha.ac.kr

More information

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018)   ISSN (Special Paper) 23 2, 2018 3 (JBE Vol. 23, No. 2, March 2018) https://doi.org/10.5909/jbe.2018.23.2.246 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) CNN a), a), a) CNN-Based Hand Gesture Recognition

More information

2. 인공지능관련주요기술분야와응용영역 2-1. 인공지능기술분류 2-2. 인공지능기술의특성 2-3. 인공지능응용영역및어플리케이션 2-4. 국내기술수준현황 3. 인공지능분야 Key Player 들의주요비즈니스동향 3-1. 주요동향 3-2. 인공지능관련인수합병 (M&A) 현

2. 인공지능관련주요기술분야와응용영역 2-1. 인공지능기술분류 2-2. 인공지능기술의특성 2-3. 인공지능응용영역및어플리케이션 2-4. 국내기술수준현황 3. 인공지능분야 Key Player 들의주요비즈니스동향 3-1. 주요동향 3-2. 인공지능관련인수합병 (M&A) 현 Ⅰ. 인공지능 (AI) 기술개관및도입효과 1. 인공지능의개념이해 1-1. 최근인공지능기술의대두 1-2. 인공지능개념정의 1-3. 인공지능의유형분류 1-4. 머신러닝 과 딥러닝 ', 핵심개념의구분 2. 인공지능의학문적논의배경 3. 인공지능기술의역사적발전과정 3-1. 인공지능의탄생기 : 1950 년대 3-2. 인공지능의활성화기 : 1960 년대 3-3. 인공지능의과도ㆍ침체기

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 ETRI, Kim Kwihoon (kwihooi@etri.re.kr) 1 RL overview & RL 에주목하는이유? 2 RL Tech. Tree 3 Model-based RL vs Model-free RL 4 몇가지사례들 5 Summary 2 AI Framework KSB AI Framework BeeAI,, Edge Computing EdgeX,, AI

More information

Track2

Track2 Track II: Ambient Communica/on Mar 2015 Graduate School of Culture Technology, KAIST People Social Compu/ng Lab Dongman Lee, Meeyoung Cha, Wonjae Lee, and Sungjoo Woo Complex Systems of Culture Juyong

More information

Data Scientist Shortage

Data Scientist Shortage Data Science: 4 차산업혁명의핵심역량 2018 년 1 월 31 일 김형주교수 서울대컴퓨터공학부 Table of Contents What is Data Science Data Scientist 부족현상관련자료 Data Science 응용분야 Data Science 교육현황 삼성전자 DS 2 과정 Big Data 가주는가치 데이터 : 의미를담고있는기록된사실

More information

Software Requirrment Analysis를 위한 정보 검색 기술의 응용

Software Requirrment Analysis를 위한 정보 검색 기술의 응용 EPG 정보 검색을 위한 예제 기반 자연어 대화 시스템 김석환 * 이청재 정상근 이근배 포항공과대학교 컴퓨터공학과 지능소프트웨어연구실 {megaup, lcj80, hugman, gblee}@postech.ac.kr An Example-Based Natural Language System for EPG Information Access Seokhwan Kim

More information

SW 2015. 02 5-1 89

SW 2015. 02 5-1 89 SW 2015. 02 88 SW 2015. 02 5-1 89 SW 2015. 02 5-2 5-3 90 SW 2015. 02 5-4 91 SW 2015. 02 5-5 5-6 92 5-7 SW 2015. 02 93 SW 2015. 02 5-8 5-1 94 SW 2015. 02 5-9 95 SW 2015. 02 5-10 5-2 96 SW 2015. 02 5-11

More information

1 SW 2015. 02 26

1 SW 2015. 02 26 02 1 SW 2015. 02 26 2-1 SW 2015. 02 27 SW 2015. 02 2-1 28 SW 2015. 02 29 2 SW 2015. 02 2-2 30 2-2 SW 2015. 02 31 SW 2015. 02 32 2-3 SW 2015. 02 33 3 SW 2015. 02 2-3 34 2-4 SW 2015. 02 35 4 SW 2015. 02

More information

Microsoft Word - Westpac Korean Handouts.doc

Microsoft Word - Westpac Korean Handouts.doc 1 1 2 Westpac Honolulu Oct. 12, 2007 Korean Legal Research 2 3 Korea is Wired! Traditional Nongak or Farmers Dance 3 4 Wired! World Champion b-boys (Breakdancers) 4 5 The most Wired nation in the world

More information

목차 AI Boom Chatbot Deep Learning Company.AI s Approach AI Chatbot In Financial service 2

목차 AI Boom Chatbot Deep Learning Company.AI s Approach AI Chatbot In Financial service 2 챗봇과 금융서비스의 결합 2017.05.25 Company.AI 강지훈 목차 1. 2. 3. 4. 5. AI Boom Chatbot Deep Learning Company.AI s Approach AI Chatbot In Financial service 2 3 인공지능 및 고급 기계 학습 딥러닝, 인공신경망, 자연어 처리 등 다양한 기술 이해, 학습, 예측

More information

1)2) 1

1)2) 1 1)2) 1 2 3 4 수업전활동 수업중활동 수업후활동 5 년도 / 학기 학수번호 교과목명 교강사명 개요 / 진행 6 7 8 9 인적사항응답자수 ( 명 ) 구성비인적사항응답자수 ( 명 ) 구성비 10 자체평가에따른잘한점 자체평가에따른아쉬운점 자체평가에따른잘한점 자체평가에따른아쉬운점 자체평가중잘한점 자체평가중미비점 자체평가중잘한점 자체평가중미비점 11 자체평가에따른잘한점

More information

Structural SVMs 및 Pegasos 알고리즘을 이용한 한국어 개체명 인식

Structural SVMs 및 Pegasos 알고리즘을 이용한 한국어 개체명 인식 Deep Learning 차례 현재딥러닝기술수준소개 딥러닝 딥러닝기반의자연어처리 Object Recognition https://www.youtube.com/watch?v=n5up_lp9smm Semantic Segmentation https://youtu.be/zjmtdrbqh40 Semantic Segmentation VGGNet + Deconvolution

More information

사회통계포럼

사회통계포럼 wcjang@snu.ac.kr Acknowledgements Dr. Roger Peng Coursera course. https://github.com/rdpeng/courses Creative Commons by Attribution /. 10 : SNS (twitter, facebook), (functional data) : (, ),, /Data Science

More information

27 2, 17-31, , * ** ***,. K 1 2 2,.,,,.,.,.,,.,. :,,, : 2009/08/19 : 2009/09/09 : 2009/09/30 * 2007 ** *** ( :

27 2, 17-31, , * ** ***,. K 1 2 2,.,,,.,.,.,,.,. :,,, : 2009/08/19 : 2009/09/09 : 2009/09/30 * 2007 ** *** ( : 27 2, 17-31, 2009. -, * ** ***,. K 1 2 2,.,,,.,.,.,,.,. :,,, : 2009/08/19 : 2009/09/09 : 2009/09/30 * 2007 ** *** (: dminkim@cau.ac.kr) 18 한국교육문제연구제 27 권 2 호, 2009. Ⅰ. (,,, 2004). (,, 2006).,,, (Myrick,

More information

성능 감성 감성요구곡선 평균사용자가만족하는수준 성능요구곡선 성능보다감성가치에대한니즈가증대 시간 - 1 -

성능 감성 감성요구곡선 평균사용자가만족하는수준 성능요구곡선 성능보다감성가치에대한니즈가증대 시간 - 1 - - 1 - 성능 감성 감성요구곡선 평균사용자가만족하는수준 성능요구곡선 성능보다감성가치에대한니즈가증대 시간 - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - 감각및자극 (Sensory & Information Stimuli) 개인 (a person) 감성 (Sensibility)

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA 스테레오 비전을 이용한 실시간 인간형 로봇 궤적 추출 및 네비게이션 641 스테레오 비전을 이용한 실시간 인간형 로봇 궤적 추출 및 네비게이션 (Real-time Humanoid Robot Trajectory Estimation and Navigation with Stereo Vision) 박지환 조성호 (Jihwan Park) (Sungho Jo) 요 약

More information

신경망 (Neural Networks) < 인공지능입문 > 강의 허민오 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University

신경망 (Neural Networks) < 인공지능입문 > 강의 허민오 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 신경망 (Neural Networks) < 인공지능입문 > 강의 허민오 Bioitelligece Laboratory School of Computer Sciece ad Egieerig Seoul Natioal Uiversity 목차 신경망이란? 퍼셉트론 - 퍼셉트론의구조와학습목표 - 퍼셉트론의활성화함수 - 퍼셉트론의학습 : 델타규칙신경망의학습 - 다층퍼셉트론

More information

슬라이드 1

슬라이드 1 저작권기술 NEWSLETTER 2017.08.07. Volume 05-3 기술분야 : SW 저작권기술 적용시장 : 인공지능시장 인공지능 (AI, Artificial Intelligence) 이란인간처럼사고 감지 행동하도록설계된일련의알고리즘체계이다. 아이폰의 시리 (Siri) 도인공지능의한종류라고할수있는데, 즉인공지능은사람의개입없이도사람이의도한바를이루어주는대리인

More information

ecorp-프로젝트제안서작성실무(양식3)

ecorp-프로젝트제안서작성실무(양식3) (BSC: Balanced ScoreCard) ( ) (Value Chain) (Firm Infrastructure) (Support Activities) (Human Resource Management) (Technology Development) (Primary Activities) (Procurement) (Inbound (Outbound (Marketing

More information

<3135C2F728C1F6B4C9C7FCBCADBAF1BDBAB7CEBABF292E687770>

<3135C2F728C1F6B4C9C7FCBCADBAF1BDBAB7CEBABF292E687770> 15 차( 지능형서비스로봇).hwp 1 집안의 똑똑한 가정부 지능형 로봇 학습목표 지능형 로봇의 정의와 종류 및 개발현황을 이해한다. 특히 지능형 로봇의 시장상황과 전망 을 고찰하고 지능형 로봇에 필요한 핵심기술들을 살펴본다. 1. 지능형 로봇이란 무엇인가? 로봇이라는 말은 체코어의 ' 일한다(robota) 는 뜻의 낱말에서 유래된 것으로, 사람의 모습 을

More information

위해 사용된 기법에 대해 소개하고자 한다. 시각화와 자료구조를 동시에 활용하는 프로그램이 가지는 한계와 이를 극복하기 위한 시도들을 살펴봄으로서 소셜네트워크의 분석을 위한 접근 방안을 고찰해 보고자 한다. 2장에서는 실험에 사용된 인터넷 커뮤니티인 MLBPark 게시판

위해 사용된 기법에 대해 소개하고자 한다. 시각화와 자료구조를 동시에 활용하는 프로그램이 가지는 한계와 이를 극복하기 위한 시도들을 살펴봄으로서 소셜네트워크의 분석을 위한 접근 방안을 고찰해 보고자 한다. 2장에서는 실험에 사용된 인터넷 커뮤니티인 MLBPark 게시판 인터넷 커뮤니티 사용자의 사회 연결망 특성 분석 Analysis Social Network Characteristics Among the Internet Community Users 탁해성 부산대학교 컴퓨터공학과 tok33@pusan.ac.kr Abstract 인터넷이 사람들에게 보급됨에 따라 온라인 환경에서 소통을 하는 사람들이 늘어났다. 온라인 커뮤니티가

More information

OZ-LMS TM OZ-LMS 2008 OZ-LMS 2006 OZ-LMS Lite Best IT Serviece Provider OZNET KOREA Management Philosophy & Vision Introduction OZNETKOREA IT Mission Core Values KH IT ERP Web Solution IT SW 2000 4 3 508-2

More information

SECTION TITLE A PURE PRIMER (AI), // 1

SECTION TITLE A PURE PRIMER (AI), // 1 SECTION TITLE A PURE PRIMER (AI), // 1 ,...,.,,. AI Enlitic.. Aipoly Microsoft Seeing AI.,, " ",. 4. 4..,.,?.. AI Drive.ai Lyft. // 1 .,.. 1. 2. 3.,. 50~100,., (AI) 4.,,.,.. // 2 ,,. 1 (HAL VARIAN) //,

More information

ICT03_UX Guide DIP 1605

ICT03_UX Guide DIP 1605 ICT 서비스기획시리즈 01 모바일 UX 가이드라인 동준상. 넥스트플랫폼 / v1605 모바일 UX 가이드라인 ICT 서비스기획시리즈 01 2 ios 9, OS X Yosemite (SDK) ICT Product & Service Planning Essential ios 8, OS X Yosemite (SDK) ICT Product & Service Planning

More information

보고싶었던 Deep Learning과 OpenCV를이용한이미지처리과정에대해공부를해볼수있으며더나아가 Deep Learning기술을이용하여논문을작성하는데많은도움을받을수있으며아직배우는단계에있는저에게는기존의연구를따라해보는것만으로도큰발전이있다고생각했습니다. 그래서이번 DSP스마

보고싶었던 Deep Learning과 OpenCV를이용한이미지처리과정에대해공부를해볼수있으며더나아가 Deep Learning기술을이용하여논문을작성하는데많은도움을받을수있으며아직배우는단계에있는저에게는기존의연구를따라해보는것만으로도큰발전이있다고생각했습니다. 그래서이번 DSP스마 특성화사업참가결과보고서 작성일 2017 12.22 학과전자공학과 참가활동명 EATED 30 프로그램지도교수최욱 연구주제명 Machine Learning 을이용한얼굴학습 학번 201301165 성명조원 I. OBJECTIVES 사람들은새로운사람들을보고인식을하는데걸리는시간은 1초채되지않다고합니다. 뿐만아니라사람들의얼굴을인식하는인식률은무려 97.5% 정도의매우높은정확도를가지고있습니다.

More information