PowerPoint 프레젠테이션

Size: px
Start display at page:

Download "PowerPoint 프레젠테이션"

Transcription

1

2 솔리드웨어프로젝트현황 데이터자동전처리 Machine Learning 기법적용 예측모델산출 CSS, 보험 Underwriting, Marketing, CRM 자동차보험고객손해액예측솔루션개발 개인대출고객연체율예측솔루션개발 Machine Learning 기반대안적 U/W 모형개발 소매중금리신용평가모형개발 AS 신용평가모형고도화프로젝트 기업을위한실질적가치창출용 인공지능솔루션

3 핵심기술 : Machine Learning 가장발전된빅데이터분석기술

4 컴퓨터과학및인공지능의하위분야로서, 데이터를통한알고리즘트레이닝에기초하며, 복잡하고정교한예측함수를도출하여 추정하고자하는미래의값들을구합니다.

5 Machine Learning 은다양한 IT 기업에서 활용된바있으며, 수많은실적을통해 이미성능이검증된기술입니다. Machine Learning 성공사례 광고업, 검색엔진, 스팸탐지, 음성인식, 광고업, 검색엔진, Kinect, 광고업, 상품추천, 상품인식, 광고업, 뉴스피드, 친구추천, 얼굴인식,

6 최근 Machine Learning 이부각되는이유는? 1. 고성능컴퓨터의보편화 2. 보다향상된알고리즘 3. 증가된데이터의양 현재존재하는모든데이터의 90% 를지난 2 년간생산했을정도로우리는수많은데이터를생산하고있다 " - Petter Bae Brandtzæ g, SINTEF ICT

7 Computer Vision 분야내 Machine Learning 연혁 1980s 정렬법 2000s 가변형모델 모델기반 통합 데이터기반 1970s 수공모델 1990s 격자모델 2010s 융합네트워크

8 Computer Vision 연구원이사용하는데이터의양은? 2004 Caltech K 이미지사용 Pascal VOC 2K 30K 물체사용 Image Net 10M 15M 이미지사용 Image source: Image source:

9 데이터의양이답이다 고성능알고리즘도데이터가부족하면무의미함 딥러닝과같은기술을적용하려면어마어마한양의데이터가요구됨 데이터의양이증가할수록예측모델은더욱복잡해지는동시에과적합 (Overfitting) 문제를극복하며예측력이향상됨 Image source - Smartdatacollective.com

10 데이터의양만큼중요한알고리즘의역할 해결하고자하는문제와회사목적의특징에맞춘알고리즘필요 A B C 딥러닝 신경망 로지스틱회귀분석 Deep learning K-Nearest neighbors Support vector machines Boosting Artificial neural networks Bayesian networks Sparse dictionary learning Regression forest

11 머신러닝일반방법론 사람이수행하는통계기법이아닌자동화된 Machine-Driven 분석기법을통해전략최적화및운영효율성극대화 문제인식 데이터가공 문제인식 데이터가공 평가및결과관찰 모델 Launch Human-Driven Supported by Machines 데이터탐색 변형및선택 평가및결과관찰 모델 Launch Machine-Driven Supervised by Humans 데이터탐색 변형및선택 모델검증 모델개발 모델검증 모델개발 통계기반분석프로세스의모든단계사용자인풋필요 사람의직관및배경지식이분석방법및결과판단기준의척도로오판단가능성존재 기법특성상제한된양의데이터활용 Machine Learning 알고리즘을통한분석프로세스의자동화로효율적이고더정교한데이터분석이가능함 사람의개입이최소화되어오판단가능성최소화 기법특성상모든데이터활용가능

12 Machine Learning for Everyone : How to internalize the tech

13 DAVinCI LABS DAVinCI LABS 는 머신러닝또는컴퓨터공학을전공하지않은비전문사용자도그가치를충분히누릴수있도록설계된세계유일의 Machine Learning 인공지능데이터분석솔루션 실제로다양한기업프로젝트수행을통해축적된솔리드웨어팀노하우가그대로담겨져있는기업형실용기능을제공, 비즈니스실무진의편의성을최대화 데이터의가공부터리포트까지, end-to-end 의 seamless 한생태계를구축 기존빅데이터 /Machine Learning 의한계를극복한최적의예측솔루션 과적합등의예측오류최소화 설명력저하 (black box) 를막기위한풍부한시각화및리포팅 다양한데이터분할기능 3. 자동화된스마트데이터전처리지원 ( 결측값 / 중복값 / 극단값 / 변수타입등 ) 4. 알고리즘자동최적화를통한예측력향상및과적합방지 5. 분석전과정에걸친뛰어난시각화 6. 다양한분석결과를비교, 출력할수있는리포팅시스템 알고리즘파라미터최적화 1. 편리한분석환경 자체고안된직관적 UI/UX 지원 2. 실무사용자의니즈반영 자동화된데이터전처리 비즈니스룰적용 ( 클러스터생성 ) 등다양한기능 도출된예측함수의추출 / 통합지원을통한활용성강화 모델평가및성과측정 클러스터생성

14 DAVinCI LABS 분석프로세스별모듈 ILLUSTRATION 전처리모듈 분석모듈시각화모듈리포팅모듈 자동전처리기능 자동적으로최적알고리즘선택 직관적인시각화를통한분석결과표기 다양한알고리즘적용결과간비교분석 데이터를자동으로머신러닝적용가능데이터로변환 각종결측값 / 극단값및중복값등에 robust 한스마트데이터전처리제공 변수타입자동설정 최적변수변환지원 중요항목자동분석및 feature engineering 수행을통한과적합최소화 인공지능기반의알고리즘파라미터세팅최적화 알고리즘들의선형조합으로예측력극대화 최적군집 / 클러스터자동생성기능 시계열 /random 등다양한데이터분할기능제공 알고리즘간조합가능 분석프로세스전반에걸친각파트별시각화 변수및군집분포도 EDA 를통한정교한모델설계지원 정확도 / 재현율및기대수익등다양한모델평가시각화지원 리포팅을통한데이터및프로젝트관련다양한모델링비교분석기능 최종결과물을유저가원하는형태로 export 지원 C/JAVA/Lib/ 수식등다양한형태로예측함수추출가능

15 프로젝트수행및적용 Process 고도화예측모형생성 Project( 알고리즘최적화및시스템개발기간 1 개월 ) : 솔리드웨어의 ML Scientist 가 DAVinCI Core 를활용, 고객사의프로젝트목적에맞는 Customized Prediction Model( 커스텀예측모형 ) 을개발하여고객사데이터환경과의통합수행 고객사 DB (BIG DATA) 금융, 소비재, 소매, 무역등다양한분야의과거데이터활용 DAVinCI Core (DAVinCI LABS 분석엔진 ) Data Scientist (Solidware) DAVinCI Core 가탑재된솔리드웨어서버를활용, 솔리드웨어데이터사이언티스트의고객사 DB 분석수행 고객사의프로젝트목적에최적화된예측모형생성 머신러닝알고리즘기반커스터마이징된전처리기능등고객사환경에특화된맞춤형솔루션구축 Project 종료이후운용 (DAVinCI LABS Integration) : 머신러닝사이언티스트의노하우가담긴 Customized DAVinCI LABS 를통해기존의신용평가모델사용과더불어다양한예측분석에활용가능 ID : Solidware Name : Stephen Sex : Male Age :?? 신규데이터유입 (NEW DATA) 신규데이터발생 / 투입시 DAVinCI LABS 가데이터의변동을자동적으로반영하여예측모형 Update 실시 DAVinCI Studio (DAVinCI LABS 시각화엔진 ) 현업실무자 (Client) 솔리드웨어머신러닝사이언티스트의노하우및사고흐름을 DAVinCI LABS 를통해고객사현업부서에내재화, 분석솔루션의범용적활용기반마련 타겟마케팅조기경보투자운용 DAVinCI LABS 를활용, 지속가능한예측분석가능 고객사의환경및니즈에맞춰통합된 DAVinCI LABS 를활용, 신용평가외의예측 ( 타겟마케팅, 이탈감지등 ) 모형을자체적으로생성가능

16 유지보수방안및지원체계 예측모형업데이트작업필요시자체적으로 DAVinCI LABS 를통해유지보수작업가능 모형업데이트작업필요요건사항 : 1. 신규변수추가 2. 기존변수특성퇴색 3. 데이터양추가 4. 고객군 Trend 변화 5. 고객사내부정책변경 6. DAVinCI LABS 내부기능 (Module) 추가 일정시점이후상기모형업데이트작업필요요건사항발생시 변경사항반영된신용평가모형도출 기존모형 신규모형 DAVinCI LABS 를통한유지보수관련장점 1. 자체적인유지보수를통해수행인력관련비용대폭절감 ( 필요시 On-Demand 서포트제공가능 ) 2. 고객사와제안사간의불필요한커뮤니케이션을배제하여업데이트작업일정최소화 3. 즉각적인모형업데이트를통한사업프로세스지체요소제거

17 Case I 상세기능별 Use Case Example 신용평가 (Credit Scoring) 개요신규금융상품셀링을위한타겟고객신용도평가지표산출 Credit Scoring 업종 부서 목적 각종금융사 심사팀 / 리스크관리팀 산출지표를통한채무불이행고객예측및대응 Case II 타겟마케팅 (Target Marketing) Target Marketing 개요업종부서목적 고객의라이프스타일 / 스테이지등패턴분석을통한유효타겟집단산출각종서비스업마케팅 / 홍보팀타겟고객집단특성도출을통한소구포인트파악과매출 drive 전략수립 Case II 고객이탈예측 (Churn Detection) Churn Detection 개요업종부서목적 고객 retention을위한핵심지표산출각종서비스업영업산출지표를통한이상고객집중관리전략수립

18 Vision 애플이초기컴퓨터기술과일반사용자를이어주는다리가되었다면, 솔리드웨어는인공지능기반분석기술과일반사용자를연결하는것을지향 초기컴퓨터기술 Apple Eco-System 사용자 목적 : 과학 / 군사용 개발 : 연구원 / 전문가집단 미국의 2 억 3 천 5 백만인구중, 오직극소수의사람만이컴퓨터를사용할수있다 , 애플 Think different. 대상 : 일반사용자 ( 개인 / 기업 / 대학 ) 인공지능기술 사용자 목적 : 과학 / 기타 개발 : 학계 / 연구소 / 거대 IT 기업 Your Personal Artificial Intelligence 데이터전처리 분석 시각화 리포트 Creation Of Insights 리스크관리 OCR 운영관리자동화 GBM ETL Neural Network VTT 타겟마케팅 의사결정최적화 Etc. Etc. Regression Forest 대상 : 일반사용자 ( 개인 / 기업 ( 중소규모포함 )/ 공공기관 / 대학 )

19

빅데이터_DAY key

빅데이터_DAY key Big Data Near You 2016. 06. 16 Prof. Sehyug Kwon Dept. of Statistics 4V s of Big Data Volume Variety Velocity Veracity Value 대용량 다양한 유형 실시간 정보 (불)확실성 가치 tera(1,0004) - peta -exazetta(10007) bytes in 2020

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 I. 문서표준 1. 문서일반 (HY중고딕 11pt) 1-1. 파일명명체계 1-2. 문서등록정보 2. 표지표준 3. 개정이력표준 4. 목차표준 4-1. 목차슬라이드구성 4-2. 간지슬라이드구성 5. 일반표준 5-1. 번호매기기구성 5-2. 텍스트박스구성 5-3. 테이블구성 5-4. 칼라테이블구성 6. 적용예제 Machine Learning Credit Scoring

More information

Æí¶÷4-¼Ö·ç¼Çc03ÖÁ¾š

Æí¶÷4-¼Ö·ç¼Çc03ÖÁ¾š 솔루션 2006 454 2006 455 2006 456 2006 457 2006 458 2006 459 2006 460 솔루션 2006 462 2006 463 2006 464 2006 465 2006 466 솔루션 2006 468 2006 469 2006 470 2006 471 2006 472 2006 473 2006 474 2006 475 2006 476

More information

김기남_ATDC2016_160620_[키노트].key

김기남_ATDC2016_160620_[키노트].key metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 [ 인공지능입문랩 ] SEOPT ( Study on the Elements Of Python and Tensorflow ) 인공지능 + 데이터분석목적 / 방법 / 기법 / 도구 + Python Programming 기초 + NumpyArray(Tensor) youngdocseo@gmail.com 1 *3 시간 / 회 구분일자내용비고 1 회 0309

More information

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB>

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB> 주간기술동향 2016. 2. 24. 최신 ICT 이슈 인공지능 바둑 프로그램 경쟁, 구글이 페이스북에 리드 * 바둑은 경우의 수가 많아 컴퓨터가 인간을 넘어서기 어려움을 보여주는 사례로 꼽혀 왔 으며, 바로 그런 이유로 인공지능 개발에 매진하는 구글과 페이스북은 바둑 프로그램 개 발 경쟁을 벌여 왔으며, 프로 9 단에 도전장을 낸 구글이 일단 한발 앞서 가는

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 ㆍ Natural Language Understanding 관련기술 ㆍ Semantic Parsing Conversational AI Natural Language Understanding / Machine Learning ㆍEntity Extraction and Resolution - Machine Learning 관련기술연구개발경험보유자ㆍStatistical

More information

Ch 1 머신러닝 개요.pptx

Ch 1 머신러닝 개요.pptx Chapter 1. < > :,, 2017. Slides Prepared by,, Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 1.1 3 1.2... 7 1.3 10 1.4 16 1.5 35 2 1 1.1 n,, n n Artificial

More information

..........(......).hwp

..........(......).hwp START START 질문을 통해 우선순위를 결정 의사결정자가 질문에 답함 모형데이터 입력 목표계획법 자료 목표계획법 모형에 의한 해의 도출과 득실/확률 분석 END 목표계획법 산출결과 결과를 의사 결정자에게 제공 의사결정자가 결과를 검토하여 만족여부를 대답 의사결정자에게 만족하는가? Yes END No 목표계획법 수정 자료 개선을 위한 선택의 여지가 있는지

More information

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월 지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., 2004 5 2009 12 KOSPI200.,. * 2009. 지능정보연구제 16 권제 1 호 2010 년 3 월 김선웅 안현철 社 1), 28 1, 2009, 4. 1. 지능정보연구제 16 권제 1 호 2010 년 3 월 Support

More information

분석기법의기본개념부터활용까지사례중심의 A to Z 학습 데이터분석기본 교육기간 : 3 일 (24 시간 )/ 비합숙 교육비 : 회원 62 만원 / 비회원 69 만원 데이터분석핵심이론학습및현업에적용 현장에서발생하는변수를이해하고상황에따른최적화방안도출 품질향상을위한부적합원인도

분석기법의기본개념부터활용까지사례중심의 A to Z 학습 데이터분석기본 교육기간 : 3 일 (24 시간 )/ 비합숙 교육비 : 회원 62 만원 / 비회원 69 만원 데이터분석핵심이론학습및현업에적용 현장에서발생하는변수를이해하고상황에따른최적화방안도출 품질향상을위한부적합원인도 인간이사용하는언어를분석하는기법과다양한데이터를그래프로표현하는방법학습 텍스트데이터수집과감성분석 인터넷에있는다양한비정형데이터수집 고객이회사의어떤서비스에불만을갖는지를자동으로분석 분석된결과를데이터의특징에맞게다양한그래프로표현 데이터분석실무자, 마케팅기획실무담당자 비정형데이터분석 데이터시각화 사용자언어의분석과시각화 키워드 / 감성분석 형태소분석 분석결과시각화 비정형데이터의수집,

More information

Microsoft PowerPoint - 실습소개와 AI_ML_DL_배포용.pptx

Microsoft PowerPoint - 실습소개와 AI_ML_DL_배포용.pptx 실습강의개요와인공지능, 기계학습, 신경망 < 인공지능입문 > 강의 허민오 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 실습강의개요 노트북을꼭지참해야하는강좌 신경망소개 (2 주, 허민오 ) Python ( 프로그래밍언어 ) (2주, 김준호

More information

_KrlGF발표자료_AI

_KrlGF발표자료_AI AI 의과거와현재그리고내일 AI is the New Electricity 2017.09.15 AI! 2 Near Future of Super Intelligence? *source l http://www.motherjones.com/media/2013/05/robots-artificial-intelligence-jobs-automation 3 4 I think

More information

<BFACB1B831382D31355FBAF2B5A5C0CCC5CD20B1E2B9DDC0C720BBE7C0CCB9F6C0A7C7E820C3F8C1A4B9E6B9FD20B9D720BBE7C0CCB9F6BBE7B0ED20BFB9C3F8B8F0C7FC20BFACB1B82D33C2F7BCF6C1A E687770>

<BFACB1B831382D31355FBAF2B5A5C0CCC5CD20B1E2B9DDC0C720BBE7C0CCB9F6C0A7C7E820C3F8C1A4B9E6B9FD20B9D720BBE7C0CCB9F6BBE7B0ED20BFB9C3F8B8F0C7FC20BFACB1B82D33C2F7BCF6C1A E687770> Ⅳ. 사이버사고예측모델개발 사이버보험시장활성화를위해서는표준데이터개발이필요하다. 이를위하여이전장에서는빅데이터기반의사이버위험측정체계를제안하였다. 본장에서는제안된사이버위험지수를이용하여사이버사고 (Cyber Incident) 를예측하는모델을개발하고자한다. 이는향후정확한보험금산출에기여할것으로기대한다. 최근빅데이터, 인공지능 (Artificial Intelligence),

More information

김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월

김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월 지능정보연구제 17 권제 4 호 2011 년 12 월 (pp.241~254) Support vector machines(svm),, CRM. SVM,,., SVM,,.,,. SVM, SVM. SVM.. * 2009() (NRF-2009-327- B00212). 지능정보연구제 17 권제 4 호 2011 년 12 월 김경재 안현철 지능정보연구제 17 권제 4 호

More information

OZ-LMS TM OZ-LMS 2008 OZ-LMS 2006 OZ-LMS Lite Best IT Serviece Provider OZNET KOREA Management Philosophy & Vision Introduction OZNETKOREA IT Mission Core Values KH IT ERP Web Solution IT SW 2000 4 3 508-2

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 빅데이터분석의현재와미래 2018 동국대학교통계학과이영섭 yung@dongguk.edu 데이터마이닝 (Data Mining) 데이터마이닝과 KDD KDD (Knowledge Discovery in Data) 란? - 데이터에서숨겨져있는유용한패턴들을알아나가는전체적인과정 KDD 학회의변천사 - Knowledge Discovery in Databases(1989)

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Agenda 회사소개 Customer challenges Pre-Configured Solution 사례 Special offer or promotion Predictive Analytics Industry Experience Big Data 회사소개 - 일반 DS-eTrade Microsoft 의 Cloud Platform & Data Platform 파트너

More information

슬라이드 1

슬라이드 1 Data-driven Industry Reinvention All Things Data Con 2016, Opening speech SKT 종합기술원 최진성원장 Big Data Landscape Expansion Big Data Tech/Biz 진화방향 SK Telecom Big Data Activities Lesson Learned and Other Topics

More information

슬라이드 1

슬라이드 1 빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 9 주차 예측모형에대한평가 Assessment of Predictive Model 최종후, 강현철 차례 6. 모형평가의기본개념 6.2 모델비교 (Model Comparison) 노드 6.3 임계치 (Cutoff) 노드 6.4 의사결정 (Decisions) 노드 6.5 기타모형화노드들

More information

Disclaimer IPO Presentation,. Presentation...,,,,, E.,,., Presentation,., Representative...

Disclaimer IPO Presentation,. Presentation...,,,,, E.,,., Presentation,., Representative... DEXTER STUDIOS INVESTOR RELATIONS 2015 Disclaimer IPO Presentation,. Presentation...,,,,, E.,,., Presentation,., Representative... Contents Prologue 01 VFX 02 China 03 Investment Highlights 04 Growth Engine

More information

U.Tu System Application DW Service AGENDA 1. 개요 4. 솔루션 모음 1.1. 제안의 배경 및 목적 4.1. 고객정의 DW구축에 필요한 메타정보 생성 1.2. 제품 개요 4.2. 사전 변경 관리 1.3. 제품 특장점 4.3. 부품화형

U.Tu System Application DW Service AGENDA 1. 개요 4. 솔루션 모음 1.1. 제안의 배경 및 목적 4.1. 고객정의 DW구축에 필요한 메타정보 생성 1.2. 제품 개요 4.2. 사전 변경 관리 1.3. 제품 특장점 4.3. 부품화형 AGENDA 1. 개요 4. 솔루션 모음 1.1. 제안의 배경 및 목적 4.1. 고객정의 DW구축에 필요한 메타정보 생성 1.2. 제품 개요 4.2. 사전 변경 관리 1.3. 제품 특장점 4.3. 부품화형 언어 변환 1.4. 기대 효과 4.4. 프로그램 Restructuring 4.5. 소스 모듈 관리 2. SeeMAGMA 적용 전략 2.1. SeeMAGMA

More information

BuzzAd Optimizer Proposal for partner 1

BuzzAd Optimizer Proposal for partner 1 BuzzAd Optimizer Proposal for partner 1 Index About Buzzvil About Ads Monetization 미디에이션 소개 수익 최적화 로직 About BuzzAd Optimizer 옵티마이저 특장점 빅데이터 활용 하이브리드 미디에이션 로직 모든 배너, 네이티브 지면 지원 운영편의성 레퍼런스 2 About Buzzvil

More information

<4D6963726F736F667420576F7264202D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>

<4D6963726F736F667420576F7264202D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5> 주간기술동향 2016. 5.18. 컴퓨터 비전과 인공지능 장혁 한국전자통신연구원 선임연구원 최근 많은 관심을 받고 있는 인공지능(Artificial Intelligence: AI)의 성과는 뇌의 작동 방식과 유사한 딥 러닝의 등장에 기인한 바가 크다. 이미 미국과 유럽 등 AI 선도국에서는 인공지능 연구에서 인간 뇌 이해의 중요성을 인식하고 관련 대형 프로젝트들을

More information

Data Industry White Paper

Data Industry White Paper 2017 2017 Data Industry White Paper 2017 1 3 1 2 3 Interview 1 ICT 1 Recommendation System * 98 2017 Artificial 3 Neural NetworkArtificial IntelligenceAI 2 AlphaGo 1 33 Search Algorithm Deep Learning IBM

More information

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018)   ISSN (Special Paper) 23 2, 2018 3 (JBE Vol. 23, No. 2, March 2018) https://doi.org/10.5909/jbe.2018.23.2.186 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a) Robust Online Object Tracking via Convolutional

More information

<4D F736F F F696E74202D203137C0E55FBFACBDC0B9AEC1A6BCD6B7E7BCC72E707074>

<4D F736F F F696E74202D203137C0E55FBFACBDC0B9AEC1A6BCD6B7E7BCC72E707074> SIMATIC S7 Siemens AG 2004. All rights reserved. Date: 22.03.2006 File: PRO1_17E.1 차례... 2 심벌리스트... 3 Ch3 Ex2: 프로젝트생성...... 4 Ch3 Ex3: S7 프로그램삽입... 5 Ch3 Ex4: 표준라이브러리에서블록복사... 6 Ch4 Ex1: 실제구성을 PG 로업로드하고이름변경......

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 사람인 LAB 매칭기술팀김정길 INDEX ) 취업포털관점의 4 차산업혁명기술동향분석 2) 비전공자의소프트웨어일자리진출현황분석 기술과동반한산업혁명의흐름 4 차산업혁명 정보기술기반의초연결혁명 (2 세기후반 ) 3 차산업혁명 인공지능 (AI),MachineLearning( 머신러닝 ), DeepLearning( 딥러닝 ), 사물인터넷 (IoT), Big-data(

More information

용어사전 PDF

용어사전 PDF 0100010111000101010100101010101010010101010010101010101000101010101010101010101010001001011000101001010100001010111010 1101101101111010011101010010101000010111010000101010101010101110010010011111101010101010010101010101010100101010100001

More information

KAKAO AI REPORT Vol.01

KAKAO AI REPORT Vol.01 KAKAO AI REPORT Vol.01 2017.03 import kakao.ai.dataset.daisy import kakao.ai.image import kakao.ai.classifier import mxnet as mx def Conv(data, num_filter, kernel=(1, 1), stride=(1, 1), pad=(0, 0), name=none,

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 2003 CRM (Table of Contents). CRM. 2003. 2003 CRM. CRM . CRM CRM,,, Modeling Revenue Legacy System C. V. C. C V.. = V Calling Behavior. Behavior al Value Profitability Customer Value Function Churn scoring

More information

Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제

Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, 2018 1 1.1 Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 6.5에서 찾아볼 수 있다. http://incompleteideas.net/book/bookdraft2017nov5.pdf

More information

ecorp-프로젝트제안서작성실무(양식3)

ecorp-프로젝트제안서작성실무(양식3) (BSC: Balanced ScoreCard) ( ) (Value Chain) (Firm Infrastructure) (Support Activities) (Human Resource Management) (Technology Development) (Primary Activities) (Procurement) (Inbound (Outbound (Marketing

More information

슬라이드 0

슬라이드 0 지능형보험부당청구탐지와예측 위세아이텍 김상수 0 11 부당청구탐지서비스의차별적경쟁우위를확보하기위함임 도입배경 프로젝트목적 효과적조사대상선정 보험부당청구세그먼트별탐지모형차별화 머신러닝기반탐지정확도향상 기대효과 최신기술기반민첩한탐지 머신러닝을이용한데이터기반모형 학습과탐지모형의구조화 보험사기는해마다다양한방법으로 10% 씩증가하는추세이다. 2016 년한해동안적발된보험사기금액은전년대비

More information

정보기술응용학회 발표

정보기술응용학회 발표 , hsh@bhknuackr, trademark21@koreacom 1370, +82-53-950-5440 - 476 - :,, VOC,, CBML - Abstract -,, VOC VOC VOC - 477 - - 478 - Cost- Center [2] VOC VOC, ( ) VOC - 479 - IT [7] Knowledge / Information Management

More information

세션 Tutorial 1 강연 시간 5/11(수) 09:30-11:30 주 제 5G System: Vision & Enabling Technologies 성 명 강충구 소속기관명 고려대학교 부서/학과명 전기전자공학부 직 위 교수 5G 이동통신의 응용 분야에 따른 기술

세션 Tutorial 1 강연 시간 5/11(수) 09:30-11:30 주 제 5G System: Vision & Enabling Technologies 성 명 강충구 소속기관명 고려대학교 부서/학과명 전기전자공학부 직 위 교수 5G 이동통신의 응용 분야에 따른 기술 세션 초청강연 강연 시간 5/11(수) 11:50-12:30 세션 초청강연 주 제 제4차 산업혁명과 소프트파워 성 명 윤종록 소속기관명 정보통신산업진흥원 부서/학과명 직 위 원장 1~3차 산업혁명에서는 노동력이 중요했으나, 4차 산업혁명의 키워드는 창의력! 4차 산업혁명은 창의력과 소프트파워가 결합된 새로운 시대로 최근 의 산업계 변화는 창의력을 바탕으로 한

More information

슬라이드 1

슬라이드 1 대중을위한빅데이터 CDS 를위한분석 2018. 4. 11 ( 수 ) 2018 BI Conference 비아이매트릭스윤성웅수석컨설턴트 Copyright (c) BI MATRIX Co., Ltd. 2016. All rights reserved. 생각의시작점 아는것과실행하는것은많은차이가있다. http://uproxx.com/movies/matrix-best-lines/

More information

BSC Discussion 1

BSC Discussion 1 Copyright 2006 by Human Consulting Group INC. All Rights Reserved. No Part of This Publication May Be Reproduced, Stored in a Retrieval System, or Transmitted in Any Form or by Any Means Electronic, Mechanical,

More information

이도경, 최덕재 Dokyeong Lee, Deokjai Choi 1. 서론

이도경, 최덕재 Dokyeong Lee, Deokjai Choi 1. 서론 이도경, 최덕재 Dokyeong Lee, Deokjai Choi 1. 서론 2. 관련연구 2.1 MQTT 프로토콜 Fig. 1. Topic-based Publish/Subscribe Communication Model. Table 1. Delivery and Guarantee by MQTT QoS Level 2.1 MQTT-SN 프로토콜 Fig. 2. MQTT-SN

More information

IBM SPSS Statistics 제품 소개 (2017 Aug)

IBM SPSS Statistics 제품 소개 (2017 Aug) IBM SPSS Statistics 제품소개 -V25 및 Subscription 2017 Aug ecustomercare Center 담당자 ( 한국어지원 ) 무료전화 : 007986112156 메일주소 : ecareap@sg.ibm.com 2017 IBM Corporation IBM SPSS ü SPSS Statistics SPSS Modeler SPSS

More information

[한반도]한국의 ICT 현주소(송부)

[한반도]한국의 ICT 현주소(송부) ICT 2016. 5. 3 SKT KT LGU+ ( ) ( ) ( ) 18,000 15939 16141 16602 17164 17137 18,000 21990 23856 23811 23422 22281 12,000 10905 11450 11000 10795 13,500 13,425 9,000 9185 9,000 8,850 6,000 4,500 4,275 3,000-0

More information

마닝

마닝 아는것과그것을행동하는것은다르다 생각하는하는백성이야산다. - 함석헌 4 차산업혁명핵심데이터가공플랫폼 (DMP): 스마트시티사례중심 2015 EN-CORE. All rights reserved. Data Scientist : 엔코아데이터서비스센터장김옥기 Data Driven Strategy Consulting okkim@en-core.com 4 차산업혁명의핵심데이터가공플랫폼

More information

data driven_3.indd

data driven_3.indd Sponsored by 무단 전재 재배포 금지 본 PDF 문서는 IDG Korea의 프리미엄 회원에게 제공하는 문서로, 저작권법의 보호를 받습니다. IDG Korea의 허락 없이 PDF 문서를 온라인 사이트 등에 무단 게재, 전재하거나 유포할 수 없습니다. Market Trend I D G T e c h F o c u s 1 2 3 Tech Guide I D

More information

第 1 節 組 織 11 第 1 章 檢 察 의 組 織 人 事 制 度 등 第 1 項 大 檢 察 廳 第 1 節 組 대검찰청은 대법원에 대응하여 수도인 서울에 위치 한다(검찰청법 제2조,제3조,대검찰청의 위치와 각급 검찰청의명칭및위치에관한규정 제2조). 대검찰청에 검찰총장,대

第 1 節 組 織 11 第 1 章 檢 察 의 組 織 人 事 制 度 등 第 1 項 大 檢 察 廳 第 1 節 組 대검찰청은 대법원에 대응하여 수도인 서울에 위치 한다(검찰청법 제2조,제3조,대검찰청의 위치와 각급 검찰청의명칭및위치에관한규정 제2조). 대검찰청에 검찰총장,대 第 1 章 檢 察 의 組 織 人 事 制 度 등 第 1 節 組 織 11 第 1 章 檢 察 의 組 織 人 事 制 度 등 第 1 項 大 檢 察 廳 第 1 節 組 대검찰청은 대법원에 대응하여 수도인 서울에 위치 한다(검찰청법 제2조,제3조,대검찰청의 위치와 각급 검찰청의명칭및위치에관한규정 제2조). 대검찰청에 검찰총장,대검찰청 차장검사,대검찰청 검사,검찰연구관,부

More information

제1강 인공지능 개념과 역사

제1강 인공지능 개념과 역사 인공지능개념과역사 < 인공지능입문 > 강의노트 장병탁서울대학교컴퓨터공학부 & 인지과학 / 뇌과학협동과정 http://bi.snu.ac.kr/~btzhang/ Version: 20180302 목차 인공지능의개념........ 3 연구분야............ 4 역사...... 6 패러다임........ 7 응용사례.......... 8 Reading Assignments.........

More information

REP - CP - 016, N OVEMBER 사진 요약 25 가지 색상 Surf 를 이용한 사진 요약과 사진 배치 알고리즘 Photo Summarization - Representative Photo Selection based on 25 Color Hi

REP - CP - 016, N OVEMBER 사진 요약 25 가지 색상 Surf 를 이용한 사진 요약과 사진 배치 알고리즘 Photo Summarization - Representative Photo Selection based on 25 Color Hi 1 사진 요약 25 가지 색상 Surf 를 이용한 사진 요약과 사진 배치 알고리즘 Photo Summarization - Representative Photo Selection based on 25 Color Histogram and ROI Extraction using SURF 류동성 Ryu Dong-Sung 부산대학교 그래픽스 연구실 dsryu99@pusan.ac.kr

More information

15인플레이션01-목차1~9

15인플레이션01-목차1~9 ISSN 87-381 15. 1 15. 1 13 1 1.3 1. 1.8 1.5 1. 1.1 () 1.5 1..1 1.8 1.7 1.3 () 1..7.6...3 (). 1.5 3.6 3.3.9. 6.3 5.5 5.5 5.3.9.9 ().6.3.. 1.6 1. i 6 5 6 5 5 5 3 3 3 3 1 1 1 1-1 -1 13 1 1).6..3.1.3.

More information

다중 곡면 검출 및 추적을 이용한 증강현실 책

다중 곡면 검출 및 추적을 이용한 증강현실 책 1 딥러닝기반성별및연령대 추정을통한맞춤형광고솔루션 20101588 조준희 20131461 신혜인 2 개요 연구배경 맞춤형광고의필요성 성별및연령별주요관심사에적합한광고의필요성증가 제한된환경에서개인정보획득의한계 맞춤형광고의어려움 영상정보기반개인정보추정 연구목표 딥러닝기반사용자맞춤형광고솔루션구현 얼굴영상을이용한성별및연령대추정 성별및연령대를통합네트워크로학습하여추정정확도향상

More information

자동화된 소프트웨어 정의 데이터센터

자동화된 소프트웨어 정의 데이터센터 사례로보는 Big Data 프로젝트의 Success Factor 한지수이사 한국이엠씨컴퓨터시스템즈 1 목차 Big Data는무엇인가? BI/DW와 Big Data의차이점? Big Data프로젝트의목표 Big Data 프로젝트수행의 3가지어려움 Big Data 프로젝트사례와시사점 Key Success Factor Big Data 수행을위한조직 Big Data

More information

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: NCS : * A Study on

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI:   NCS : * A Study on Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp.157-176 DOI: http://dx.doi.org/10.21024/pnuedi.28.3.201809.157 NCS : * A Study on the NCS Learning Module Problem Analysis and Effective

More information

연구보고서 2009-05 일반화선형모형 (GLM) 을이용한 자동차보험요율상대도산출방법연구 Ⅰ. 요율상대도산출시일반화선형모형활용방법 1. 일반화선형모형 2 연구보고서 2009-05 2. 일반화선형모형의자동차보험요율산출에적용방법 요약 3 4 연구보고서 2009-05 Ⅱ. 일반화선형모형을이용한실증분석 1. 모형적용기준 < > = 요약 5 2. 통계자료및통계모형

More information

보고싶었던 Deep Learning과 OpenCV를이용한이미지처리과정에대해공부를해볼수있으며더나아가 Deep Learning기술을이용하여논문을작성하는데많은도움을받을수있으며아직배우는단계에있는저에게는기존의연구를따라해보는것만으로도큰발전이있다고생각했습니다. 그래서이번 DSP스마

보고싶었던 Deep Learning과 OpenCV를이용한이미지처리과정에대해공부를해볼수있으며더나아가 Deep Learning기술을이용하여논문을작성하는데많은도움을받을수있으며아직배우는단계에있는저에게는기존의연구를따라해보는것만으로도큰발전이있다고생각했습니다. 그래서이번 DSP스마 특성화사업참가결과보고서 작성일 2017 12.22 학과전자공학과 참가활동명 EATED 30 프로그램지도교수최욱 연구주제명 Machine Learning 을이용한얼굴학습 학번 201301165 성명조원 I. OBJECTIVES 사람들은새로운사람들을보고인식을하는데걸리는시간은 1초채되지않다고합니다. 뿐만아니라사람들의얼굴을인식하는인식률은무려 97.5% 정도의매우높은정확도를가지고있습니다.

More information

NH 은행빅데이터플랫폼구축사례

NH 은행빅데이터플랫폼구축사례 SAS FORUM NH 농협은행의분석플랫폼구축사례와디지털트랜스포메이션을위한 SAS 플랫폼 NH 은행빅데이터플랫폼구축사례 APPERANCE NH BANK big-data platform TEXT Log EDW/ MART External Data SAS VIYA VDMML ( 16 node / 256 core / 4TB mem ) HADOOP Analytic Process

More information

사회통계포럼

사회통계포럼 wcjang@snu.ac.kr Acknowledgements Dr. Roger Peng Coursera course. https://github.com/rdpeng/courses Creative Commons by Attribution /. 10 : SNS (twitter, facebook), (functional data) : (, ),, /Data Science

More information

목 차 국문요약 ⅰ ABSTRACT ⅲ 그림목차 ⅴ 표목차 ⅵ 1 1 3 4 4 5 6 9 11 11 13 16 32 32 3.1.1 초고층건축물의정의 32 3.1.2 대상모델개요 32 3.1.3 대상모델의모델링 35 3.1.4 CFD 해석의경계조건 38 3.1.5 CFD 시뮬레이션 42 53 3.2.1 적용프로그램 54 3.2.2 풍압의적용 54 3.2.3

More information

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a 조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형

More information

Problem New Case RETRIEVE Learned Case Retrieved Cases New Case RETAIN Tested/ Repaired Case Case-Base REVISE Solved Case REUSE Aamodt, A. and Plaza, E. (1994). Case-based reasoning; Foundational

More information

Atlassian Solution Conference Seoul 2017

Atlassian Solution Conference Seoul 2017 Atlassian 과함께한제품기획부터출시까지 조해용 T E A M M A N A G E R I N F R A W A R E T E C H N O L O G Y Polaris Office 성공스토리 Agenda Polaris Office 개발과정에서 Atlassian 향후 Infraware Tech 계획 How Atlassian? Yes, Atlassian!!!!

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Microsoft Power BI on Big Data Platform 아젠다 Ⅰ Ⅱ Ⅲ Microsoft Power BI on Big Data Platform 소개 Microsoft Power BI on Big Data Platform 구축사례 메이븐클라우드서비스소개 Microsoft Power BI on Big Data Platform 소개 Microsoft

More information

Intra_DW_Ch4.PDF

Intra_DW_Ch4.PDF The Intranet Data Warehouse Richard Tanler Ch4 : Online Analytic Processing: From Data To Information 2000. 4. 14 All rights reserved OLAP OLAP OLAP OLAP OLAP OLAP is a label, rather than a technology

More information

IBM blue-and-white template

IBM blue-and-white template 쌍용자동차 CATIA V5 적용사례 쌍용자동차기술관리팀안재민 AGENDA 1. SYMC PRODUCT LINE UP 2. SYMC PDM Overview 3. CV5 & PDM Implementation Overview 4. PDM을이용한 CV5 Relational Design 5. 향후과제 6. Q & A 2 Presentation Title 1 2 1.

More information

歯CRM개괄_허순영.PDF

歯CRM개괄_허순영.PDF CRM 2000. 8. KAIST CRM CRM CRM CRM :,, KAIST : 50%-60%, 20% 60%-80%. AMR Research 10.. CRM. 5. Harvard Business review 60%, 13%. Michaelson & Associates KAIST CRM? ( ),,, -,,, CRM needs,,, dynamically

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

i4uNETWORKS_CompanyBrief_ key

i4uNETWORKS_CompanyBrief_ key 세상을위한다양한아이디어 우리는디지털미디어를활용해세상의다양한아이디어를즐겁고행복한소통의고리로만드는디지털마케팅파트너아이포유네트웍스입니다 Overview Organization Business Domain Our Services SOCIAL MARKETING PACKAGE Our Services - Wsandwich Our Services - Mobile app.

More information

ETL_project_best_practice1.ppt

ETL_project_best_practice1.ppt ETL ETL Data,., Data Warehouse DataData Warehouse ETL tool/system: ETL, ETL Process Data Warehouse Platform Database, Access Method Data Source Data Operational Data Near Real-Time Data Modeling Refresh/Replication

More information

Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤

Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤 Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤 (byounggon.kim@opence.org) 빅데이터분석및서비스플랫폼 모바일 Browser 인포메이션카탈로그 Search 인포메이션유형 보안등급 생성주기 형식

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

KDI정책포럼제221호 ( ) ( ) 내용문의 : 이재준 ( ) 구독문의 : 발간자료담당자 ( ) 본정책포럼의내용은 KDI 홈페이지를 통해서도보실수있습니다. 우리나라경

KDI정책포럼제221호 ( ) ( ) 내용문의 : 이재준 ( ) 구독문의 : 발간자료담당자 ( ) 본정책포럼의내용은 KDI 홈페이지를 통해서도보실수있습니다.   우리나라경 KDI정책포럼제221호 (2010-01) (2010. 2. 10) 내용문의 : 이재준 (02-958-4079) 구독문의 : 발간자료담당자 (02-958-4312) 본정책포럼의내용은 KDI 홈페이지를 통해서도보실수있습니다. http://www.kdi.re.kr 우리나라경기변동성에대한요인분석및시사점 이재준 (KDI 부연구위원 ) * 요 약,,, 1970. * (,

More information

장기계획-내지4차

장기계획-내지4차 2011~2020 KOREA FOREST SERVICE 2011~2020 2011~2020 KOREA FOREST SERVICE 2011~2020 2011~2020 6 7 2011~2020 8 9 2011~2020 10 11 2011~2020 12 2011~2020 KOREA FOREST SERVICE 2011~2020 14 15 2011~2020 16 17

More information

슬라이드 1

슬라이드 1 삼성그룹을위한 Microsoft BI Day: 지속적인비즈니스성과향상을위한제 3 세대비즈니스인텔리전스설명회 i2 Intelligence Shin, Ho-Sub Industry Executive i2 Technologies, Inc. 전사적 System Integration Role Based Web UI Demand/Supply Collaboration i2

More information

( 분류및특징 ) 학습방법에따라 1 지도학습 (Supervised 2 비지도 학습 (Unsupervised 3 강화학습 (Reinforcement 으로구분 3) < 머신러닝의학습방법 > 구분 지도학습 (Supervised 비지도학습 (Unsupervised 강화학습 (

( 분류및특징 ) 학습방법에따라 1 지도학습 (Supervised 2 비지도 학습 (Unsupervised 3 강화학습 (Reinforcement 으로구분 3) < 머신러닝의학습방법 > 구분 지도학습 (Supervised 비지도학습 (Unsupervised 강화학습 ( 보안연구부 -2016-016 머신러닝 (Machine 개요및활용동향 - 금융권인공지능 (AI) 을위한머신러닝과딥러닝 - ( 보안연구부보안기술팀 / 2016.3.24.) 개요 이세돌 9단과인공지능 (AI, Artificial Intelligence) 알파고 (AlphaGo) 의대국 ( 16 년 3월 9~15일총 5국 ) 의영향으로 4차산업혁명단계 1) 진입을인식함과더불어금융권에서도인공지능기술이주목받게됨에따라,

More information

<31302DB1E8BDC2B1C72E687770>

<31302DB1E8BDC2B1C72E687770> 수자원 운영계획 시스템의 구현을 위한 수리계획 모형 자료구조의 활용 서 론 김재희김승권박영준 댐 군 최적 연계 운영문제 화천 춘천 북한강 계 소양댐 상류권 의암 청평 수도권 #2 소양댐 하류권 팔당 소양 남한강 계 수도권 #1 충주 충주권 댐 발전소 용수 수요지 수자원 운영계획 시스템의 구현을 위한 수리계획 모형 자료구조의 활용 Shortage 화천댐 SPL

More information

동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석

동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석 동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석 목차 I. 서론 II. 동아시아각국의무역수지, 실질실효환율및 GDP간의관계 III. 패널데이터를이용한 Granger인과관계분석 IV. 개별국실증분석모형및 TYDL을이용한 Granger 인과관계분석 V. 결론 참고문헌 I. 서론 - 1 - - 2 - - 3 - - 4

More information

Cloudera Toolkit (Dark) 2018

Cloudera Toolkit (Dark) 2018 하둡에날개를달아주는 SAS 엔터프라이즈머신러닝플랫폼 SAS Korea / 김근태이사 CLOUDERA & SAS : OVERVIEW 2 FORCES SHAPING ANALYTICS Analytics embraces open Everyone wants to be a data scientist Changing data landscape Machine learning

More information

딥러닝 첫걸음

딥러닝 첫걸음 딥러닝첫걸음 4. 신경망과분류 (MultiClass) 다범주분류신경망 Categorization( 분류 ): 예측대상 = 범주 이진분류 : 예측대상범주가 2 가지인경우 출력층 node 1 개다층신경망분석 (3 장의내용 ) 다범주분류 : 예측대상범주가 3 가지이상인경우 출력층 node 2 개이상다층신경망분석 비용함수 : Softmax 함수사용 다범주분류신경망

More information

Microsoft Word - CSWP_sample(KOR).docx

Microsoft Word - CSWP_sample(KOR).docx SOLIDWORKS CSWP 예제 Certified SOLIDWORKS Professional: Solid Modeling Specialist (CSWP-CORE) 공인솔리드웍스프로페셔널 : 솔리드모델링전문가 (CSWP-코어) CSWP는 SOLIDWORKS 고급기술시험을통과한프로페셔널을의미합니다. CSWP는 SOLIDWORKS의다양한복합적인피처를사용하여변수지정과파트및구동어셈블리를설계하고분석하는능력을보유하고있다는것을증명하는자격입니다.

More information

목 차 Ⅰ. 조사개요 1 1. 조사배경및목적 1 2. 조사내용및방법 2 3. 조사기간 2 4. 조사자 2 5. 기대효과 2 Ⅱ. P2P 대출일반현황 3 1. P2P 대출의개념 3 2. P2P 대출의성장배경 7 3. P2P 대출의장점과위험 8 4. P2P 대출산업최근동향

목 차 Ⅰ. 조사개요 1 1. 조사배경및목적 1 2. 조사내용및방법 2 3. 조사기간 2 4. 조사자 2 5. 기대효과 2 Ⅱ. P2P 대출일반현황 3 1. P2P 대출의개념 3 2. P2P 대출의성장배경 7 3. P2P 대출의장점과위험 8 4. P2P 대출산업최근동향 조사보회고서 온라인 P2P 대출서비스실태조사 2016. 6. 시장조사국거래조사팀 목 차 Ⅰ. 조사개요 1 1. 조사배경및목적 1 2. 조사내용및방법 2 3. 조사기간 2 4. 조사자 2 5. 기대효과 2 Ⅱ. P2P 대출일반현황 3 1. P2P 대출의개념 3 2. P2P 대출의성장배경 7 3. P2P 대출의장점과위험 8 4. P2P 대출산업최근동향 12 Ⅲ.

More information

슬라이드 1

슬라이드 1 Auto ML 과 XAI 를위한 H20 Driverless AI 소개 애자일소다컨설팅사업본부이동훈전무 2018.04 1. Intro 2. DAI 주요기능소개 & Demo 3. 결언 What are Auto ML & XAI? 데이타분석관련한기업의고민은 CIO 마케팅팀장 분석가 / 팀장 AI 나 ML 관련해서우리직원들의역량을어떻게끌어올려야할지? 이번에구축한시스템은우리직원들만의역량으로안정화와운영이가능할까?

More information

SchoolNet튜토리얼.PDF

SchoolNet튜토리얼.PDF Interoperability :,, Reusability: : Manageability : Accessibility :, LMS Durability : (Specifications), AICC (Aviation Industry CBT Committee) : 1988, /, LMS IMS : 1997EduCom NLII,,,,, ARIADNE (Alliance

More information

gcp

gcp Google Cloud Platform GCP MIGRATION MANAGED SERVICE FOR GCP 베스핀글로벌 S GCP OFFERING 베스핀글로벌과 Google Cloud Platform이 여러분의 비즈니스에 클라우드 날개를 달아드립니다. GCP에 전문성을 갖춘 베스핀글로벌의 클라우드 전문가들이 다양한 산업 영역에서의 구축 경험과 노하우를 바탕으로

More information

신한은행빅데이터센터설립그리고 12 명

신한은행빅데이터센터설립그리고 12 명 SAS FORUM 빅데이터경영혁신사례신한은행빅데이터센터윤근혁팀장 16.04.28 신한은행빅데이터센터설립그리고 12 명 빅데이터센터조직도 빅데이터센터 ( 총 33 명 ) 본부장 BD 사업팀 (7 명 ) BD 솔루션팀 (18 명 ) BD 플랫폼팀 (7 명 ) 전략수립 / 협업 신기술도입 / 활용 플랫폼 / 솔루션구축및관리 제휴 / 신사업 분석 / 모형개발 데이터거버넌스수립및관리

More information

크리덴셜_FBASIC_V4

크리덴셜_FBASIC_V4 WE CREATE CONNECT PEOPLE STORY CREDENTIAL INTRODUCTION & 2011-2017 PORTFOLIO think about basic Interactive Brand,,. Revital,,. Contents Creative Client.,,,. F.BASIC TASK PHILOSOPHY 1 photographer producer

More information

소성해석

소성해석 3 강유한요소법 3 강목차 3. 미분방정식의근사해법-Ritz법 3. 미분방정식의근사해법 가중오차법 3.3 유한요소법개념 3.4 편미분방정식의유한요소법 . CAD 전처리프로그램 (Preprocessor) DXF, STL 파일 입력데이타 유한요소솔버 (Finite Element Solver) 자연법칙지배방정식유한요소방정식파생변수의계산 질량보존법칙 연속방정식 뉴톤의운동법칙평형방정식대수방정식

More information

<65B7AFB4D7B7CEB5E5BCEEBFEEBFB5B0E1B0FABAB8B0EDBCAD5FC3D6C1BE2E687770>

<65B7AFB4D7B7CEB5E5BCEEBFEEBFB5B0E1B0FABAB8B0EDBCAD5FC3D6C1BE2E687770> 축 사 - 대구 박람회 개막 - 존경하는 신상철 대구광역시 교육감님, 도승회 경상북도 교육감님, 김달웅 경북대학교 총장님, 장이권 대구교육대학교 총장님, 김영택 대구광역시교육위 원회 의장님, 류규하 대구광역시의회교사위원회 위원장님을 비롯한 내외 귀빈 여러분, 그리고 교육가족 여러분! 제8회 e-러닝 대구 박람회 의 개막을 진심으로 축하드리며, 이 같이 뜻 깊

More information

크리덴셜_FBASIC_V3

크리덴셜_FBASIC_V3 WE CREATE CONNECT PEOPLE STORY CREDENTIAL INTRODUCTION & 2011-2016 PORTFOLIO think about basic F.BASIC TASK PHILOSOPHY 1 photographer producer UI/UX planner editor designer Developer cartoonist illustrator

More information

Microsoft PowerPoint - 6.CRM_Consulting.ppt

Microsoft PowerPoint - 6.CRM_Consulting.ppt 고객DB로 가치를 창출해 내는 CRM 컨설팅 제안? 현장 CRM 컨설팅? 분석 CRM 컨설팅 AGENDA I. I. 공영 DBM 소개 II. II. III. III. IV. 컨설팅 구성 컨설팅 추진 방법론 CRM 컨설팅 사례 V. V. 컨설턴트 소개 -1- I-1 공영DBM 서비스 범위 I. 공영 DBM 소개? 공영DBM은 CRM Portal 전문기업으로써,

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 CHINA ONLINE MARKETING SmartAD 13억 개의 별이 살아 숨쉬는 거대한 중국 시장. 중국 현지에서 진행하는 세밀한 조사와 정확한 판단, 신속한 집행. 중국 온라인 마케팅의 모든 것. SmartAD CONTENTS 01. 회사 소개 02. 중국 온라인 마케팅 전략 02-1. 중국 온라인 매체 특징과 현황 02-2. 중국 온라인 마케팅 사례와

More information

SMV Vending Machine Implementation and Verification 김성민 정혁준 손영석

SMV Vending Machine Implementation and Verification 김성민 정혁준 손영석 SMV Vending Machine Implementation and Verification 201321124 김성민 201472412 정혁준 201472262 손영석 2015.05.04 Contents Review 지적사항 개선사항 Review Review sell_denied start coin {1, 5, 10, 50, 100} coin Ready Input_

More information

슬라이드 1

슬라이드 1 4. Mobile Service Technology Mobile Computing Lecture 2012. 10. 5 안병익 (biahn99@gmail.com) 강의블로그 : Mobilecom.tistory.com 2 Mobile Service in Korea 3 Mobile Service Mobility 4 Mobile Service in Korea 5 Mobile

More information

Introduction to Deep learning

Introduction to Deep learning Introduction to Deep learning Youngpyo Ryu 동국대학교수학과대학원응용수학석사재학 youngpyoryu@dongguk.edu 2018 년 6 월 30 일 Youngpyo Ryu (Dongguk Univ) 2018 Daegu University Bigdata Camp 2018 년 6 월 30 일 1 / 66 Overview 1 Neuron

More information

Multi Channel Analysis. Multi Channel Analytics :!! - (Ad network ) Report! -! -!. Valuepotion Multi Channel Analytics! (1) Install! (2) 3 (4 ~ 6 Page

Multi Channel Analysis. Multi Channel Analytics :!! - (Ad network ) Report! -! -!. Valuepotion Multi Channel Analytics! (1) Install! (2) 3 (4 ~ 6 Page Multi Channel Analysis. Multi Channel Analytics :!! - (Ad network ) Report! -! -!. Valuepotion Multi Channel Analytics! (1) Install! (2) 3 (4 ~ 6 Page ) Install!. (Ad@m, Inmobi, Google..)!. OS(Android

More information

170918_hjk_datayanolja_v1.0.1.

170918_hjk_datayanolja_v1.0.1. 모 금융회사 오픈소스 및 머신러닝 도입 이야기 김 형 준 2 0 발표자소개 1 인터넷폐쇄망에서분석시스템구축 (feat. 엔지니어가없을때 ) 2 분석보고서자동화 3 Machine Learning 삽질기 ( 분석 & 개발 ) 3 0 발표자소개 1 인터넷폐쇄망에서분석시스템구축 (feat. 엔지니어가없을때 ) 2 분석보고서자동화하기 3 Machine Learning

More information

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB>

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB> 최신 ICT 이슈 최신 ICT 이슈 알파고의 심층강화학습을 뒷받침한 H/W 와 S/W 환경의 진화 * 알파고의 놀라운 점은 바둑의 기본규칙조차 입력하지 않았지만 승리 방식을 스스로 알아 냈다는 것이며, 알파고의 핵심기술인 심층강화학습이 급속도로 발전한 배경에는 하드웨 어의 진화와 함께 오픈소스화를 통해 발전하는 AI 관련 소프트웨어들이 자리하고 있음 2014

More information

歯목차45호.PDF

歯목차45호.PDF CRM CRM (CRM : Customer Relationship Management ). CRM,,.,,.. IMF.,.,. (CRM: Customer Relationship Management, CRM )., CRM,.,., 57 45 (2001 )., CRM...,, CRM, CRM.. CRM 1., CRM,. CRM,.,.,. (Volume),,,,,,,,,,

More information

............

............ 4 5 6 7 1. 2 3. 4. 10 11 0 1 designer 12 13 14 15 16 17 0 2 Model 18 19 20 21 22 23 0 3 24 T I P 25 26 T I P 27 28 memo 29 0 4 30 31 32 33 34 T I P 35 T I P 36 memo 37 38 39 40 41 42 memo 43 3. 1. 2. 0

More information

Reinforcement Learning & AlphaGo

Reinforcement Learning & AlphaGo Gait recognition using a Discriminative Feature Learning Approach for Human identification 딥러닝기술및응용딥러닝을활용한개인연구주제발표 이장우 wkddn1108@kist.re.kr 2018.12.07 Overview 연구배경 관련연구 제안하는방법 Reference 2 I. 연구배경 Reinforcement

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 실습 1 배효철 th1g@nate.com 1 목차 조건문 반복문 System.out 구구단 모양만들기 Up & Down 2 조건문 조건문의종류 If, switch If 문 조건식결과따라중괄호 { 블록을실행할지여부결정할때사용 조건식 true 또는 false값을산출할수있는연산식 boolean 변수 조건식이 true이면블록실행하고 false 이면블록실행하지않음 3

More information

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for 2003 Development of the Software Generation Method using Model Driven Software Engineering Tool,,,,, Hoon-Seon Chang, Jae-Cheon Jung, Jae-Hack Kim Hee-Hwan Han, Do-Yeon Kim, Young-Woo Chang Wang Sik, Moon

More information

마케팅

마케팅 by Boomboxxx Design Inc. (김민규) Nike Plus Shoes that takes notes of your running Nintendo Wii A gaming console everyone can enjoy Kanye West Breaking the hip hop stereotypes Yoeju Premium Outlet Fulfilling

More information