ROV - Software - Risk Simulator General Overview Flyer (English) risksim.pub

Size: px
Start display at page:

Download "ROV - Software - Risk Simulator 2011 - General Overview Flyer (English) 2011 - risksim.pub"

Transcription

1 RISK SIMULATOR 2012 Monte Carlo Risk Simulation 38 Probability Distributions with easy-to-use interface, running Super Speed Simulation (thousands of trials in a few seconds) with Comprehensive Statistics and Reporting, Distributional Correlations with Copulas (Normal, T, Quasi-Normal), Multiple Random Generators, Truncation, Alternate Parameters, Linking capabilities, Multidimensional Simulations and Risk Simulator functions in Excel, and works with Windows 7/Vista/XP with Excel 2010/2007/2003 and MAC (Parallels or Virtual Machine) Analytical Tools Bootstrapping, Cluster Segmentation, Comprehensive Reports, Data Extraction, Data Import, Data Diagnostics (checks for data quality including heteroskedasticity, multicollinearity, nonlinearity, outliers, autocorrelation, and more), Distributional Fitting, Distributional Probabilities (PDF, CDF, ICDF), Hypothesis Testing, Overlay Charts, Sensitivity Analysis, Scenario Analysis, Statistical Analytics, Tornado and Spider Charts, Seasonality Test, Detrending, Cluster Analysis, Structural Breaks, ROV Bistats (160 business statistical models), ROV Decision Trees (Bayes analysis, risk simulation on decision trees, sensitivity and scenario analysis, utility functions) and more Forecasting Box-Jenkins ARIMA, Auto ARIMA, Basic Econometrics, Auto Econometrics, Cubic Spline, Custom Distributions, GARCH, J Curve, S Curve, Markov Chain, Maximum Likelihood, Limited Dependent Variables (Logit, Probit, Tobit), Multiple Regression, Nonlinear Extrapolation, Stochastic Processes, Time-Series Decomposition, Multivariate Trendlines Optimization Static, Dynamic and Stochastic Optimization with Continuous, Discrete and Integer Decision Variables, Efficient Frontier, Project Portfolio Selection, Linear and Nonlinear Optimization Real Options Valuation, Inc F Dublin Blvd., Suite 425, Dublin, CA USA

2 WHAT IS RISK ANALYSIS? How do you make critical business decisions? Do you consider the risks of your projects and decisions, or are you more focused on returns? Do you have a hard time trying to understand what risk is, let alone quantifying risk? Well, our Risk Simulator software will help you identify, quantify, and value risk in your projects and decisions. RISK SIMULATOR is a powerful Excel add-in software used for applying simulation, forecasting, statistical analysis, and optimization in your existing Excel spreadsheet models. The software was developed specifically to be extremely easy to use. For instance, running a risk simulation is as simple as 1-2-3, set an input, set an output, and run. Performing forecasting can be as simple as two or three mouse clicks away and the software does everything for you automatically, complete with detailed reports, powerful charts and numerical results. It even comes in English, Spanish, Chinese and Japanese, with additional languages on their way. If we have the technology to send spacecrafts half way across the solar system, why can t we spend a little more time quantifying risk? Such technology already exists and Risk Simulator encapsulates these advanced methodologies into a simple and user-friendly tool. We have books, live training (Certification in Risk Management) seminars, training DVDs, consultants and free sample getting started videos in risk analysis and modeling on our website. Risk Simulator is also integrated with our other software including the Real Options Super Lattice Solver, Employee Stock Options Valuation Toolkit, Modeling Toolkit (Over 800 Functions and 300 Models), ROV Modeler, ROV Optimizer, ROV Valuator, ROV Basel II Modeler, ROV Compiler, ROV Extractor and Evaluator, and ROV Dashboard. Please visit our website for more details. MODULE DETAILS Monte Carlo Risk Simulation 45 Probability Distributions with very easy-to-use interface, running Super Speed Simulations (thousands of trials in a few seconds) with Comprehensive Statistics and Reporting capabilities, Distributional Correlations with Copulas (Normal, T, Quasi-Normal), Various Random Number Generators, Truncation, Alternate Parameters, Linking capabilities, Multidimensional Simulations and Risk Simulator functions in Excel. All of this in 11 foreign languages including English. Analytical Tools Bootstrapping, Cluster Segmentation, Comprehensive Reports, Data Extraction, Data Import, Detailed Data Diagnostics (heteroskedasticity, autocorrelation, multicollinearity, outliers, and much more), Distributional Fitting, Distributional Exact Probabilities (PDF, CDF, ICDF), Hypothesis Testing, Dynamic Sensitivity Analysis, Scenario Analysis, Tornado and Spider Charts, Seasonality Test, Structural Break, Segmentation Clustering, Cyclicality Detrending, ROV Bistats (160 business statistical models), ROV Decision Trees (Bayes analysis, risk simulation on decision trees, sensitivity and scenario analysis, utility functions), and much more! Forecasting Box-Jenkins ARIMA, Auto ARIMA, Basic Econometrics, Auto Econometrics, Cubic Spline, Customized Distributions, GARCH Volatility, J Curve, S Curve, Markov Chains, Limited Dependent Variables (Logit, Probit, Tobit), Multiple Regression, Nonlinear Extrapolation, Stochastic Processes, Time-Series Decomposition, Trendlines and more! Watch out for more advanced techniques in future versions! Optimization Static, Dynamic and Stochastic Optimization with Continuous, Discrete and Integer Decision Variables, Efficient Frontier Analysis, Linear and Nonlinear Optimization with complete control over the advanced algorithm types and precision levels SUPPORT MATERIALS 10 books on risk analysis, simulation, forecasting, optimization, real options, and options valuation written by the software s creator Training DVD on risk analysis (simulation, forecasting, optimization, real options, and applied business statistics) Live training and certification courses on general risk management, risk simulation, forecasting, optimization, and strategic real options analysis Detailed user manual, help file, and an extensive library of example files Live project consultants with advanced degrees and years of consulting and industry experience TRIAL AND ACADEMIC VERSIONS Risk Simulator can be downloaded immediately from our website with a default 10 day trial license. Our philosophy is you get to try before you buy. Once you use it, we are convinced you will fall in love with the simplicity and the power of the tool, and it will become an indispensible part of your modeling toolbox. We also have academic licenses for full time professors teaching risk analysis (and their students) or other associated courses using Risk Simulator or our other software products. Contact admin@realoptionsvaluation.com for details. TRAINING AND CONSULTING Advanced analytical tools such as the Risk Simulator software are built to be easy to use but may get the analyst in trouble if used inappropriately. Sufficient theoretical understanding coupled with pragmatic application experience is vital; therefore, training is critical. Our Risk Analysis course is a two-day seminar focused on hands-on computerbased software training, with topics covering the basics of risk and uncertainty, using Monte Carlo simulation (pitfalls and due diligence), and all of the detailed methods in forecasting and optimization. We also have a Real Options for Analysts course for the analysts who want to immediately begin applying strategic real options in their work, but lack the hands-on experience with real options analytics and modeling. This two-day course covers how to set up real options models, apply real options, and solve real options problems using simulation, closed-form mathematics, binomial and multinomial lattices using the Real Options SLS software. The Certified in Risk Management (CRM) seminar is a four-day hands-on class that covers the materials on our Risk Analysis and Real Options for Analysts courses and geared towards the CRM certification provided by the International Institute of Professional Education and Research (AACSB member and eligible for 30 PDU credits with the PMI). Our Risk Analysis for Senior Managers is a one day course specially designed for senior executives, where we will review case studies in risk management from 3M, Airbus, Boeing, GE, and many others. It provides an executive overview of risk analysis, strategic real options, portfolio optimization, forecasting and risk concepts without the technical details. Also available are other customized decision, valuation and risk analysis courses with an emphasis on on-site trainings customized to your firm s exact needs based on your business cases and models). Consulting services are available, including the framing of risk analysis problems, simulation, forecasting, real options, risk analytics, model building, decision analysis, integrated OEM and software customization. EXPERTISE Dr. Johnathan Mun is the software s creator and teaches the Risk Analysis, Real Options for Analysts, Risk Analysis for Managers, CRM, and other courses. He has consulted for many Fortune 500 firms (from 3M, Airbus, Boeing to GE and Motorola) and the government (Department of Defense, State and Federal Agencies) on risk analysis, valuation, and real options, and has written a number of books on the topic, including Modeling Risk: Applying Monte Carlo Simulation, Real Options Analysis, Forecasting and Optimization, 1st and 2nd Edition (Wiley, 2006, 2010); Real Options Analysis: Tools and Techniques, 1st and 2nd Edition (Wiley Finance, 2005, 2002); Real Options Analysis Course: Business Cases (Wiley Finance, 2003); Applied Risk Analysis: Moving Beyond Uncertainty in Business (Wiley, 2003); Valuing Employee Stock Options Under 2004 FAS 123 (Wiley Finance, 2004); Advanced Analytical Models: 800 Functions and 300 Models from Basel II to Wall Street and Beyond (Wiley 2008); The Banker s Handbook on Credit Risk: Implementing Basel II (Elsevier Academic Press 2008); and others. He is the founder and CEO of Real Options Valuation, Inc., and is responsible for the development of analytical software products, consulting, and training services. He was formerly Vice President of Analytics at Decisioneering, Inc. (Oracle), and was a Consulting Manager in KPMG s Global Financial Strategies practice. Before KPMG, he was head of financial forecasting for Viking, Inc. (an FDX/FedEx Company). Dr. Mun is also a full professor at the U.S. Naval Postgraduate School and a professor at the University of Applied Sciences and Swiss School of Management (Zurich and Frankfurt), and he has held other adjunct professorships at various universities. He has a Ph.D. in finance and economics, an MBA in business administration, an M.S. in the area of management science, and a BS in applied sciences. He is certified in Financial Risk Management (FRM), Certified in Financial Consulting (CFC), and Certified in Risk Management (CRM). Real Options Valuation, Inc F Dublin Blvd., Suite 425, Dublin, CA USA

3

4 tests for the most common mistakes in your model runs tests on heteroskedasticity, micronumerosity, outliers, nonlinearity, autocorrelation, normality, sphericity, nonstationarity, multicollinearity and correlations extract data to Excel or flat text files and Risk Sim files, runs statistical reports and forecast result reports retrieves previous simulation run results deasonalizes and detrends your data computes exact PDF, CDF and ICDF of all 42 distributions and generates probability tables create your own custom distributions Kolmogorov-Smirnov and Chi-Square tests on continuous distributions, complete with reports and distributional assumptions runs multiple variables simultaneously, accounts for correlations and correlation significance tests if two forecasts are statistically similar or different simulation of the statistics to obtain the precision and accuracy of the results fully customizable overlay charts of assumptions and forecasts together (CDF, PDF, 2D/3D chart types) tests the best predictor variables and ways to reduce the data array English, French, German, Italian, Japanese, Korean, Portuguese, Spanish, Simplified Chinese, Traditional Chinese Works in Window 7, Vista and XP; integrates with Excel 2010, 2007, 2003; and works in MAC operating systems running virtual machines. Fully customizable colors and charts (tilt, 3D, color, chart type, and much more!) hundreds and thousands of static two dimensional scenarios Multiple language user manuals and help files Check Model Data Diagnostics Data Extraction and Export Data Open and Import Detrending and Deseasonalization Distributional Analysis Distributional Designer Distributional Fitting (Single) Distributional Fitting (Multiple) Hypothesis Testing Nonparametric Bootstrap Overlay Charts Principal Component Analysis 42 detailed example models Linkable to Real Options SLS and Modeling Toolkit All analyses come with detailed reports RS functions and right-click support in Excel Works well with other ROV software including: Real Options SLS, Modeling Toolkit, Basel Toolkit, ROV Compiler, ROV Extractor and Evaluator, ROV Modeler, ROV Valuator, ROV Optimizer, ROV Dashboard, ESO Valuation Toolkit, and others! 6 random number generators, 3 correlation copulas (Normal, T, Quasi-Normal), and 2 sampling methods (Monte Carlo and Latin Hypercube) multiphasic optimization general linear optimization detailed results including Hessian matrices, LaGrange functions and more quick optimizations continuous, integers and binary optimizations simulation with optimization quadratic, tangential, central, forward, convergence criteria combinations of stochastic and dynamic optimizations on multivariate efficient frontiers Linear Optimization Nonlinear Optimization Static Optimization Dynamic Optimization Stochastic Optimization Efficient Frontier Scenario Analysis Optimization Analytics General Settings Risk Simulator 2011 Business Statistics Forecasting ARIMA Auto ARIMA Auto Econometrics Basic Econometrics Cubic Spline GARCH J-S Curves Markov Chains Percentile Distributional Fitting Probability Distributions Statistical Analysis--descriptive statistics, distributional fitting, histograms, charts, nonlinear extrapolation, normality test, stochastic parameters estimation, time-series forecasting, trend line projections, etc. ROV BIZSTATS--over 130 business statistics and analytical models:absolute Values, ANOVA: Randomized Blocks Multiple Treatments, ANOVA: Single Factor Multiple Treatments, ANOVA: Two Way Analysis, ARIMA, Auto ARIMA, Autocorrelation & Partial Autocorrelation, Autoeconometrics (Detailed), Autoeconometrics (Quick), Average, Control Chart: C, Control Chart: NP, Control Chart: P, Control Chart: R, Control Chart: U, Control Chart: X, Control Chart: XMR, Correlation, Correlation (Linear, Nonlinear), Count, Covariance, Cubic Spline, Custom Econometric Model, Data Descriptive Statistics, Deseasonalize, Difference, Distributional Fitting, Exponential J Curve, GARCH, Heteroskedasticity, Lag, Lead, Limited Dependent Variables (Logit), Limited Dependent Variables (Probit), Limited Dependent Variables (Tobit), Linear Interpolation, Linear Regression, LN, Log, Logistic S Curve, Markov Chain, Max, Median, Min, Mode, Nonlinear Regression, Nonparametric: Chi-Square Goodness of Fit, Nonparametric: Chi-Square Independence, Nonparametric: Chi-Square Population Variance, Nonparametric: Friedman s Test, Nonparametric: Kruskal-Wallis Test, Nonparametric: Lilliefors Test, Nonparametric: Runs Test, Nonparametric: Wilcoxon Signed-Rank (One Var), Nonparametric: Wilcoxon Signed-Rank (Two Var), Parametric: One Variable (T) Mean, Parametric: One Variable (Z) Mean, Parametric: One Variable (Z) Proportion, Parametric: Two Variable (F) Variances, Parametric: Two Variable (T) Dependent Means, Parametric: Two Variable (T) Independent Equal Variance, Parametric: Two Variable (T) Independent Unequal Variance, Parametric: Two Variable (Z) Independent Means, Parametric: Two Variable (Z) Independent Proportions, Power, Principal Component Analysis, Rank Ascending, Rank Descending, Relative LN Returns, Relative Returns, Seasonality, Segmentation Clustering, Semi-Standard Deviation (Lower), Semi-Standard Deviation (Upper), Standard 2D Area, Standard 2D Bar, Standard 2D Line, Standard 2D Point, Standard 2D Scatter, Standard 3D Area, Standard 3D Bar, Standard 3D Line, Standard 3D Point, Standard 3D Scatter, Standard Deviation (Population), Standard Deviation (Sample), Stepwise Regression (Backward), Stepwise Regression (Correlation), Stepwise Regression (Forward), Stepwise Regression (Forward-Backward), Stochastic Processes (Exponential Brownian Motion), Stochastic Processes (Geometric Brownian Motion), Stochastic Processes (Jump Diffusion), Stochastic Processes (Mean Reversion with Jump Diffusion), Stochastic Processes (Mean Reversion), Structural Break, Sum, Time-Series Analysis (Auto), Time-Series Analysis (Double Exponential Smoothing), Time-Series Analysis (Double Moving Average), Time-Series Analysis (Holt-Winter s Additive), Time-Series Analysis (Holt-Winter s Multiplicative), Time-Series Analysis (Seasonal Additive), Time-Series Analysis (Seasonal Multiplicative), Time-Series Analysis (Single Exponential Smoothing), Time-Series Analysis (Single Moving Average), Trend Line (Difference Detrended), Trend Line (Exponential Detrended), Trend Line (Exponential), Trend Line (Linear Detrended), Trend Line (Linear), Trend Line (Logarithmic Detrended), Trend Line (Logarithmic), Trend Line (Moving Average Detrended), Trend Line (Moving Average), Trend Line (Polynomial Detrended), Trend Line (Polynomial), Trend Line (Power Detrended), Trend Line (Power), Trend Line (Rate Detrended), Trend Line (Static Mean Detrended), Trend Line (Static Median Detrended), Variance (Population), Variance (Sample), Volatility: EGARCH, Volatility: EGARCH-T, Volatility: GARCH, Volatility: GARCH-M, Volatility: GJR GARCH, Volatility: GJR TGARCH, Volatility: Log Returns Approach, Volatility: TGARCH, Volatility: TGARCH-M, Yield Curve (Bliss), and Yield Curve (Nelson-Siegel). autoregressive integrated moving average models ARIMA (P,D,Q) runs the most common combinations of ARIMA to find the best-fitting model runs thousands of model combinations and permutations to obtain the best-fitting model for existing data (linear, nonlinear, interacting, lag, leads, rate, difference) econometric and linear/nonlinear and interacting regression models nonlinear interpolation and extrapolation volatility projections using generalized autoregressive conditional heteroskedasticity models: GARCH, GARCH-M, TGARCH, TGARCH-M, EGARCH, EGARCH-T, GJR-GARCH, GJR-TGARCH Limited Dependent Variables Multiple Regression Analysis logistic S and exponential J curves two competing elements over time and market share predictions Logit, Probit, Tobit: logistic-based regressions for forecasting probability of an event linear and nonlinear regression, stepwise regression with detailed reports (correlation, forward, backward, combination) Simulation 42 Distributions Super Speed Simulation Custom Distribution Discrete and Continuous Distributions Distributions as Excel Functions Correlations Sampling Methods Random Number Generator Arcsine, Bernoulli, Beta, Beta 3, Beta 4, Binomial, Cauchy, Chi-Square, Cosine, Custom, Discrete Uniform, Double Log, Erlang, Exponential, Exponential 2, F Distribution, Gamma, Geometric, Gumbel Max, Gumbel Min, Hypergeometric, Laplace, Logistic, Lognormal (Arithmetic) and Lognormal (Log), Lognormal3 (Arithmetic) and Lognormal3 (Log), Negative Binomial, Normal, Parabolic, Pareto, Pascal, Pearson V, Pearson VI, PERT, Poisson, Power, Power 3, Rayleigh, T and T2, Triangular, Uniform, Weibull, Weibull 3 runs 100,000 trials in a few seconds make your own distributions, running historical simulations, and applying the Delphi method correlated simulations, truncation, alternate parameters, multidimensional simulation set input assumptions and output forecasts using functions inside Excel correlated simulations with copulas (Normal, T, Quasi-Normal) Monte Carlo and Latin Hypercube ROV Advanced Subtractive Generator, Subtractive Random Shuffle Generator, Long Period Shuffle Generator, Portable Random Shuffle Generator, Quick IEEE Hex Generator, Basic Minimal Portable Generator tests for various seasonality lags Seasonality Test Nonlinear Extrapolation nonlinear time-series forecasting groups data into statistical clusters for segmenting your data dynamic sensitivity (simultaneous analysis) descriptive statistics, distributional fitting, histograms, charts, nonlinear extrapolation, normality test, stochastic parameters estimation, time-series forecasting, trend line projections, etc Segmentation Clustering Sensitivity Analysis Statistical Analysis Stochastic Processes Time-Series Analysis Trendlines forecasting using simulation and geometric and exponential Brownian motion, mean-reversion, jump diffusion, and mixed processes 8 time-series decomposition models for predicting levels, trends and seasonalities linear, nonlinear, power, logarithmic, exponential, moving average with goodness of fit tests if your time-series data has statistical structural breaks static perturbation of sensitivities, spider and tornado analysis, and scenario tables Structural Break Test Tornado Analysis

5 2012 버전의 새로운 기능 Risk Simulator 기능의 종합 목록 다음은 Risk Simulator 의 주요 기능들이며, 하이라이트된 것은 버전 2012 에 최신으로 주가된 기능이다. 일반 기능 개국 언어 지원 영어, 불어, 독일어, 이태리어, 일본어, 한국어, 폴투칼어, 스페인어, 중국어 간체, 러시아중국어 번체. 2. 서적 10 권의 분석적 이론, 적용, 케이스 스터디 3. 셀의 주석 셀의 주석을 ON/OFF 할수 있고, 모든 입력가정, 출력예측 결정변수에 대하여 셀의 주석을 원하는지 정할 수 있다. 4. 상세한 연습 모델 Risk Simulator 에서 24 개의 연습 모델 및 모델링 툴키트에서 300 개 이상의 모델 5. 상세한 리포트 모든 분셕에 대한 상세한 리포트 6. 상세한 사용자 매뉴얼 단계적 사용자 매뉴얼 7. 다양한 라이센스 옵션 위험 분석을 사용자에 맞게 기능을 ON/OFF 함. 예를 들어 Risk Simulator 에서 예측 도구만 필요하면 다른 모듈은 작동이 않되고 예측 도구만 작동되는 특별 라이센스을 구매할 수 있다. 이것은 소프트웨어의 구매에 있어 경제적이다. 8. 다양한 환경 조건 Window 7, Vista, XP 지원; 엑셀 2010, 2007, 2003 과의 통합 지원; virtual machine 하에서의 MAC OS 지원 9. 완전한 사용자 정의의 색상 및 차트 틸트, 3D, 색상, 차트 타입 등등 10. 간편한 연습 결과물 해설을 포함한 Risk Simulator 실행에 있어서 상세한 단계적 가이드 11. 다수의 셀의 총괄 복사/붙이기 가정, 결정변수, 예측의복사/붙이기 12. 프로파일 한 개의 모델에서 다수의 프로파일 생성 (한개의 모델에서 다른 시뮬레이션 모델의 시나리오가 생성, 복제, 수정, 실행될 수 있다) 13. 엑셀 2007/2010 에서의 개정된 아이콘 더 직감적이고 사용이 편리하게 완전히 개정된 아이콘 툴 바. 대부분의 해상도에 적합한 네 가지의 아이콘 세트(1280 x 760 이상).

6 14. 우측-클릭을 통한 단축키 우측 마우스 클릭을 사용하여 Risk Simulator 의 모든 툴 및 메뉴 사용 15. ROV 소프트웨어와의 통함 Real Options SLS, Modeling Toolkit, Basel Toolkit, ROV Compiler, ROV Extractor and Evaluator, ROV Modeler, ROV Valuator, ROV Optimizer, ROV Dashboard, ESO Valuation Toolkit 등등의 다른 ROV 소프트웨어의 호환성 16. 엑셀 에서의 RS 기능 가정 및 예측의 설정에 RS 기능을 삽입 및 엑셀에서의 우측 마우스 클릭 지원. 17. 트러블슈터: 이 툴은 소프트웨어를 재작동 시키며, 시스템 요건을 체크하며, 하드웨어 ID 를 구하는 등등에 사용 18. 터보 스피드 분석: 이 새로운 기능은 예측과 기타 분석 툴을 초고속 스피드로 실행한다 (버젼 5.2). 분석과 결과물은 동일하나 계산 및 리포트 생성이 훨씬 빠르다). 19. 웹 자료, 케이스 스터디, 비디오 모델, 교육 시작 비디오, 케이스 스터디, 백서 등등의 자료를 웹사이트에서 무료 다운로드 Simulation Module 시뮬레이션 모듈 가지의 난수생성기 ROV Advanced Subtractive Generator, Subtractive Random Shuffle Generator, Long Period Shuffle Generator, Portable Random Shuffle Generator, Quick IEEE Hex Generator, Basic Minimal Portable Generator 가지의 샘플링 방법 Monte Carlo 와 Latin Hypercube 가지의 Correlation Copulas 상관 시뮬레이션에서 Normal Copula, T Copula, and Quasi Normal Copula 의 적용 가지의 확률분포 Arcsine, Bernoulli, Beta, Beta 3, Beta 4, Binomial, Cauchy, Chi Square, Cosine, Custom, Discrete Uniform, Double Log, Erlang, Exponential, Exponential 2, F Distribution, Gamma, Geometric, Gumbel Max, Gumbel Min, Hypergeometric, Laplace, Logistic, Lognormal (Arithmetic) and Lognormal (Log), Lognormal 3 (Arithmetic) and Lognormal 3 (Log), Negative Binomial, Normal, Parabolic, Pareto, Pascal, Pearson V, Pearson VI, PERT, Poisson, Power, Power 3, Rayleigh, T and T2, Triangular, Uniform, Weibull, Weibull 대체 파라미터 파라미터 입력에서 대체 방법으로 백분위수를 사용. 25. 사용자 비모수적 분포 역사적 시뮬레이션을 실행하고 델피 방법을 적용하여 자신이 직접 분포를 만든다 26. 분포의 절단 데이터의 경계 설정

7 27. 엑셀 기능 엑셀 내에서의 기능을 사용하여 가정 및 예측을 설정 28. 다양한 시뮬레이션 비확실한 입력 파라미터의 시뮬레이션 29. 정확도 조종 충분한 수의 시뮬레이션의 시험이 실행되었는지의 여부를 결정 30. 초고속의 시뮬레이션 100,000 의 시험을 수초 내에 실행 예측 모듈 31. ARIMA 자동회귀 누적이동평균 모델 ARIMA (P,D,Q). 32. 자동 ARIMA 가장 적합한 모델을 찾기 위하여 가장 일반적 조합의 ARIMA 를 실행. 33. 자동 경제측정 기존 데이터에 가장 적합한 모델을 구하기 위하여 수천번의 모델 조합과 순열을 실행함 (linear, nonlinear, interacting, lag, leads, rate, difference). 34. 기본 경제측정 경제측정, 선형/비선형, 상호작용의 회귀 모델 35. 큐빅 스플라인 비선형 보간법과 보외법 36. GARCH 일반화된 자동회귀 조건부 이분산 모델을 사용한 volatility projection: GARCH, GARCH M, TGARCH, TGARCH M, EGARCH, EGARCH T, GJR GARCH, GJR TGARCH 37. J 곡선 기하급수적 J 곡선 38. 제한적 종속변수 Logit, Probit, Tobit 39. 마르코프 체인 시간과 시장 점유율 예측에 대한 두개의 경쟁 요소 40. 다중회귀 단계적 방법론적인 일반적 선형 및 비선형 회귀 (forward, backward, correlation, forward backward). 41. 비선형 외삽법 비선형 시계열 예측 42. S 곡선 로지스틱 S 곡선 43. 시계열 분석 레벨, 동향, 계절성을 예측하는 8 가지의 시계열 분해법 모델 44. Trendlines 적합도와 함께 linear, nonlinear polynomial, power, logarithmic, exponential, moving average 을 사용한 예측 및 적합성. 45. 신경망 예측 (선형, 논리학, 쌍곡선 접선, 쌍곡선 접선과 코사인) 46. 조합 퍼지 로직 예측 최적화 모듈 47. 선형 최적화 다단계 최적화 및 일반적 선형 최적화 48. 비선형 최적화 Hessian matrices, LaGrange function 등등을 포함한 상세한 결과

8 49. 정태적 최적화 지속적인 정수 및 이진법 최적화의 빠른 실행 50. 동적 최적화 최적화의 시뮬레이션 51. 확률적 최적화 이차, 탄젠트, 중심, 앞, 수렴 기준 52. 효율 경계선 다변수 효율 경계선에 대한 동적 및 확률적 최적화 53. 유전 알고리즘 다양한 최적화 문제에 사용 54. 다단계 최적화 최적화가 실행되는 방법에 대하여 더 나은 통제를 위하여 로컬 및 글로벌 최적화의 테스트와 결과의 정확도와 의존도를 증진시킨다. 55. 백분위수 및 조건부평균 위험 측정에서 조건부 값을 계산하는데에 대단히 중요한 백분위수 및 조건부평균을 포함한 확률적 최적화에 대한 추가적인 통계 56. 검색 알고리즘 기본 단일 결정 변수 및 목표 검색 적용에 사용되는 단순하고, 빠르고, 효과적인 검색 알고리즘 57. 동적 확률적 최적화에서의 초고속 시뮬레이션 시뮬레이션을 최적화 시켜 초고속으로 실행 분석 툴 모듈 58. Check Model 모델에서 가장 일반적인 실수를 테스트 59. Correlation Editor 큰 상관 매트릭스를 직접 입력 또는 수정 60. Create Report 모델에서 가정 및 예측에 대한 리포트 생성의 자동화 61. Create Statistics Report 모든 예측 통계에 대한 비교 리포트 생성 62. Data Diagnostics heteroskedasticity, micronumerosity, outliers, nonlinearity, autocorrelation, normality, sphericity, nonstationarity, multicollinearity, correlations 에 대한 테스트 실행 63. Data Extraction and Export 데이터를 엑셀, 순수 텍스트 파일, Risk Sim 파일로 추출, 통계 리포트 및 예측 결과 리포트 실행 64. Data Open and Import 이전 시뮬레이션 실행 결과 검색 65. Deseasonalization and Detrending 데이터를 deasonalize 및 detrend 66. Distributional Analysis 42 가지 모든 분포의 정확한 PDF, CDF, ICDF 를 산출하고 확률 테이블을 생성 67. Distributional Designer 사용자 분포를 직접 생성 68. Distributional Fitting (Multiple) 다수의 변수를 동시에 실행, 상관 및 상관 중요도의 설명

9 69. Distributional Fitting (Single) 지속적 분포에 대한 Kolmogorov Smirnov 및 Chi Square 테스트, 리포트 및 분포적 가정의 완성 70. Hypothesis Testing 두개의 예측이 통계학적으로 유사한가 또는 상이한가를 판별 71. Nonparametric Bootstrap 결과의 정확도를 얻기 위한 통계의 시뮬레이션 72. Overlay Charts 가정과 예측에 대한 완전한 사용자 맞춤 오버레이 차트 (CDF, PDF, 2D/3D 차트 타입). 73. Principal Component Analysis 최적합 예측 변수 테스트 및 데이터 어레이의 감소 방법 74. Scenario Analysis 수백 수천개의 정태적 이차적 시나리오 75. Seasonality Test 다양한 계절성의 뒤처짐을 테스트 76. Segmentation Clustering 데이터의 분할을 위하여 통계적 클러스터로 데이터를 모음 77. Sensitivity Analysis 동적 민감도 (동시 분석) 78. Structural Break Test 시계열 데이터가 통계학적 구조적 단절이 있는지 테스트 79. Tornado Analysis 민감성의 정태적 변화, spider 및 tornado 분석, 시나리오 테이블 통계 및 BizStats 모듈 80. Percentile Distributional Fitting 최적합 분포를 찾기위하여 백분위수 및 최적화를 사용 81. Probability Distributions Charts and Tables 45 개의 확률 분포, 그것의 네 가지 moment, CDF, ICDF, PDF, 차트, 오버레이 다수 분포 차트를 실행하고, 확률 분포 테이블 생성. 82. Statistical Analysis 서술적 통계, 분포적 적합, 막대 그래프, 차트, 비선형 보외법, 정상 테스트, 확률적 파라미터 추산, 시계열 예측, 추세 프로젝션 등등 83. ROV 결정 트리는 결정 트리 모델을 만들고 가치를 평가하기 위해 사용됩니다. 다음과 같은 고급 방법론 및 분석기법들이 추가로 포함되어 있습니다. o 결정 트리 모델 o 몬테카를로 리스크 시뮬레이션 o 민감도 분석 o 시나리오 분석

10 o 베이지안 방법 (결합 및 사후 확률 갱신) o 정보에 대한 기대 값 o MINIMAX o MAXIMIN o 리스크 프로파일 84. ROV BIZSTATS 130 개 이상의 비즈니스 통계 및 분석 모델들: Absolute Values, ANOVA: Randomized Blocks Multiple Treatments, ANOVA: Single Factor Multiple Treatments, ANOVA: Two Way Analysis, ARIMA, Auto ARIMA, Autocorrelation and Partial Autocorrelation, Autoeconometrics (Detailed), Autoeconometrics (Quick), Average, Combinatorial Fuzzy Logic Forecasting, Control Chart: C, Control Chart: NP, Control Chart: P, Control Chart: R, Control Chart: U, Control Chart: X, Control Chart: XMR, Correlation, Correlation (Linear, Nonlinear), Count, Covariance, Cubic Spline, Custom Econometric Model, Data Descriptive Statistics, Deseasonalize, Difference, Distributional Fitting, Exponential J Curve, GARCH, Heteroskedasticity, Lag, Lead, Limited Dependent Variables (Logit), Limited Dependent Variables (Probit), Limited Dependent Variables (Tobit), Linear Interpolation, Linear Regression, LN, Log, Logistic S Curve, Markov Chain, Max, Median, Min, Mode, Neural Network, Nonlinear Regression, Nonparametric: Chi Square Goodness of Fit, Nonparametric: Chi Square Independence, Nonparametric: Chi Square Population Variance, Nonparametric: Friedman s Test, Nonparametric: Kruskal Wallis Test, Nonparametric: Lilliefors Test, Nonparametric: Runs Test, Nonparametric: Wilcoxon Signed Rank (One Var), Nonparametric: Wilcoxon Signed Rank (Two Var), Parametric: One Variable (T) Mean, Parametric: One Variable (Z) Mean, Parametric: One Variable (Z) Proportion, Parametric: Two Variable (F) Variances, Parametric: Two Variable (T) Dependent Means, Parametric: Two Variable (T) Independent Equal Variance, Parametric: Two Variable (T) Independent Unequal Variance, Parametric: Two Variable (Z) Independent Means, Parametric: Two Variable (Z) Independent Proportions, Power, Principal Component Analysis, Rank Ascending, Rank Descending, Relative LN Returns, Relative Returns, Seasonality, Segmentation Clustering, Semi Standard Deviation (Lower), Semi Standard Deviation (Upper), Standard 2D Area, Standard 2D Bar, Standard 2D Line, Standard 2D Point, Standard 2D Scatter, Standard 3D Area, Standard 3D Bar, Standard 3D Line, Standard 3D Point, Standard 3D Scatter, Standard Deviation (Population), Standard Deviation (Sample), Stepwise Regression (Backward), Stepwise Regression (Correlation), Stepwise Regression (Forward), Stepwise Regression (Forward Backward), Stochastic Processes (Exponential Brownian Motion), Stochastic Processes (Geometric Brownian Motion), Stochastic Processes (Jump Diffusion), Stochastic Processes (Mean Reversion with Jump Diffusion), Stochastic Processes (Mean Reversion), Structural Break, Sum, Time Series Analysis (Auto), Time Series Analysis (Double Exponential Smoothing), Time Series Analysis (Double Moving Average), Time Series Analysis (Holt Winter s Additive), Time Series Analysis (Holt Winter s Multiplicative), Time Series Analysis (Seasonal Additive), Time Series Analysis (Seasonal Multiplicative), Time Series Analysis (Single Exponential Smoothing), Time Series Analysis (Single Moving Average), Trend Line (Difference Detrended), Trend Line (Exponential Detrended), Trend Line (Exponential), Trend Line (Linear Detrended), Trend Line (Linear), Trend Line (Logarithmic Detrended), Trend Line (Logarithmic), Trend Line (Moving Average Detrended), Trend Line (Moving Average), Trend Line (Polynomial Detrended), Trend Line (Polynomial), Trend Line (Power Detrended), Trend Line (Power), Trend Line (Rate Detrended), Trend Line (Static Mean Detrended), Trend Line (Static Median Detrended), Variance (Population), Variance (Sample), Volatility: EGARCH, Volatility: EGARCH T, Volatility: GARCH, Volatility: GARCH M, Volatility: GJR GARCH, Volatility: GJR TGARCH, Volatility: Log Returns Approach, Volatility: TGARCH, Volatility: TGARCH M, Yield Curve (Bliss), and Yield Curve (Nelson Siegel).

Risk Simulator 2012 User Manual - Korean

Risk Simulator 2012 User Manual - Korean 1.... 7?... 7... 8... 9 2011/2012 Risk Simulator... 12 2.... 18?... 18... 19... 19... 19 1.... 20 2.... 22 3.... 24... 25... 25... 32... 33... 34... 38... 38... 40... 41 3.... 42... 42... 44... 45... 49...

More information

확률과통계 강의자료-1.hwp

확률과통계 강의자료-1.hwp 1. 통계학이란? 1.1 수학적 모형 실험 또는 증명을 통하여 자연현상을 분석하기 위한 수학적인 모형 1 결정모형 (deterministic model) - 뉴톤의 운동방정식 : - 보일-샤를의 법칙 : 일정량의 기체의 부피( )는 절대 온도()에 정비례하고, 압력( )에 반비례한다. 2 확률모형 (probabilistic model) - 주사위를 던질 때

More information

Buy one get one with discount promotional strategy

Buy one get one with discount promotional strategy Buy one get one with discount Promotional Strategy Kyong-Kuk Kim, Chi-Ghun Lee and Sunggyun Park ISysE Department, FEG 002079 Contents Introduction Literature Review Model Solution Further research 2 ISysE

More information

<C7A5C1F620BEE7BDC4>

<C7A5C1F620BEE7BDC4> 연세대학교 상경대학 경제연구소 Economic Research Institute Yonsei Universit 서울시 서대문구 연세로 50 50 Yonsei-ro, Seodaemun-gS gu, Seoul, Korea TEL: (+82-2) 2123-4065 FAX: (+82- -2) 364-9149 E-mail: yeri4065@yonsei.ac. kr http://yeri.yonsei.ac.kr/new

More information

methods.hwp

methods.hwp 1. 교과목 개요 심리학 연구에 기저하는 기본 원리들을 이해하고, 다양한 심리학 연구설계(실험 및 비실험 설계)를 학습하여, 독립된 연구자로서의 기본적인 연구 설계 및 통계 분석능력을 함양한다. 2. 강의 목표 심리학 연구자로서 갖추어야 할 기본적인 지식들을 익힘을 목적으로 한다. 3. 강의 방법 강의, 토론, 조별 발표 4. 평가방법 중간고사 35%, 기말고사

More information

본문01

본문01 Ⅱ 논술 지도의 방법과 실제 2. 읽기에서 논술까지 의 개발 배경 읽기에서 논술까지 자료집 개발의 본래 목적은 초 중 고교 학교 평가에서 서술형 평가 비중이 2005 학년도 30%, 2006학년도 40%, 2007학년도 50%로 확대 되고, 2008학년도부터 대학 입시에서 논술 비중이 커지면서 논술 교육은 학교가 책임진다. 는 풍토 조성으로 공교육의 신뢰성과

More information

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1 : LabVIEW Control Design, Simulation, & System Identification LabVIEW Control Design Toolkit, Simulation Module, System Identification Toolkit 2 (RLC Spring-Mass-Damper) Control Design toolkit LabVIEW

More information

김기남_ATDC2016_160620_[키노트].key

김기남_ATDC2016_160620_[키노트].key metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational

More information

#Ȳ¿ë¼®

#Ȳ¿ë¼® http://www.kbc.go.kr/ A B yk u δ = 2u k 1 = yk u = 0. 659 2nu k = 1 k k 1 n yk k Abstract Web Repertoire and Concentration Rate : Analysing Web Traffic Data Yong - Suk Hwang (Research

More information

ISO17025.PDF

ISO17025.PDF ISO/IEC 17025 1999-12-15 1 2 3 4 41 42 43 44, 45 / 46 47 48 49 / 410 411 412 413 414 5 51 52 53 54 / 55 56 57 58 / 59 / 510 A( ) ISO/IEC 17025 ISO 9001:1994 ISO 9002:1994 B( ) 1 11 /, / 12 / 1, 2, 3/ (

More information

사회통계포럼

사회통계포럼 wcjang@snu.ac.kr Acknowledgements Dr. Roger Peng Coursera course. https://github.com/rdpeng/courses Creative Commons by Attribution /. 10 : SNS (twitter, facebook), (functional data) : (, ),, /Data Science

More information

15_3oracle

15_3oracle Principal Consultant Corporate Management Team ( Oracle HRMS ) Agenda 1. Oracle Overview 2. HR Transformation 3. Oracle HRMS Initiatives 4. Oracle HRMS Model 5. Oracle HRMS System 6. Business Benefit 7.

More information

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a 조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형

More information

http://www.kbc.go.kr/pds/2.html Abstract Exploring the Relationship Between the Traditional Media Use and the Internet Use Mee-Eun Kang This study examines the relationship between

More information

B-05 Hierarchical Bayesian Model을 이용한 GCMs 의 최적 Multi-Model Ensemble 모형 구축

B-05 Hierarchical Bayesian Model을 이용한 GCMs 의 최적 Multi-Model Ensemble 모형 구축 Hierarchical Bayesian Model 을 이용한 GCMs 의 최적 Multi-Model Ensemble 모형 구축 Optimal Multi-Model Ensemble Model Development Using Hierarchical Bayesian Model Based 권 현 한 * 민 영 미 **Saji N. Hameed *** Hyun-Han

More information

Page 2 of 6 Here are the rules for conjugating Whether (or not) and If when using a Descriptive Verb. The only difference here from Action Verbs is wh

Page 2 of 6 Here are the rules for conjugating Whether (or not) and If when using a Descriptive Verb. The only difference here from Action Verbs is wh Page 1 of 6 Learn Korean Ep. 13: Whether (or not) and If Let s go over how to say Whether and If. An example in English would be I don t know whether he ll be there, or I don t know if he ll be there.

More information

Main Title

Main Title GE Peter S. Pande,, Robert P. Neuman, Ronald R. Cavanagh The SIX SIGMA WAY April 29, 2005 Jin-Ho Jeong,, Ph.D. Competitiveness Valuation International, Inc. Korea Partner of IMD WCY jeong@cvikorea.net

More information

04-다시_고속철도61~80p

04-다시_고속철도61~80p Approach for Value Improvement to Increase High-speed Railway Speed An effective way to develop a highly competitive system is to create a new market place that can create new values. Creating tools and

More information

<C3D6C1BE2DBDC4C7B0C0AFC5EBC7D0C8B8C1F62833322D32C8A3292E687770>

<C3D6C1BE2DBDC4C7B0C0AFC5EBC7D0C8B8C1F62833322D32C8A3292E687770> 유자차 신제품에 대한 소비자 지불의사액 추정 강혜정 최지현 이기웅 유자차 신제품에 대한 소비자 지불의사액 추정 An Analysis on Estimation of Willingness to Pay for the New Products of Citrus Tea Assessed by Korean Consumers 강혜정* 최지현** 이기웅*** 1) Kang,

More information

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for 2003 Development of the Software Generation Method using Model Driven Software Engineering Tool,,,,, Hoon-Seon Chang, Jae-Cheon Jung, Jae-Hack Kim Hee-Hwan Han, Do-Yeon Kim, Young-Woo Chang Wang Sik, Moon

More information

김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월

김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월 지능정보연구제 17 권제 4 호 2011 년 12 월 (pp.241~254) Support vector machines(svm),, CRM. SVM,,., SVM,,.,,. SVM, SVM. SVM.. * 2009() (NRF-2009-327- B00212). 지능정보연구제 17 권제 4 호 2011 년 12 월 김경재 안현철 지능정보연구제 17 권제 4 호

More information

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월 지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., 2004 5 2009 12 KOSPI200.,. * 2009. 지능정보연구제 16 권제 1 호 2010 년 3 월 김선웅 안현철 社 1), 28 1, 2009, 4. 1. 지능정보연구제 16 권제 1 호 2010 년 3 월 Support

More information

untitled

untitled Math. Statistics: Statistics? 1 What is Statistics? 1. (collection), (summarization), (analyzing), (presentation) (information) (statistics).., Survey, :, : : QC, 6-sigma, Data Mining(CRM) (Econometrics)

More information

공휴일 전력 수요에 관한 산업별 분석

공휴일 전력 수요에 관한 산업별 분석 에너지경제연구 Korean Energy Economic Review Volume 15, Number 1, March 2016 : pp. 99 ~ 137 공휴일전력수요에관한산업별분석 1) 99 100 ~ 101 102 103 max m ax 104 [ 그림 1] 제조업및서비스업대표업종전력사용량추이 105 106 [ 그림 2] 2014 년일별전자및전자기기업종 AMR

More information

<31325FB1E8B0E6BCBA2E687770>

<31325FB1E8B0E6BCBA2E687770> 88 / 한국전산유체공학회지 제15권, 제1호, pp.88-94, 2010. 3 관내 유동 해석을 위한 웹기반 자바 프로그램 개발 김 경 성, 1 박 종 천 *2 DEVELOPMENT OF WEB-BASED JAVA PROGRAM FOR NUMERICAL ANALYSIS OF PIPE FLOW K.S. Kim 1 and J.C. Park *2 In general,

More information

APOGEE Insight_KR_Base_3P11

APOGEE Insight_KR_Base_3P11 Technical Specification Sheet Document No. 149-332P25 September, 2010 Insight 3.11 Base Workstation 그림 1. Insight Base 메인메뉴 Insight Base Insight Insight Base, Insight Base Insight Base Insight Windows

More information

` Companies need to play various roles as the network of supply chain gradually expands. Companies are required to form a supply chain with outsourcing or partnerships since a company can not

More information

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 - 에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 - . - 2 - . 1. - 3 - [ 그림 1] 도시가스수요와실질 GDP 추이 - 4 - - 5 - - 6 - < 표 1>

More information

<B9CCB5F0BEEEB0E6C1A6BFCDB9AEC8AD5F31322D32C8A35FBABBB9AE5FC3CAC6C731BCE25F6F6B5F32303134303531362E687770>

<B9CCB5F0BEEEB0E6C1A6BFCDB9AEC8AD5F31322D32C8A35FBABBB9AE5FC3CAC6C731BCE25F6F6B5F32303134303531362E687770> 미디어 경제와 문화 2014년 제12권 2호, 7 43 www.jomec.com TV광고 시청률 예측방법 비교연구 프로그램의 장르 구분에 따른 차이를 중심으로 1)2) 이인성* 단국대학교 커뮤니케이션학과 박사과정 박현수** 단국대학교 커뮤니케이션학부 교수 본 연구는 TV프로그램의 장르에 따라 광고시청률 예측모형들의 정확도를 비교하고 자 하였다. 본 연구에서

More information

세종대 요람

세종대 요람 Sejong University 2016 2016 Sejong University 4 SEJONG UNIVERSITY www.sejong.ac.kr 5 8 SEJONG UNIVERSITY 2016 Sejong University 10 SEJONG UNIVERSITY www.sejong.ac.kr 11 12 SEJONG UNIVERSITY www.sejong.ac.kr

More information

Problem New Case RETRIEVE Learned Case Retrieved Cases New Case RETAIN Tested/ Repaired Case Case-Base REVISE Solved Case REUSE Aamodt, A. and Plaza, E. (1994). Case-based reasoning; Foundational

More information

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re EMF Health Effect 2003 10 20 21-29 2-10 - - ( ) area spot measurement - - 1 (Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern

More information

001지식백서_4도

001지식백서_4도 White Paper on Knowledge Service Industry Message Message Contents Contents Contents Contents Chapter 1 Part 1. Part 2. Part 3. Chapter

More information

04서종철fig.6(121~131)ok

04서종철fig.6(121~131)ok Development of Mobile Applications Applying Digital Storytelling About Ecotourism Resources Seo, Jongcheol* Lee, Seungju**,,,. (mobile AIR)., 3D.,,.,.,,, Abstract : In line with fast settling trend of

More information

¹Ìµå¹Ì3Â÷Àμâ

¹Ìµå¹Ì3Â÷Àμâ MIDME LOGISTICS Trusted Solutions for 02 CEO MESSAGE MIDME LOGISTICS CO., LTD. 01 Ceo Message We, MIDME LOGISTICS CO., LTD. has established to create aduance logistics service. Try to give confidence to

More information

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드] 전자회로 Ch3 iode Models and Circuits 김영석 충북대학교전자정보대학 2012.3.1 Email: kimys@cbu.ac.kr k Ch3-1 Ch3 iode Models and Circuits 3.1 Ideal iode 3.2 PN Junction as a iode 3.4 Large Signal and Small-Signal Operation

More information

±èÇö¿í Ãâ·Â

±èÇö¿í Ãâ·Â Smartphone Technical Trends and Security Technologies The smartphone market is increasing very rapidly due to the customer needs and industry trends with wireless carriers, device manufacturers, OS venders,

More information

<C1DF3320BCF6BEF7B0E8C8B9BCAD2E687770>

<C1DF3320BCF6BEF7B0E8C8B9BCAD2E687770> 2012학년도 2학기 중등과정 3학년 국어 수업 계획서 담당교사 - 봄봄 현영미 / 시온 송명근 1. 학습 목적 말씀으로 천지를 창조하신 하나님이 당신의 형상대로 지음 받은 우리에게 언어를 주셨고, 그 말씀의 능 력이 우리의 언어생활에도 나타남을 깨닫고, 그 능력을 기억하여 표현하고 이해함으로 아름다운 언어생활 을 누릴 뿐만 아니라 언어문화 창조에 이바지함으로써

More information

Solaris Express Developer Edition

Solaris Express Developer Edition Solaris Express Developer Edition : 2008 1 Solaris TM Express Developer Edition Solaris OS. Sun / Solaris, Java, Web 2.0,,. Developer Solaris Express Developer Edition System Requirements. 768MB. SPARC

More information

AT_GraduateProgram.key

AT_GraduateProgram.key Art & Technology Graduate Program M.A.S (Master of Arts & Science) in Art & Technology Why Art Tech Graduate Program? / + + X Why Sogang? - Art/Design + Technology 4 Art & Technology Who is this for? (

More information

<31372DB9DABAB4C8A32E687770>

<31372DB9DABAB4C8A32E687770> 김경환 박병호 충북대학교 도시공학과 (2010. 5. 27. 접수 / 2011. 11. 23. 채택) Developing the Traffic Severity by Type Kyung-Hwan Kim Byung Ho Park Department of Urban Engineering, Chungbuk National University (Received May

More information

Manufacturing6

Manufacturing6 σ6 Six Sigma, it makes Better & Competitive - - 200138 : KOREA SiGMA MANAGEMENT C G Page 2 Function Method Measurement ( / Input Input : Man / Machine Man Machine Machine Man / Measurement Man Measurement

More information

- 1 -

- 1 - - 1 - External Shocks and the Heterogeneous Autoregressive Model of Realized Volatility Abstract: We examine the information effect of external shocks on the realized volatility based on the HAR-RV (heterogeneous

More information

IBM SPSS Statistics 제품 소개 (2017 Aug)

IBM SPSS Statistics 제품 소개 (2017 Aug) IBM SPSS Statistics 제품소개 -V25 및 Subscription 2017 Aug ecustomercare Center 담당자 ( 한국어지원 ) 무료전화 : 007986112156 메일주소 : ecareap@sg.ibm.com 2017 IBM Corporation IBM SPSS ü SPSS Statistics SPSS Modeler SPSS

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Reasons for Poor Performance Programs 60% Design 20% System 2.5% Database 17.5% Source: ORACLE Performance Tuning 1 SMS TOOL DBA Monitoring TOOL Administration TOOL Performance Insight Backup SQL TUNING

More information

歯1.PDF

歯1.PDF 200176 .,.,.,. 5... 1/2. /. / 2. . 293.33 (54.32%), 65.54(12.13%), / 53.80(9.96%), 25.60(4.74%), 5.22(0.97%). / 3 S (1997)14.59% (1971) 10%, (1977).5%~11.5%, (1986)

More information

歯3이화진

歯3이화진 http://www.kbc.go.kr/ Abstract Terrestrial Broadcasters Strategies in the Age of Digital Broadcasting Wha-Jin Lee The purpose of this research is firstly to investigate the

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA The e-business Studies Volume 17, Number 6, December, 30, 2016:275~289 Received: 2016/12/02, Accepted: 2016/12/22 Revised: 2016/12/20, Published: 2016/12/30 [ABSTRACT] SNS is used in various fields. Although

More information

Output file

Output file 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 An Application for Calculation and Visualization of Narrative Relevance of Films Using Keyword Tags Choi Jin-Won (KAIST) Film making

More information

<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>

<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770> 자연과학연구 제27권 Bulletin of the Natural Sciences Vol. 27. 2013.12.(33-44) 교통DB를 이용한 교통정책 발굴을 위한 통계분석 시스템 설계 및 활용 Statistical analytic system design and utilization for transport policy excavation by transport

More information

H3050(aap)

H3050(aap) USB Windows 7/ Vista 2 Windows XP English 1 2 3 4 Installation A. Headset B. Transmitter C. USB charging cable D. 3.5mm to USB audio cable - Before using the headset needs to be fully charged. -Connect

More information

ORANGE FOR ORACLE V4.0 INSTALLATION GUIDE (Online Upgrade) ORANGE CONFIGURATION ADMIN O

ORANGE FOR ORACLE V4.0 INSTALLATION GUIDE (Online Upgrade) ORANGE CONFIGURATION ADMIN O Orange for ORACLE V4.0 Installation Guide ORANGE FOR ORACLE V4.0 INSTALLATION GUIDE...1 1....2 1.1...2 1.2...2 1.2.1...2 1.2.2 (Online Upgrade)...11 1.3 ORANGE CONFIGURATION ADMIN...12 1.3.1 Orange Configuration

More information

에너지경제연구 Korean Energy Economic Review Volume 9, Number 2, September 2010 : pp. 1~18 가격비대칭성검정모형민감도분석 1

에너지경제연구 Korean Energy Economic Review Volume 9, Number 2, September 2010 : pp. 1~18 가격비대칭성검정모형민감도분석 1 에너지경제연구 Korean Energy Economic Review Volume 9, Number 2, September 2010 : pp. 1~18 가격비대칭성검정모형민감도분석 1 2 3 < 표 1> ECM 을이용한선행연구 4 5 6 7 and 8 < 표 2> 오차수정모형 (ECM1~ECM4) 9 10 < 표 3> 민감도분석에쓰인더미변수 11 12 < 표

More information

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

<32382DC3BBB0A2C0E5BED6C0DA2E687770> 논문접수일 : 2014.12.20 심사일 : 2015.01.06 게재확정일 : 2015.01.27 청각 장애자들을 위한 보급형 휴대폰 액세서리 디자인 프로토타입 개발 Development Prototype of Low-end Mobile Phone Accessory Design for Hearing-impaired Person 주저자 : 윤수인 서경대학교 예술대학

More information

2012북가이드-최종교

2012북가이드-최종교 HACKERS BOOK GUIDE www.hackers.com CONTENTS HACKERS Education Group 04 HACKERS BOOK GUIDE HACKERS Books 06 Address HEI111104 HACKERS TOEIC Books 08 HACKERS TOEIC Speaking & OPIc Books 13 HACKERS TEPS Books

More information

Intra_DW_Ch4.PDF

Intra_DW_Ch4.PDF The Intranet Data Warehouse Richard Tanler Ch4 : Online Analytic Processing: From Data To Information 2000. 4. 14 All rights reserved OLAP OLAP OLAP OLAP OLAP OLAP is a label, rather than a technology

More information

SchoolNet튜토리얼.PDF

SchoolNet튜토리얼.PDF Interoperability :,, Reusability: : Manageability : Accessibility :, LMS Durability : (Specifications), AICC (Aviation Industry CBT Committee) : 1988, /, LMS IMS : 1997EduCom NLII,,,,, ARIADNE (Alliance

More information

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770> 한국지능시스템학회 논문지 2010, Vol. 20, No. 3, pp. 375-379 유전자 알고리즘을 이용한 강인한 Support vector machine 설계 Design of Robust Support Vector Machine Using Genetic Algorithm 이희성 홍성준 이병윤 김은태 * Heesung Lee, Sungjun Hong,

More information

DVKKUEUVBPKJ.xls

DVKKUEUVBPKJ.xls 2010 FRM STUDY NOTES 변경사항요약 Over view 전체적으로 2009년교재와큰차이는없으나 PART2의 BOOK3에해당하는 Operational Risk쪽은과목의특성상삭제및추가된내용이다소많습니다. 2009년과 GUIDE자체가크게변경이없는관계로전체적인내용이 AIMS에맞게구성이되었다고보시면되겠습니다. BOOK 1- FOUNDATIONS OF RISK

More information

Vol.259 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M

Vol.259 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M 2018.01 Vol.259 C O N T E N T S 02 06 28 61 69 99 104 120 M O N T H L Y P U B L I C F I N A N C E F O R U M 2 2018.1 3 4 2018.1 1) 2) 6 2018.1 3) 4) 7 5) 6) 7) 8) 8 2018.1 9 10 2018.1 11 2003.08 2005.08

More information

歯엑셀모델링

歯엑셀모델링 I II II III III I VBA Understanding Excel VBA - 'VB & VBA In a Nutshell' by Paul Lomax, October,1998 To enter code: Tools/Macro/visual basic editor At editor: Insert/Module Type code, then compile by:

More information

기타자료.PDF

기타자료.PDF < > 1 1 2 1 21 1 22 2 221 2 222 3 223 4 3 5 31 5 311 (netting)5 312 (matching) 5 313 (leading) (lagging)6 314 6 32 6 321 7 322 8 323 13 324 19 325 20 326 20 327 20 33 21 331 (ALM)21 332 VaR(Value at Risk)

More information

Microsoft PowerPoint - AC3.pptx

Microsoft PowerPoint - AC3.pptx Chapter 3 Block Diagrams and Signal Flow Graphs Automatic Control Systems, 9th Edition Farid Golnaraghi, Simon Fraser University Benjamin C. Kuo, University of Illinois 1 Introduction In this chapter,

More information

보고서(겉표지).PDF

보고서(겉표지).PDF 11-13 10148-000092- 01 200 1 04 ( ) 2 0 0 1 ( ) E fficient Rules for Oper atin g the Det en tion B asin an d P umpin g St ation ( ) 2 0 0 1. 12 1 2 11-1310148- 000092-01 ( ) E fficien t Ru les for Oper

More information

서강대학원123호

서강대학원123호 123 2012년 12월 6일 발행인 이종욱 총장 편집인 겸 주간 임종섭 편집장 김아영 (우편번호 121-742) 주소 서울시 마포구 신수동1번지 엠마오관 B133호 대학원신문사 전화 705-8269 팩스 713-1919 제작 일탈기획(070-4404-8447) 웃자고 사는 세상, 정색은 언행 총량의 2%면 족하다는 신념으로 살았습니다. 그 신념 덕분인지 다행히

More information

164

164 에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 163~190 학술 시변파라미터일반화해밀턴 -plucking 모형을이용한전력소비의선제적경기국면판단활용연구 * 163 164 165 166 ~ 167 ln 168 [ 그림 1] 제조업전력판매량 (a) 로그변환

More information

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: NCS : * A Study on

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI:   NCS : * A Study on Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp.157-176 DOI: http://dx.doi.org/10.21024/pnuedi.28.3.201809.157 NCS : * A Study on the NCS Learning Module Problem Analysis and Effective

More information

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu 한 국 통 계 학 회 논 문 집 2012, 19권, 6호, 877 884 DOI: http://dx.doi.org/10.5351/ckss.2012.19.6.877 Maximum Tolerated Dose Estimation Applied Biased Coin Design in a Phase Ⅰ Clinical Trial Yu Kim a, Dongjae Kim

More information

public key private key Encryption Algorithm Decryption Algorithm 1

public key private key Encryption Algorithm Decryption Algorithm 1 public key private key Encryption Algorithm Decryption Algorithm 1 One-Way Function ( ) A function which is easy to compute in one direction, but difficult to invert - given x, y = f(x) is easy - given

More information

I&IRC5 TG_08권

I&IRC5 TG_08권 I N T E R E S T I N G A N D I N F O R M A T I V E R E A D I N G C L U B The Greatest Physicist of Our Time Written by Denny Sargent Michael Wyatt I&I Reading Club 103 본문 해석 설명하기 위해 근래의 어떤 과학자보다도 더 많은 노력을

More information

1.장인석-ITIL 소개.ppt

1.장인석-ITIL 소개.ppt HP 2005 6 IT ITIL Framework IT IT Framework Synchronized Business and IT Business Information technology Delivers: Simplicity, Agility, Value IT Complexity Cost Scale IT Technology IT Infrastructure IT

More information

GEAR KOREA

GEAR KOREA GEAR Original Equipment Manufacturing Gears Support your various needs with our world class engineering skill and the newest manufacturing facilities. 1 2 Nissei creates high-quality high-precision gears

More information

2011´ëÇпø2µµ 24p_0628

2011´ëÇпø2µµ 24p_0628 2011 Guide for U.S. Graduate School Admissions Table of Contents 02 03 04 05 06 08 09 10 11 13 15 21 LEADERS UHAK INTERNATIONAL STUDENTS SERVICE www.leadersuhak.com Leaders Uhak International Students

More information

시안

시안 ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE SCHOOL OF TECHNOLOGY & INNOVATION MANAGEMENT 울산과학기술원 기술경영전문대학원 http://mot.unist.ac.kr 02 03 Global Study Mission CURRICULUM 2 Practicality Global

More information

abstract.dvi

abstract.dvi 통계자료분석 강희모 2014년 5월 14일 목차 제 1장 여러가지평균비교 1 1.1. 단일표본검정.............................. 2 1.2. 독립인두표본검정........................... 4 1.3. 대응표본검정.............................. 9 제 2 장 분산분석(ANalysis Of VAriance)

More information

untitled

untitled SAS Korea / Professional Service Division 2 3 Corporate Performance Management Definition ý... is a system that provides organizations with a method of measuring and aligning the organization strategy

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA The e-business Studies Volume 17, Number 4, August, 30, 2016:319~332 Received: 2016/07/28, Accepted: 2016/08/28 Revised: 2016/08/27, Published: 2016/08/30 [ABSTRACT] This paper examined what determina

More information

Oracle Apps Day_SEM

Oracle Apps Day_SEM Senior Consultant Application Sales Consulting Oracle Korea - 1. S = (P + R) x E S= P= R= E= Source : Strategy Execution, By Daniel M. Beall 2001 1. Strategy Formulation Sound Flawed Missed Opportunity

More information

untitled

untitled R&S Power Viewer Plus For NRP Sensor 1.... 3 2....5 3....6 4. R&S NRP...7 -.7 - PC..7 - R&S NRP-Z4...8 - R&S NRP-Z3... 8 5. Rohde & Schwarz 10 6. R&S Power Viewer Plus.. 11 6.1...12 6.2....13 - File Menu...

More information

DE1-SoC Board

DE1-SoC Board 실습 1 개발환경 DE1-SoC Board Design Tools - Installation Download & Install Quartus Prime Lite Edition http://www.altera.com/ Quartus Prime (includes Nios II EDS) Nios II Embedded Design Suite (EDS) is automatically

More information

11¹Ú´ö±Ô

11¹Ú´ö±Ô A Review on Promotion of Storytelling Local Cultures - 265 - 2-266 - 3-267 - 4-268 - 5-269 - 6 7-270 - 7-271 - 8-272 - 9-273 - 10-274 - 11-275 - 12-276 - 13-277 - 14-278 - 15-279 - 16 7-280 - 17-281 -

More information

, ( ) * 1) *** *** (KCGS) 2003, 2004 (CGI),. (+),.,,,.,. (endogeneity) (reverse causality),.,,,. I ( ) *. ** ***

, ( ) * 1) *** *** (KCGS) 2003, 2004 (CGI),. (+),.,,,.,. (endogeneity) (reverse causality),.,,,. I ( ) *. ** *** , 40 3 4 (2006 12 ) * 1) *** *** (KCGS) 2003, 2004 (CGI),. (+),.,,,.,. (endogeneity) (reverse causality),.,,,. I. 1998. 2005 12 ( ) *. ** *** 2, 40 3 4 37.2%, 20 60%. 80%..,..,.,,, (SCB),,,.,..,, /,..

More information

CDP_Korean-00

CDP_Korean-00 Carbon Disclosure Project Report 2008 Korea 50 On behalf of 385 investors with assets of $57 trillion Report written by CDP work Coordinated by MEMBER 2008 Carbon Disclosure Project 2008 Carbon Disclosure

More information

.,,,,,,.,,,,.,,,,,, (, 2011)..,,, (, 2009)., (, 2000;, 1993;,,, 1994;, 1995), () 65, 4 51, (,, ). 33, 4 30, (, 201

.,,,,,,.,,,,.,,,,,, (, 2011)..,,, (, 2009)., (, 2000;, 1993;,,, 1994;, 1995), () 65, 4 51, (,, ). 33, 4 30, (, 201 4 21.,,,.,,. 1, 2, 3, 4.,,,,,,.,,,,., ( ). 60-66,,,,,.. (Corresponding Author): / / 303 Tel: 063-220-2495/ E-mail: ikkim@jj.ac.kr .,,,,,,.,,,,.,,,,,, (, 2011)..,,, (, 2009)., (, 2000;, 1993;,,, 1994;,

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA FPS게임 구성요소의 중요도 분석방법에 관한 연구 2 계층화 의사결정법에 의한 요소별 상관관계측정과 대안의 선정 The Study on the Priority of First Person Shooter game Elements using Analytic Hierarchy Process 주 저 자 : 배혜진 에이디 테크놀로지 대표 Bae, Hyejin AD Technology

More information

DIY 챗봇 - LangCon

DIY 챗봇 - LangCon without Chatbot Builder & Deep Learning bage79@gmail.com Chatbot Builder (=Dialogue Manager),. We need different chatbot builders for various chatbot services. Chatbot builders can t call some external

More information

untitled

untitled (shared) (integrated) (stored) (operational) (data) : (DBMS) :, (database) :DBMS File & Database - : - : ( : ) - : - : - :, - DB - - -DBMScatalog meta-data -DBMS -DBMS - -DBMS concurrency control E-R,

More information

,,,.,,,, (, 2013).,.,, (,, 2011). (, 2007;, 2008), (, 2005;,, 2007).,, (,, 2010;, 2010), (2012),,,.. (, 2011:,, 2012). (2007) 26%., (,,, 2011;, 2006;

,,,.,,,, (, 2013).,.,, (,, 2011). (, 2007;, 2008), (, 2005;,, 2007).,, (,, 2010;, 2010), (2012),,,.. (, 2011:,, 2012). (2007) 26%., (,,, 2011;, 2006; ,,.. 400,,,,,,.,,, -, -, -., 3.. :, Tel : 010-9540-0640, E-mail : sunney05@hanmail.net ,,,.,,,, (, 2013).,.,, (,, 2011). (, 2007;, 2008), (, 2005;,, 2007).,, (,, 2010;, 2010), (2012),,,.. (, 2011:,, 2012).

More information

, ( ) 1) *.. I. (batch). (production planning). (downstream stage) (stockout).... (endangered). (utilization). *

, ( ) 1) *.. I. (batch). (production planning). (downstream stage) (stockout).... (endangered). (utilization). * , 40 12 (2006 6) 1) *.. I. (batch). (production planning). (downstream stage) (stockout).... (endangered). (utilization). * 40, 40 12 (EPQ; economic production quantity). (setup cost) (setup time) Bradley

More information

에너지경제연구 Korean Energy Economic Review Volume 9, Number 2, September 2010 : pp. 19~41 석유제품브랜드의자산가치측정 : 휘발유를 중심으로 19

에너지경제연구 Korean Energy Economic Review Volume 9, Number 2, September 2010 : pp. 19~41 석유제품브랜드의자산가치측정 : 휘발유를 중심으로 19 에너지경제연구 Korean Energy Economic Review Volume 9, Number 2, September 2010 : pp. 19~41 석유제품브랜드의자산가치측정 : 휘발유를 중심으로 19 20 21 22 23 24 25 < 표 1> 석유제품속성과수준 26 [ 그림 1] 휘발유선택질문 27 ~ ~ < 표 2> 표본의특성 ~ ~ ~ ~ ~ ~

More information

The characteristic analysis of winners and losers in curling: Focused on shot type, shot accuracy, blank end and average score SungGeon Park 1 & Soowo

The characteristic analysis of winners and losers in curling: Focused on shot type, shot accuracy, blank end and average score SungGeon Park 1 & Soowo The characteristic analysis of winners and losers in curling: Focused on shot type, shot accuracy, blank end and average score SungGeon Park 1 & Soowon Lee 2 * 1 Program of Software Convergence, Soongsil

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA 27(2), 2007, 96-121 S ij k i POP j a i SEXR j i AGER j i BEDDAT j ij i j S ij S ij POP j SEXR j AGER j BEDDAT j k i a i i i L ij = S ij - S ij ---------- S ij S ij = k i POP j a i SEXR j i AGER j i BEDDAT

More information

½Éº´È¿ Ãâ·Â

½Éº´È¿ Ãâ·Â Standard and Technology of Full-Dimension MINO Systems in LTE-Advances Pro Massive MIMO has been studied in academia foreseeing the capacity crunch in the coming years. Presently, industry has also started

More information

Å©·¹Àγ»Áö20p

Å©·¹Àγ»Áö20p Main www.bandohoist.com Products Wire Rope Hoist Ex-proof Hoist Chain Hoist i-lifter Crane Conveyor F/A System Ci-LIFTER Wire Rope Hoist & Explosion-proof Hoist Mono-Rail Type 1/2ton~20ton Double-Rail

More information

FMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2

FMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2 FMX FMX 20062 () wwwexellencom sales@exellencom () 1 FMX 1 11 5M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2 FMX FMX D E (one

More information

???? 1

???? 1 The Korean Journal of Applied Statistics (2013) 26(1), 201 208 DOI: http://dx.doi.org/10.5351/kjas.2013.26.1.201 A Note on Model Selection in Mixture Experiments with Process Variables Jung Il Kim a,1

More information

about_by5

about_by5 WWW.BY5IVE.COM BYFIVE CO. DESIGN PARTNERS MAKE A DIFFERENCE BRAND EXPERIENCE CONSULTING & DESIGN PACKAGE / OFF-LINE EDITING CONSULTING & DESIGN USER EXPERIENCE (UI/GUI) / ON-LINE EDITING CONSULTING & DESIGN

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA The e-business Studies Volume 17, Number 6, December, 30, 2016:237~251 Received: 2016/11/20, Accepted: 2016/12/24 Revised: 2016/12/21, Published: 2016/12/30 [ABSTRACT] Recently, there is an increasing

More information

<C0CCBDB4C6E4C0CCC6DB34C8A35F28C3D6C1BE292E687770>

<C0CCBDB4C6E4C0CCC6DB34C8A35F28C3D6C1BE292E687770> 근 과학기술은 거대화 및 융합화 추세와 더불어 그 수명 주기가 점차 짧아지고 있어 연 최 구개발 계획의 수립, 진행, 평가 등의 과정 전반에 보다 객관적이고 정밀한 자료의 중요 성에 제고되는 동시에 치열한 국제경쟁에서의 생존을 위해 속전속결식의 투자와 성장전략보 다는 엄밀한 투자타당성 평가에 기반한 객관적이고 장기적인 투자전략 수립이 요구되고 있다. 이러한

More information

학습영역의 Taxonomy에 기초한 CD-ROM Title의 효과분석

학습영역의 Taxonomy에 기초한 CD-ROM Title의 효과분석 ,, Even the short history of the Web system, the techniques related to the Web system have b een developed rapidly. Yet, the quality of the Webbased application software has not improved. For this reason,

More information