Slide 1
|
|
- 상홍 심
- 5 years ago
- Views:
Transcription
1 영상및자연어처리분야인공지능기술동향및전망 주재걸교수 고려대학교정보대학컴퓨터학과
2 주재걸교수 1 사진 고려대컴퓨터학과
3 3 연구실구성원 9 박사및석박통합과정 22 석사과정 15+ 학부연구생수행과제한국연구재단정보통신기술진흥센터한국산업기술평가관리원한국전력공사삼성리서치마이크로소프트리서치네이버웹툰 SK 텔레콤엔씨소프트자문기관신한금융투자 LG CNS 네이버 Clova AI 삼성 SDS
4 Deep Learning Deep learning refers to artificial neural networks that are composed of many layers. Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3-11 Jan 2016 Neural Network and Backpropagation Lecture / 11/ 4
5 Deep Learning
6 6
7 Data: Large datasets 딥러닝의성공요인 Hardware: GPU acceleration Algorithm: Advanced techniques (e.g., batch norm, ADAM, attention) 7
8 기계학습의기본세팅 총 100 명의환자 (data item) 를적당한수의학습데이터및 ( 예측용도의 ) 테스트데이터로분리예로, 학습데이터로서 70 명환자들의피쳐정보와그들의 target label 을기계학습모델의인풋으로줌. 모델은내부적으로어떤피쳐가 target label 을예측하는데중요한지를판단하여, 주어진모든피쳐를조합하여 target label 을예측함. 예상수명을예측하고자할경우, 0.7* 키 -0.1* 몸무게 * 혈액형 => 예측수명에가장근사적인값을주는식이를 30 의테스트데이터를대상으로얼마나예상수명을잘맞추는지를테스트함. 이데이터는학습에사용하지않았으므로, 보지못한 (unseen) 데이터에대해얼마나모델이잘예측하는지로모델성능을평가함. 8
9 Human Brain and Neural Network Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3-11 Jan 2016 Neural Network and Backpropagation Lecture / 11/ 4
10 Difference of Deep Learning from Existing Machine Learning 10 Img src: Goodfellow 2016
11 Deep Learning Why is deep learning a growing trend? - few feature engineering - state-of-the-art performance
12 Deep Learning Applications 영상인식 : 현재사람보다뛰어난성능을보임 자연어처리 : 기계번역, 대화시스템 음성인식 : text-to-speech, 화자인식, 노이즈캔슬링 게임인공지능 : 바둑, 스타크래프트 의료 : 질병자동진단 법률 : 판결예측 12 금융 : 주식예측, 자산관리및투자
13 Game AI
14 Machine Translation
15 Face Detection & Recognition
16 Object Detection & Recognition
17 Image Captioning
18 Image Captioning
19 Style Transfer
20 Style Transfer
21 Style Transfer
22 인공지능연구의최신동향 데이터의생성및변환모델 Generative adversarial networks, variational autoencoder 벡터표현형을통한이종데이터의통합및변환영상 <-> 자연어 <-> 소리 / 음성 <-> 기타정형데이터 비지도및자가지도학습 (self-supervised learning) Computer vision: colorization, jigsaw puzzle Language model: BERT, GPT2 22 실제활용될때의이슈들인공지능모델의해석가능성인공지능모델의취약점및보안사용자인터페이스
23 Generative Model 인식태스크를넘어서서데이터생성의영역으로.. 23
24 Generative Model 24 지적대화를위한깊고넓은딥러닝, 김태훈 )
25 Generative Model 25 지적대화를위한깊고넓은딥러닝, 김태훈 )
26 Generative Model 26 지적대화를위한깊고넓은딥러닝, 김태훈 )
27 Generative Model 27 지적대화를위한깊고넓은딥러닝, 김태훈 )
28 Generative Model 28 지적대화를위한깊고넓은딥러닝, 김태훈 )
29 Generative Model 29 지적대화를위한깊고넓은딥러닝, 김태훈 )
30 Generative Adversarial Networks 가장대표적인생성모델 Generator ( 생성자 ) 및 Discriminator ( 식별자 ) 로구성되어서로가적대적인학습을진행하여각각의성능을극대화함식별자를통해 loss function 자체도스스로학습할수있음 30
31 31 StyleGAN: Style-Based Generator Architecture for GAN [CVPR 19]
32 Image-to-Image Translation pix2pix (Isola et al., 2017) CycleGAN (Zhu et al., 2017) Photo to Emoji DTN (Taigman et al., 2017) MUNIT (Huang et al., 2018) 32
33 CVPR 18 StarGAN: Generative Adversarial Networks for Multi-Domain Image Translation 33
34 ECCV 18 Coloring with Words: Guiding Image Colorization Through Text-based Palette Generation 34
35 ECCV 18 Coloring with Words: Guiding Image Colorization Through Text-based Palette Generation 35
36 36 ECCV 18
37 CVPR 19 Coloring With Limited Data: Few-Shot Colorization via Memory Augmented Networks 37
38 ECCV 18 Coloring with Words: Guiding Image Colorization Through Text-based Palette Generation 38
39 PaintsChainer: Deep Learning-based Manga Colorization 39
40 Everybody Dance Now 40
41 자연어이해및생성연구동향 상대적으로컴퓨터비젼분야에비해발전이더딤딥러닝모델이나방법론의진보라기보다엔지니어링적이고휴리스틱한연구가상대적으로많은부분을차지 언어는인간이가진생각과지능적사고의표현방식 인공지능이인간의언어를이해하고적절히생성할수있다는것은인간의지능을정복한것임 자가지도학습및대규모데이터를사용하여이해및생성능력이점점고도화되고있음 41
42 Seq2seq Model 시퀀스를입력으로받아서, 시퀀스를출력으로생성많은자연어처리태스크의기본모델로활용됨 : 챗봇, 기계번역, 질의응답 Sutskever et al Sequence to Sequence Learning with Neural Networks Encode source into fixed length vector, use it as initial recurrent state for target decoder model
43 43 Reading Comprehension-based Question Answering
44 EMNLP 18 Deep and Wide Reader: Effective Memory Augmenting Method for Question Answering Utilizes self-attention and memory controller of differentiable neural computer for question answering 44
45 Word Embedding 딥러닝기반자연어처리모델의시작점 Word2vec, GloVe, ELMo, CoVe 45
46 Transformer based on Self-Attention 최근딥러닝기반자연어처리모델의기본구조로사용됨 46
47 Attention Model 어텐션모델은다양한딥러닝모델에서활발히활용됨예 : image captioning 47
48 Machine translation 다른언어들간의어순을학습함관사등의필요없는단어는건너뜀 Attention Model 48
49 BERT 최근다양한자연어처리태스크의성능을크게끌어올림 Masked language modeling 태스크를통해학습대규모데이터및대규모모델을사용함 49
50 GPT2 Transformer 를기반으로한모델을사용하여, 대규모의양질의 reddit 텍스트데이터및다수의고성능 GPU 를사용하여성능을극대화함 50
51 51 GPT2
52 RetainVis: Interactive Visual RNNs on Electronic Medical Records IEEE VIS 18 인공지능을사용하는사람의측면에서인터페이스도중요 52
53 Our approach CHI 19 AILA: Attentive Interactive Labeling Assistant for Document Classification 레이블링도사람의입장에서효율적으로해야함 53
54 향후전망 기술발전속도는점점더뎌지고있음 모델은점점사용하기쉬워지고, 오픈소스분위기로인해, 기술에대한진입장벽은점점낮아질것임기술자체는공공재가되어가고있음 결국확보된데이터의종류나그양과질측면에서승부처가나뉠것임구글, 페이스북, 마이크로소프트등의메이저회사들이독식할가능성이높음경쟁이더치열해지고, 양극화가심화됨 ( 부자는더부자로.. 가난한사람은더가난해짐 ) 54 문제를발굴하는능력과, 기술의이해를바탕으로어떤식으로해당문제를 formulate 할것인지가중요도메인지식또한여전히중요
55 인공지능을공부하려면? 55 온라인강의가잘돼있어서, 오늘부터라도공부할수있음필수코스선형대수 머신러닝 딥러닝 페이스북그룹 기타정보
56 인공지능을공부하려면? 공부는최대한깊게머신러닝 / 딥러닝은알고보면거의다수학임본인스스로잘알고있는지.. 모르고지나친건없는지끊임없이고민해야함외우지않아도직관적으로깊이이해하는것이중요문제를스스로발굴할줄아는능력이중요머신러닝의장점은데이터만있으면어디든적용할수있음남이하라고준공부, 시험, 숙제만으로는부족함따라서, 남이보지못하는새로운문제를볼줄아는능력이중요좋아하고잘하는찾고, 남들보다더열심히오픈소스등정보는누구나원하면얻을수있음경쟁이더치열해지고, 양극화가심화됨 ( 부자는더부자로.. 가난한사람은더가난해짐 ) 성공하려면옛날사람보다더열심히해야함그러려면좋아하거나잘하는걸찾아서선택 / 집중해야함 56
57 Collaborators IBM TJ Watson Research, New York Univ. Univ. Maryland, Georgia Tech, HKUST, Tsinghua Univ., Virginia Tech Recent Publications [CVPR 19] Coloring with Limited Data: Few-Shot Colorization via Memory-Augmented Networks [CVPR 19] Image-to-Image Translation via Group-wise Deep Whitening and Coloring [CHI 19] AILA: Attentive Interactive Labeling Assistant for Document Classification [AAAI 19] Paraphrase Diversification as Guided Style Transfer [EMNLP 18] MemoReader: Large-Scale Reading Comprehension through Neural Memory Controller [ECCV 18] Coloring with Words: Guiding Image Colorization Through Text-based Palette Generation [VIS 18] RetainVis: Visual Analytics with Interpretable and Interactive RNNs on Electronic Medical Records [CVPR 18] StarGAN: Unified GANs for Multi-Domain Image-to-Image Translation [IJCAI 18] MEGAN: Mixture of Experts of GANs for Image Generation via Categorical Reparameterization [CG&A 18] Explainable, Interactive Deep Learning [EuroVis 18] PixelSNE: Pixel-Aligned Stochastic Neighbor Embedding for Efficient 2D Visualization with Screen Precision [WWW 18] Short-Text Topic Modeling via Non-negative Matrix Factorization Enriched with Local Word-Context Correlations [CHI 18] ExTopicTile: Tile-Based Spatio-Temporal Event Analytics on Social Media [VIS 17] ConceptVector: Text Visual Analytics via Interactive Lexicon Building using Word Embedding [ICDM 17] STExNMF: Spatio-Temporally Exclusive Topic Discovery for Anomalous Event Detection [KAIS 17] Localized User-Driven Topic Discovery via Boosted Ensemble of Nonnegative Matrix Factorization [JMIR 17] Toward Predicting Social Support Needs in Online Health Social Networks [IJCAI 17a] End-to-End Prediction of Buffer Overruns from Raw Source Code via Neural Memory Networks [IJCAI 17b] Toward Predicting Social Support Needs in Online Health Social Networks [TKDD 17] VisIRR: Interactive Visual Information Retrieval and Recommendation for Large-scale Documents [AAAI 17] PIVE: Per-Iteration Visualization Environment for Real-Time Interactions with Dimension Reduction and Clustering [TVCG 17a] TopicLens: Efficient Multi-Level Visual Topic Exploration of Large-Scale Document Collections 57 Thank you! [TVCG 17b] Axisketcher: Interactive Nonlinear Axis Mapping of Visualizations through User Drawings [ICDM 16] L-EnsNMF: Boosted Local Topic Discovery via Ensemble of Nonnegative Matrix Factorization
<4D6963726F736F667420576F7264202D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>
주간기술동향 2016. 5.18. 컴퓨터 비전과 인공지능 장혁 한국전자통신연구원 선임연구원 최근 많은 관심을 받고 있는 인공지능(Artificial Intelligence: AI)의 성과는 뇌의 작동 방식과 유사한 딥 러닝의 등장에 기인한 바가 크다. 이미 미국과 유럽 등 AI 선도국에서는 인공지능 연구에서 인간 뇌 이해의 중요성을 인식하고 관련 대형 프로젝트들을
More information김기남_ATDC2016_160620_[키노트].key
metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational
More informationMicrosoft PowerPoint - 실습소개와 AI_ML_DL_배포용.pptx
실습강의개요와인공지능, 기계학습, 신경망 < 인공지능입문 > 강의 허민오 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 실습강의개요 노트북을꼭지참해야하는강좌 신경망소개 (2 주, 허민오 ) Python ( 프로그래밍언어 ) (2주, 김준호
More information02(848-853) SAV12-19.hwp
848 정보과학회논문지 : 소프트웨어 및 응용 제 39 권 제 11 호(2012.11) 3차원 객체인식을 위한 보완적 특징점 기반 기술자 (Complementary Feature-point-based Descriptors for 3D Object Recognition) 장영균 김 주 환 문 승 건 (Youngkyoon Jang) (Ju-Whan Kim) (Seung
More informationElectronics and Telecommunications Trends 인공지능을이용한 3D 콘텐츠기술동향및향후전망 Recent Trends and Prospects of 3D Content Using Artificial Intelligence Technology
Electronics and Telecommunications Trends 인공지능을이용한 3D 콘텐츠기술동향및향후전망 Recent Trends and Prospects of 3D Content Using Artificial Intelligence Technology 이승욱 (S.W. Lee, tajinet@etri.re.kr) 황본우 (B.W. Hwang,
More information<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB>
주간기술동향 2016. 2. 24. 최신 ICT 이슈 인공지능 바둑 프로그램 경쟁, 구글이 페이스북에 리드 * 바둑은 경우의 수가 많아 컴퓨터가 인간을 넘어서기 어려움을 보여주는 사례로 꼽혀 왔 으며, 바로 그런 이유로 인공지능 개발에 매진하는 구글과 페이스북은 바둑 프로그램 개 발 경쟁을 벌여 왔으며, 프로 9 단에 도전장을 낸 구글이 일단 한발 앞서 가는
More information제1강 인공지능 개념과 역사
인공지능개념과역사 < 인공지능입문 > 강의노트 장병탁서울대학교컴퓨터공학부 & 인지과학 / 뇌과학협동과정 http://bi.snu.ac.kr/~btzhang/ Version: 20180302 목차 인공지능의개념........ 3 연구분야............ 4 역사...... 6 패러다임........ 7 응용사례.......... 8 Reading Assignments.........
More informationData Industry White Paper
2017 2017 Data Industry White Paper 2017 1 3 1 2 3 Interview 1 ICT 1 Recommendation System * 98 2017 Artificial 3 Neural NetworkArtificial IntelligenceAI 2 AlphaGo 1 33 Search Algorithm Deep Learning IBM
More information(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN
(Special Paper) 23 2, 2018 3 (JBE Vol. 23, No. 2, March 2018) https://doi.org/10.5909/jbe.2018.23.2.186 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a) Robust Online Object Tracking via Convolutional
More informationCh 1 머신러닝 개요.pptx
Chapter 1. < > :,, 2017. Slides Prepared by,, Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 1.1 3 1.2... 7 1.3 10 1.4 16 1.5 35 2 1 1.1 n,, n n Artificial
More informationKCC2011 우수발표논문 휴먼오피니언자동분류시스템구현을위한비결정오피니언형용사구문에대한연구 1) Study on Domain-dependent Keywords Co-occurring with the Adjectives of Non-deterministic Opinion
KCC2011 우수발표논문 휴먼오피니언자동분류시스템구현을위한비결정오피니언형용사구문에대한연구 1) Study on Domain-dependent Keywords Co-occurring with the Adjectives of Non-deterministic Opinion 요약 본연구에서는, 웹문서로부터특정상품에대한의견문장을분석하는오피니언마이닝 (Opinion
More information정보기술응용학회 발표
, hsh@bhknuackr, trademark21@koreacom 1370, +82-53-950-5440 - 476 - :,, VOC,, CBML - Abstract -,, VOC VOC VOC - 477 - - 478 - Cost- Center [2] VOC VOC, ( ) VOC - 479 - IT [7] Knowledge / Information Management
More informationR을 이용한 텍스트 감정분석
R Data Analyst / ( ) / kim@mindscale.kr (kim@mindscale.kr) / ( ) ( ) Analytic Director R ( ) / / 3/45 4/45 R? 1. : / 2. : ggplot2 / Web 3. : slidify 4. : 5. Matlab / Python -> R Interactive Plots. 5/45
More informationDelving Deeper into Convolutional Networks for Learning Video Representations - Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville arXiv:
Delving Deeper into Convolutional Networks for Learning Video Representations Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville arxiv: 1511.06432 Il Gu Yi DeepLAB in Modu Labs. June 13, 2016 Il Gu Yi
More informationProblem New Case RETRIEVE Learned Case Retrieved Cases New Case RETAIN Tested/ Repaired Case Case-Base REVISE Solved Case REUSE Aamodt, A. and Plaza, E. (1994). Case-based reasoning; Foundational
More informationexample code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for
2003 Development of the Software Generation Method using Model Driven Software Engineering Tool,,,,, Hoon-Seon Chang, Jae-Cheon Jung, Jae-Hack Kim Hee-Hwan Han, Do-Yeon Kim, Young-Woo Chang Wang Sik, Moon
More informationÀ±½Â¿í Ãâ·Â
Representation, Encoding and Intermediate View Interpolation Methods for Multi-view Video Using Layered Depth Images The multi-view video is a collection of multiple videos, capturing the same scene at
More informationHigh Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo
High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a low-resolution Time-Of- Flight (TOF) depth camera and
More information63-69±è´ë¿µ
Study on the Shadow Effect of 3D Visualization for Medical Images ased on the Texture Mapping D.Y. Kim, D.S. Kim, D.K. Shin, D.Y. Kim 1 Dept. of iomedical Engineering, Yonsei University = bstract = The
More information사회통계포럼
wcjang@snu.ac.kr Acknowledgements Dr. Roger Peng Coursera course. https://github.com/rdpeng/courses Creative Commons by Attribution /. 10 : SNS (twitter, facebook), (functional data) : (, ),, /Data Science
More informationSoftware Requirrment Analysis를 위한 정보 검색 기술의 응용
EPG 정보 검색을 위한 예제 기반 자연어 대화 시스템 김석환 * 이청재 정상근 이근배 포항공과대학교 컴퓨터공학과 지능소프트웨어연구실 {megaup, lcj80, hugman, gblee}@postech.ac.kr An Example-Based Natural Language System for EPG Information Access Seokhwan Kim
More information성능 감성 감성요구곡선 평균사용자가만족하는수준 성능요구곡선 성능보다감성가치에대한니즈가증대 시간 - 1 -
- 1 - 성능 감성 감성요구곡선 평균사용자가만족하는수준 성능요구곡선 성능보다감성가치에대한니즈가증대 시간 - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - 감각및자극 (Sensory & Information Stimuli) 개인 (a person) 감성 (Sensibility)
More information<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>
한국지능시스템학회 논문지 2010, Vol. 20, No. 3, pp. 375-379 유전자 알고리즘을 이용한 강인한 Support vector machine 설계 Design of Robust Support Vector Machine Using Genetic Algorithm 이희성 홍성준 이병윤 김은태 * Heesung Lee, Sungjun Hong,
More information(JBE Vol. 23, No. 6, November 2018) (Special Paper) 23 6, (JBE Vol. 23, No. 6, November 2018) ISSN 2
(JBE Vol. 23, No. 6, November 2018) (Special Paper) 23 6, 2018 11 (JBE Vol. 23, No. 6, November 2018) https://doi.org/10.5909/jbe.2018.23.6.760 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) Generative
More information07.045~051(D04_신상욱).fm
J. of Advanced Engineering and Technology Vol. 1, No. 1 (2008) pp. 45-51 f m s p» w Á xá zá Ÿ Á w m œw Image Retrieval Based on Gray Scale Histogram Refinement and Horizontal Edge Features Sang-Uk Shin,
More informationAT_GraduateProgram.key
Art & Technology Graduate Program M.A.S (Master of Arts & Science) in Art & Technology Why Art Tech Graduate Program? / + + X Why Sogang? - Art/Design + Technology 4 Art & Technology Who is this for? (
More informationMulti-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구
Siamese Neural Network 박천음 강원대학교 Intelligent Software Lab. Intelligent Software Lab. Intro. S2Net Siamese Neural Network(S2Net) 입력 text 들을 concept vector 로표현하기위함에기반 즉, similarity 를위해가중치가부여된 vector 로표현
More information소프트웨어개발방법론
사용사례 (Use Case) Objectives 2 소개? (story) vs. 3 UC 와 UP 산출물과의관계 Sample UP Artifact Relationships Domain Model Business Modeling date... Sale 1 1..* Sales... LineItem... quantity Use-Case Model objects,
More information(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228
(JBE Vol. 1, No. 1, January 016) (Regular Paper) 1 1, 016 1 (JBE Vol. 1, No. 1, January 016) http://dx.doi.org/10.5909/jbe.016.1.1.60 ISSN 87-9137 (Online) ISSN 16-7953 (Print) a), a) An Efficient Method
More informationArtificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제
Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, 2018 1 1.1 Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 6.5에서 찾아볼 수 있다. http://incompleteideas.net/book/bookdraft2017nov5.pdf
More information(JBE Vol. 24, No. 1, January 2019) (Special Paper) 24 1, (JBE Vol. 24, No. 1, January 2019) ISSN 2287-
(Special Paper) 24 1 2019 1 (JBE Vol. 24 No. 1 January 2019) https//doi.org/10.5909/jbe.2019.24.1.58 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a) a) a) b) c) d) A Study on Named Entity Recognition
More information빅데이터_DAY key
Big Data Near You 2016. 06. 16 Prof. Sehyug Kwon Dept. of Statistics 4V s of Big Data Volume Variety Velocity Veracity Value 대용량 다양한 유형 실시간 정보 (불)확실성 가치 tera(1,0004) - peta -exazetta(10007) bytes in 2020
More information첨 부 1. 설문분석 결과 2. 교육과정 프로파일 169
첨부 168 첨 부 1. 설문분석 결과 2. 교육과정 프로파일 169 Ⅰ-1. 설문조사 개요 Ⅰ. 설문분석 결과 병무청 직원들이 생각하는 조직문화, 교육에 대한 인식, 역량 중요도/수행도 조사를 인터넷을 통해 실 시 총 1297명의 응답을 받았음 (95% 신뢰수준에 표본오차는 ±5%). 조사 방법 인터넷 조사 조사 기간 2005년 5월 4일 (목) ~ 5월
More information09오충원(613~623)
A Study of GIS Service of Weather Information* Chung-Weon Oh**,..,., Web 2.0 GIS.,.,, Web 2.0 GIS, Abstract : Due to social and economic value of Weather Information such as urban flooding, demand of Weather
More informationRNN & NLP Application
RNN & NLP Application 강원대학교 IT 대학 이창기 차례 RNN NLP application Recurrent Neural Network Recurrent property dynamical system over time Bidirectional RNN Exploit future context as well as past Long Short-Term
More information감각형 증강현실을 이용한
대한산업공학회/한국경영과학회 2012년 춘계공동학술대회 감각형 증강현실을 이용한 전자제품의 디자인 품평 문희철, 박상진, 박형준 * 조선대학교 산업공학과 * 교신저자, hzpark@chosun.ac.kr 002660 ABSTRACT We present the recent status of our research on design evaluation of digital
More informationPowerPoint 프레젠테이션
Visual Search At SK-Planet sk-planet Machine Intelligence Lab. 나상일 1. 개발배경 2. 첫접근방법 3. 개선된방법 A. Visual recognition technology B. Guided search C. Retrieval system 개발배경 개발배경 상품검색을좀더쉽게 Key-word 트렌치코트버튺벨트
More information슬라이드 1
Data-driven Industry Reinvention All Things Data Con 2016, Opening speech SKT 종합기술원 최진성원장 Big Data Landscape Expansion Big Data Tech/Biz 진화방향 SK Telecom Big Data Activities Lesson Learned and Other Topics
More information09권오설_ok.hwp
(JBE Vol. 19, No. 5, September 2014) (Regular Paper) 19 5, 2014 9 (JBE Vol. 19, No. 5, September 2014) http://dx.doi.org/10.5909/jbe.2014.19.5.656 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a) Reduction
More informationVoice Portal using Oracle 9i AS Wireless
Voice Portal Platform using Oracle9iAS Wireless 20020829 Oracle Technology Day 1 Contents Introduction Voice Portal Voice Web Voice XML Voice Portal Platform using Oracle9iAS Wireless Voice Portal Video
More information03.Agile.key
CSE4006 Software Engineering Agile Development Scott Uk-Jin Lee Division of Computer Science, College of Computing Hanyang University ERICA Campus 1 st Semester 2018 Background of Agile SW Development
More informationDBPIA-NURIMEDIA
무선 센서 네트워크 환경에서 링크 품질에 기반한 라우팅에 대한 효과적인 싱크홀 공격 탐지 기법 901 무선 센서 네트워크 환경에서 링크 품질에 기반한 라우팅에 대한 효과적인 싱크홀 공격 탐지 기법 (A Effective Sinkhole Attack Detection Mechanism for LQI based Routing in WSN) 최병구 조응준 (Byung
More informationAV PDA Broadcastin g Centers Audio /PC Personal Mobile Interactive (, PDA,, DMB ),, ( 150km/h ) (PPV,, ) Personal Mobile Interactive Multimedia Broadcasting Services 6 MHz TV Channel Block A Block
More informationDisclaimer IPO Presentation,. Presentation...,,,,, E.,,., Presentation,., Representative...
DEXTER STUDIOS INVESTOR RELATIONS 2015 Disclaimer IPO Presentation,. Presentation...,,,,, E.,,., Presentation,., Representative... Contents Prologue 01 VFX 02 China 03 Investment Highlights 04 Growth Engine
More informationPowerPoint 프레젠테이션
ETRI, Kim Kwihoon (kwihooi@etri.re.kr) 1 RL overview & RL 에주목하는이유? 2 RL Tech. Tree 3 Model-based RL vs Model-free RL 4 몇가지사례들 5 Summary 2 AI Framework KSB AI Framework BeeAI,, Edge Computing EdgeX,, AI
More informationAPOGEE Insight_KR_Base_3P11
Technical Specification Sheet Document No. 149-332P25 September, 2010 Insight 3.11 Base Workstation 그림 1. Insight Base 메인메뉴 Insight Base Insight Insight Base, Insight Base Insight Base Insight Windows
More information목차 AI Boom Chatbot Deep Learning Company.AI s Approach AI Chatbot In Financial service 2
챗봇과 금융서비스의 결합 2017.05.25 Company.AI 강지훈 목차 1. 2. 3. 4. 5. AI Boom Chatbot Deep Learning Company.AI s Approach AI Chatbot In Financial service 2 3 인공지능 및 고급 기계 학습 딥러닝, 인공신경망, 자연어 처리 등 다양한 기술 이해, 학습, 예측
More information½Éº´È¿ Ãâ·Â
Standard and Technology of Full-Dimension MINO Systems in LTE-Advances Pro Massive MIMO has been studied in academia foreseeing the capacity crunch in the coming years. Presently, industry has also started
More information融合先验信息到三维重建 组会报 告[2]
[1] Crandall D, Owens A, Snavely N, et al. "Discrete-continuous optimization for large-scale structure from motion." (CVPR), 2011 [2] Crandall D, Owens A, Snavely N, et al. SfM with MRFs: Discrete-Continuous
More informationPowerPoint 프레젠테이션
[ 인공지능입문랩 ] SEOPT ( Study on the Elements Of Python and Tensorflow ) 인공지능 + 데이터분석목적 / 방법 / 기법 / 도구 + Python Programming 기초 + NumpyArray(Tensor) youngdocseo@gmail.com 1 *3 시간 / 회 구분일자내용비고 1 회 0309
More information(JBE Vol. 23, No. 5, September 2018) (Special Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN
(JBE Vol. 23, No. 5, September 2018) (Special Paper) 23 5, 2018 9 (JBE Vol. 23, No. 5, September 2018) https://doi.org/10.5909/jbe.2018.23.5.614 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) Generative
More information4 : CNN (Sangwon Suh et al.: Dual CNN Structured Sound Event Detection Algorithm Based on Real Life Acoustic Dataset) (Regular Paper) 23 6, (J
(Regular Paper) 23 6, 2018 11 (JBE Vol. 23, No. 6, November 2018) https://doi.org/10.5909/jbe.2018.23.6.855 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) CNN a), a), a), a), a) Dual CNN Structured Sound
More information기획 1 서울공대생에게 물었다 글 재료공학부 1, 이윤구 재료공학부 1, 김유리 전기정보공학부 1, 전세환 편집 재료공학부 3, 오수봉 이번 서울공대생에게 물었다! 코너는 특별히 설문조사 형식으로 진행해 보려고 해 요. 설문조사에는 서울대학교 공대 재학생 121명, 비
2015 autumn 공대상상 예비 서울공대생을 위한 서울대 공대 이야기 Vol. 13 Contents 02 기획 서울공대생에게 물었다 극한직업 공캠 촬영 편 Fashion in SNU - 단체복 편 서울대 식당, 어디까지 먹어 봤니? 12 기획 연재 기계항공공학부 기계항공공학부를 소개합니다 STEP 01 기계항공공학부에 대한 궁금증 STEP 02 동문 인터뷰
More informationSW¹é¼Ł-³¯°³Æ÷ÇÔÇ¥Áö2013
SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING
More information45-51 ¹Ú¼ø¸¸
A Study on the Automation of Classification of Volume Reconstruction for CT Images S.M. Park 1, I.S. Hong 2, D.S. Kim 1, D.Y. Kim 1 1 Dept. of Biomedical Engineering, Yonsei University, 2 Dept. of Radiology,
More informationIntra_DW_Ch4.PDF
The Intranet Data Warehouse Richard Tanler Ch4 : Online Analytic Processing: From Data To Information 2000. 4. 14 All rights reserved OLAP OLAP OLAP OLAP OLAP OLAP is a label, rather than a technology
More informationDBPIA-NURIMEDIA
논문 10-35-03-03 한국통신학회논문지 '10-03 Vol. 35 No. 3 원활한 채널 변경을 지원하는 효율적인 IPTV 채널 관리 알고리즘 준회원 주 현 철*, 정회원 송 황 준* Effective IPTV Channel Control Algorithm Supporting Smooth Channel Zapping HyunChul Joo* Associate
More information다중 곡면 검출 및 추적을 이용한 증강현실 책
1 딥러닝기반성별및연령대 추정을통한맞춤형광고솔루션 20101588 조준희 20131461 신혜인 2 개요 연구배경 맞춤형광고의필요성 성별및연령별주요관심사에적합한광고의필요성증가 제한된환경에서개인정보획득의한계 맞춤형광고의어려움 영상정보기반개인정보추정 연구목표 딥러닝기반사용자맞춤형광고솔루션구현 얼굴영상을이용한성별및연령대추정 성별및연령대를통합네트워크로학습하여추정정확도향상
More information김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월
지능정보연구제 17 권제 4 호 2011 년 12 월 (pp.241~254) Support vector machines(svm),, CRM. SVM,,., SVM,,.,,. SVM, SVM. SVM.. * 2009() (NRF-2009-327- B00212). 지능정보연구제 17 권제 4 호 2011 년 12 월 김경재 안현철 지능정보연구제 17 권제 4 호
More information_KrlGF발표자료_AI
AI 의과거와현재그리고내일 AI is the New Electricity 2017.09.15 AI! 2 Near Future of Super Intelligence? *source l http://www.motherjones.com/media/2013/05/robots-artificial-intelligence-jobs-automation 3 4 I think
More informationTrack2
Track II: Ambient Communica/on Mar 2015 Graduate School of Culture Technology, KAIST People Social Compu/ng Lab Dongman Lee, Meeyoung Cha, Wonjae Lee, and Sungjoo Woo Complex Systems of Culture Juyong
More informationDIY 챗봇 - LangCon
without Chatbot Builder & Deep Learning bage79@gmail.com Chatbot Builder (=Dialogue Manager),. We need different chatbot builders for various chatbot services. Chatbot builders can t call some external
More informationSchoolNet튜토리얼.PDF
Interoperability :,, Reusability: : Manageability : Accessibility :, LMS Durability : (Specifications), AICC (Aviation Industry CBT Committee) : 1988, /, LMS IMS : 1997EduCom NLII,,,,, ARIADNE (Alliance
More information歯I-3_무선통신기반차세대망-조동호.PDF
KAIST 00-03-03 / #1 1. NGN 2. NGN 3. NGN 4. 5. 00-03-03 / #2 1. NGN 00-03-03 / #3 1.1 NGN, packet,, IP 00-03-03 / #4 Now: separate networks for separate services Low transmission delay Consistent availability
More information<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>
Journal of the Korea Academia-Industrial cooperation Society Vol. 13, No. 2 pp. 866-871, 2012 http://dx.doi.org/10.5762/kais.2012.13.2.866 증강현실을 이용한 아동교육프로그램 모델제안 권미란 1*, 김정일 2 1 나사렛대학교 아동학과, 2 한세대학교 e-비즈니스학과
More informationPowerPoint 프레젠테이션
ㆍ Natural Language Understanding 관련기술 ㆍ Semantic Parsing Conversational AI Natural Language Understanding / Machine Learning ㆍEntity Extraction and Resolution - Machine Learning 관련기술연구개발경험보유자ㆍStatistical
More information아트앤플레이군 (2년제) Art & Play Faculty 95 교육목표 95 군 공통(네트워크) 교과과정표 96 드로잉과 페인팅 Drawing & Painting Major Track 97 매체예술 Media Art Major Track 98 비디오 & 사운드 Video & Sound Major Track 99 사진예술 PHOTOGRAPHIC ART Major
More informationPowerPoint 프레젠테이션
Post - Internet Marketing Contents. Internet Marketing. Post - Internet Marketing Trend. Post - Internet Marketing. Paradigm. . Internet Marketing Internet Interactive Individual Interesting International
More information°í¼®ÁÖ Ãâ·Â
Performance Optimization of SCTP in Wireless Internet Environments The existing works on Stream Control Transmission Protocol (SCTP) was focused on the fixed network environment. However, the number of
More informationI
I II III (C B ) (C L ) (HL) Min c ij x ij f i y i i H j H i H s.t. y i 1, k K, i W k C B C L p (HL) x ij y i, i H, k K i, j W k x ij y i {0,1}, i, j H. K W k k H K i i f i i d ij i j r ij i j c ij r ij
More information강의지침서 작성 양식
정보화사회와 법 강의지침서 1. 교과목 정보 교과목명 학점 이론 시간 실습 학점(등급제, P/NP) 비고 (예:팀티칭) 국문 정보화사회와 법 영문 Information Society and Law 3 3 등급제 구분 대학 및 기관 학부(과) 전공 성명 작성 책임교수 법학전문대학원 법학과 최우용 2. 교과목 개요 구분 교과목 개요 국문 - 정보의 디지털화와 PC,
More information1217 WebTrafMon II
(1/28) (2/28) (10 Mbps ) Video, Audio. (3/28) 10 ~ 15 ( : telnet, ftp ),, (4/28) UDP/TCP (5/28) centralized environment packet header information analysis network traffic data, capture presentation network
More information4 : (Hyo-Jin Cho et al.: Audio High-Band Coding based on Autoencoder with Side Information) (Special Paper) 24 3, (JBE Vol. 24, No. 3, May 2019
4 : (Hyo-Jin Cho et al.: Audio High-Band Coding based on Autoencoder with Side Information) (Special Paper) 24 3, 2019 5 (JBE Vol. 24, No. 3, May 2019) https://doi.org/10.5909/jbe.2019.24.3.387 ISSN 2287-9137
More informationAMP는 어떻게 빠른 성능을 내나.key
AMP는 어떻게 빠른 성능을 내나? AU개발 김태훈 kishu@navercorp.com AMP 란무엇인가? AMP 방식으로 HTML을 만들고 AMP JS를 로딩하고 AMP 컴포넌트만 사용하면 웹페이지의 빠른 렌더링을 보장 + 구글 검색 결과에서 즉시 로딩(빠르고 멋있게) AMPs are just Web Pages! AMPs are just Web Pages!
More informationPattern Recognition
딥러닝이해및미디어응용 아주대학교구형일 인공지능 / 기계학습 / 딥러닝 AI 에관한 4 개의관점 Humanly Rationally Thinking Thinking Humanly Thinking Rationally Acting Acting Humanly Acting Rationally Acting Humanly 사람처럼일하는 / 행동하는기계 인공지능은사람에의해서수행될때지능이필요한일을수행하는기계를만드는기술이다.
More information2014ijµåÄ·¾È³»Àå-µ¿°è ÃÖÁ¾
Call for Papers JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING Print ISSN 2288-4300 Online ISSN 2288-5048 Journal of Computational Design and Engineering(JCDE) is a new peer-reviewed international journal
More informationDocsPin_Korean.pages
Unity Localize Script Service, Page 1 Unity Localize Script Service Introduction Application Game. Unity. Google Drive Unity.. Application Game. -? ( ) -? -?.. 준비사항 Google Drive. Google Drive.,.. - Google
More informationBitcoin_3.indd
IDG Tech Report IDG Tech Report 1 IDG Tech Report 2 IDG Tech Report 3 IDG Tech Report 4 IDG Tech Report 5 6 IDG Tech Report IDG Tech Report 7 IDG Tech Report 8 Subscription Visual Contents Social Media
More informationBSC Discussion 1
Copyright 2006 by Human Consulting Group INC. All Rights Reserved. No Part of This Publication May Be Reproduced, Stored in a Retrieval System, or Transmitted in Any Form or by Any Means Electronic, Mechanical,
More information,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3
Depth layer partition 2D 3D a), a) 3D conversion of 2D video using depth layer partition Sudong Kim a) and Jisang Yoo a) depth layer partition 2D 3D. 2D (depth map). (edge directional histogram). depth
More information2 : (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, (JBE
2: (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, 2019 7 (JBE Vol. 24, No. 4, July 2019) https://doi.org/10.5909/jbe.2019.24.4.623
More information04-다시_고속철도61~80p
Approach for Value Improvement to Increase High-speed Railway Speed An effective way to develop a highly competitive system is to create a new market place that can create new values. Creating tools and
More information19_9_767.hwp
(Regular Paper) 19 6, 2014 11 (JBE Vol. 19, No. 6, November 2014) http://dx.doi.org/10.5909/jbe.2014.19.6.866 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) RGB-Depth - a), a), b), a) Real-Virtual Fusion
More information(JBE Vol. 24, No. 2, March 2019) (Special Paper) 24 2, (JBE Vol. 24, No. 2, March 2019) ISSN
(Special Paper) 24 2, 2019 3 (JBE Vol. 24, No. 2, March 2019) https://doi.org/10.5909/jbe.2019.24.2.234 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) SIFT a), a), a), a) SIFT Image Feature Extraction
More informationuntitled
전방향카메라와자율이동로봇 2006. 12. 7. 특허청전기전자심사본부유비쿼터스심사팀 장기정 전방향카메라와자율이동로봇 1 Omnidirectional Cameras 전방향카메라와자율이동로봇 2 With Fisheye Lens 전방향카메라와자율이동로봇 3 With Multiple Cameras 전방향카메라와자율이동로봇 4 With Mirrors 전방향카메라와자율이동로봇
More information위해 사용된 기법에 대해 소개하고자 한다. 시각화와 자료구조를 동시에 활용하는 프로그램이 가지는 한계와 이를 극복하기 위한 시도들을 살펴봄으로서 소셜네트워크의 분석을 위한 접근 방안을 고찰해 보고자 한다. 2장에서는 실험에 사용된 인터넷 커뮤니티인 MLBPark 게시판
인터넷 커뮤니티 사용자의 사회 연결망 특성 분석 Analysis Social Network Characteristics Among the Internet Community Users 탁해성 부산대학교 컴퓨터공학과 tok33@pusan.ac.kr Abstract 인터넷이 사람들에게 보급됨에 따라 온라인 환경에서 소통을 하는 사람들이 늘어났다. 온라인 커뮤니티가
More information<4D6963726F736F667420576F7264202D2032303133303231352DB1E2BCFAB5BFC7E2BAD0BCAE2DBEF3B1BCC0CEBDC42DC3A4BFF8BCAE2E646F6378>
2013-02-15 얼굴인식 기술 동향 얼굴인식 기술의 개념과 기본적인 배경 지식 에 대해 소개하고, 최근 업계 동향을 살펴봄 목차 1. 개요...2 2. 인식 기술 분류 및 소개...4 3. 얼굴 인식 업계 동향...7 채원석, wschae@etri.re.kr ETRI 차세대콘텐츠연구소 콘텐츠서비스연구실 ETRI 차세대콘텐츠연구소 콘텐츠서비스연구실 1 1.
More information14.이동천교수님수정
28 6 2010 12 pp 547~554 3D Stereo Display of Spatial Data from Various Sensors 1) 2) 3) 4) Abstract Visualization requires for effective analysis of the spatial data collected by various sensors. The best
More informationBuilding Mobile AR Web Applications in HTML5 - Google IO 2012
Building Mobile AR Web Applications in HTML5 HTML5 -, KIST -, UST HCI & Robotics Agenda Insight: AR Web Browser S.M.AR.T: AR CMS HTML5 HTML5 AR - Hello world! - Transform - - AR Events 3/33 - - - (Simplicity)
More informationReinforcement Learning & AlphaGo
Gait recognition using a Discriminative Feature Learning Approach for Human identification 딥러닝기술및응용딥러닝을활용한개인연구주제발표 이장우 wkddn1108@kist.re.kr 2018.12.07 Overview 연구배경 관련연구 제안하는방법 Reference 2 I. 연구배경 Reinforcement
More informationUML
Introduction to UML Team. 5 2014/03/14 원스타 200611494 김성원 200810047 허태경 200811466 - Index - 1. UML이란? - 3 2. UML Diagram - 4 3. UML 표기법 - 17 4. GRAPPLE에 따른 UML 작성 과정 - 21 5. UML Tool Star UML - 32 6. 참조문헌
More informationIntroduction to Deep learning
Introduction to Deep learning Youngpyo Ryu 동국대학교수학과대학원응용수학석사재학 youngpyoryu@dongguk.edu 2018 년 6 월 30 일 Youngpyo Ryu (Dongguk Univ) 2018 Daegu University Bigdata Camp 2018 년 6 월 30 일 1 / 66 Overview 1 Neuron
More information<BBF3C7A5C6C7B7CA28C1A6BABBBFEB2034BAD0B1E2292E687770>
발 간 등 록 번 호 11-1430000-000484-08 심판관 보수교육 교재 Ⅰ ISSN 1975-3446 상 표 판 례 (통권 제17호) 2008. 12 특 허 심 판 원 목 차 제6조 제1항 제2호 1. 2008허6642(등록무효) 3 제6조 제1항 제3호 1. 2008원(취소판결)34 11 2. 2008허5878 16 3. 2008허6468 23 4.
More informationSwitching
Switching 강의의목표 Switching/Switching Network의필요성을이해한다. 세가지대표적교환기술에열거하고그차이를설명할수있다. 각교환기술의장, 단점을비교하여설명할수있다. Packet Switching 에서 Fairness 문제와 Pipelining 을 패킷크기와연계하여설명할수있다. Soft Switch 개념을이해하고설명할수있다. 교재 Chapter
More information[ReadyToCameral]RUF¹öÆÛ(CSTA02-29).hwp
RUF * (A Simple and Efficient Antialiasing Method with the RUF buffer) (, Byung-Uck Kim) (Yonsei Univ. Depth of Computer Science) (, Woo-Chan Park) (Yonsei Univ. Depth of Computer Science) (, Sung-Bong
More informationuntitled
_ 201412 _ _ 201412 _ _ 201412 _ _ 201412 _ _ 201412 _ _ 201412 _ _ 201412 _ _ 201412 _ _ 201412 _ _ 201412 _ _ 201412 _ _ 201412 _ _ 201412 _ _ 201412 _ 201412 _ _ 201412 _ _ 201412 _ _ 201412 _ _ 201412
More informationMicrosoft Word - USB복사기.doc
Version: SD/USB 80130 Content Index 1. Introduction 1.1 제품개요------------------------------------------------------------P.02 1.2 모델별 제품사양-------------------------------------------------------P.04 2. Function
More information