슬라이드 제목 없음

Similar documents
untitled

Chapter 11 Rate of Reaction

e hwp

歯49손욱.PDF

일반화학 I 기말고사 Useful P

(Vacuum) Vacuum)? `Vacua` (1 ) Gas molecular/cm 3

ePapyrus PDF Document

1 n dn dt = f v = 4 π m 2kT 3/ 2 v 2 mv exp 2kT 2 f v dfv = 0 v = 0, v = /// fv = max = 0 dv 2kT v p = m 1/ 2 vfvdv 0 2 2kT = = vav = v f dv π m

Microsoft PowerPoint - 7-Work and Energy.ppt

고등학교 수학 요약노트 - 확률과 통계

Microsoft PowerPoint - ISS_3rd IP_공주대학교 조정호

1229_¶È¶ÈÇÑÀÎÁöÇൿġ·áº»¹®.PDF

Á¦¸ñ¾øÀ½

1

내지- 2도필름

13-darkenergy

PowerPoint 프레젠테이션

587.eps

< FC7D1BEE7B4EB2DB9FDC7D0B3EDC3D132382D332E687770>

2007백서-001-특집

¾Ë·¹¸£±âÁöħ¼�1-ÃÖÁ¾

01....b

00목차

(291)본문7

表紙(化学)

삼성955_965_09

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구

10 (10.1) (10.2),,

- 2 -

- 2 -

KAA2005.9/10 Ãâ·Â

Coriolis.hwp

<B3EDB9AEC1FD5F3235C1FD2E687770>

23

민속지_이건욱T 최종

< E C0E520C8ADC7D0BEE7B7D02E687770>

에너지경제연구 제13권 제1호

untitled

1. A B C 4. ABC B C A B A B C A C AB BC ABC. ABC C + A + B C A B A B C A B C B A C B C A C A B C B A 5. AB xy pqr x B xy p -y AB. A. A. B. TV B. C. AB


(specifications) 3 ~ 10 (introduction) 11 (storage bin) 11 (legs) 11 (important operating requirements) 11 (location selection) 12 (storage bin) 12 (i


step 1-1

- 1 -

歯Trap관련.PDF


<BACFC7D1B3F3BEF7B5BFC7E22D3133B1C733C8A BFEB2E687770>

<BABBB9AE2E687770>

(Table of Contents) 2 (Specifications) 3 ~ 10 (Introduction) 11 (Storage Bins) 11 (Legs) 11 (Important Operating Requirements) 11 (Location Selection)

300 구보학보 12집. 1),,.,,, TV,,.,,,,,,..,...,....,... (recall). 2) 1) 양웅, 김충현, 김태원, 광고표현 수사법에 따른 이해와 선호 효과: 브랜드 인지도와 의미고정의 영향을 중심으로, 광고학연구 18권 2호, 2007 여름

untitled


Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]


10경영18

Buy one get one with discount promotional strategy

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

歯140김광락.PDF

歯1.PDF

(72) 발명자 정진기 대전광역시 서구 괴정로 61, 조이빌 401 (괴정동) 김병수 전라북도 군산시 상신3길 19-6 (나운동) 이 발명을 지원한 국가연구개발사업 과제고유번호 GP 부처명 지식경제부 연구사업명 기본사업 연구과제명 도시광석의 유용광물 순환

#Ȳ¿ë¼®

주지스님의 이 달의 법문 성철 큰스님 기념관 불사를 회향하면서 20여 년 전 성철 큰스님 사리탑을 건립하려고 중국 석굴답사 연구팀을 따라 중국 불교성지를 탐방하였습 니다. 대동의 운강석굴, 용문석굴, 공의석굴, 맥적산석 굴, 대족석굴, 티벳 라싸의 포탈라궁과 주변의 큰

목 록( 目 錄 )

02-1기록도전( )

03-1영역형( )

(2) : :, α. α (3)., (3). α α (4) (4). (3). (1) (2) Antoine. (5) (6) 80, α =181.08kPa, =47.38kPa.. Figure 1.


Version 3.0 SOP 24 이산화탄소 fugacity October 12, 2007 SOP 24 순수이산화탄소가스나공기중 이산화탄소의 fugacity 계산 1. 대상및적용분야 이절차는순수이산화탄소가스나공기에서이산화탄소의 fugacity 를계산하는 방법을다룬다.

오투중3-2과학정답1

KSKSKSKS SKSKSKS KSKSKS SKSKS KSKS SKS KS KS C 3004 KS C


PowerPoint 프레젠테이션

A y y y y y # 2#

현대대학물리학 36(545~583p)

2004math2(a).PDF

14.fm

untitled

44(2)-11.fm

KAERIAR hwp

<4033C6ED20BDC3B0F8BCBA5F412E687770>

대한한의학원전학회지26권4호-교정본(1125).hwp


Alloy Group Material Al 1000,,, Cu Mg 2000 ( 2219 ) Rivet, Mn 3000 Al,,, Si 4000 Mg 5000 Mg Si 6000, Zn 7000, Mg Table 2 Al (%

2 A A Cs A C C A A B A B 15 A C 30 A B A C B. 1m 1m A. 1 C.1m P k A B u k GPS GPS GPS GPS 4 2

328 退溪學과 韓國文化 第43號 다음과 같은 3가지 측면을 주목하여 서술하였다. 우선 정도전은 ꡔ주례ꡕ에서 정치의 공공성 측면을 주목한 것으로 파악하였다. 이는 국가, 정치, 권력과 같은 것이 사적인 소유물이 아니라 공적인 것임을 강조하는 것으로 조선에서 표방하는 유

2011´ëÇпø2µµ 24p_0628

Precipitation prediction of numerical analysis for Mg-Al alloys

에너지경제연구 제13권 제1호

2/26(목) 두산 A+/부정적 A/안정적 - 두산그룹 사업지주회사로서 주력 자회사인 두산중공업 신용등급 변경 감안해 신용등급 하향 2/26(목) SK 에너지 AA+/부정적 AA/안정적 년까지 중국 및 아시아 신흥국 중심으로 증설이 예정되어 있어 석유제품

164


2 폐기물실험실

Microsoft PowerPoint - 20-Entropy.ppt

Microsoft PowerPoint - analogic_kimys_ch10.ppt

VXS-A-C1.eps

12È«±â¼±¿Ü339~370

<C8B2BCBABCF62DB8D4B0C5B8AEBFCDB0C7B0AD2E687770>

슬라이드 1

2 247, Dec.07, 2007

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

Transcription:

물리화학 1 문제풀이 130403 김대형교수님

Chapter 1 Exercise (#1) A sample of 255 mg of neon occupies 3.00 dm 3 at 122K. Use the perfect gas law to calculate the pressure of the gas. Solution 1) The perfect gas law p = nnn V 2) T = 122 K, V = 3.00 dm 3 3) p = 1.22 11 2 mmm 0.00000 dd 3 aaa K 1 mmm 1 (111 K) 3.0 dd 3 = 4. 22 11 2 aaa

Chapter 1 Exercise (#2) Given that the density of air at 0.987 bar and 27 C is 1.146 kg m -3, calculate the mole fraction and partial pressure of nitrogen and oxygen assuming that (a) air consists only of these two gases, (b) air also contains 1.0 mole percent Ar. Solution (a) 1) For simplicity assume a container of volume 1 m 3. The total mass is m τ = n N2 M N2 + n O2 M O2 = 1111 g 2) Assuming that air is a perfect gas p τ V = n τ RR Then, n τ is the total amount of gas n τ = p τv RR = 0. 999 bbb 111 PP bbb 1 (1 m 3 ) 8. 3333 PP m 3 K 1 mmm 1 (333 K) = 33. 6 mmm 3) n N2 22. 0000 g mmm 1 + 33. 6 mmm n N2 33. 9999 g mmm 1 n N2 = 33. 16 mmm n O2 = 9. 41 mmm = 1111 g

Chapter 1 4) The mole fractions x N2 = 33. 16 mmm 33. 6 mmm = 0. 777 x O2 = 9. 41 mmm 33. 6 mmm = 0. 222 The partial pressures p N2 = p O2 = 0. 777 0. 999 bbb = 0. 777 bbb 0. 222 0. 999 bbb = 0. 222 bbb

Chapter 1 Solution (b) 1) For simplicity assume a container of volume 1 m 3. The total mass is m τ = n N2 M N2 + n O2 M O2 + n AA M AA = 1111 g 2) The total amount of gas n τ = n N2 + n O2 + n AA = 33. 6 mmm Since x AA = 0. 0000, nnn = 0. 333 mmm n N2 = 33. 94 mmm n O2 = 8. 22 mmm n AA = 0. 333 mmm

Chapter 1 3) The mole fractions x N2 = 33. 94 mmm 33. 6 mmm = 0. 782 x O2 = 8. 22 mmm 33. 6 mmm = 0. 208 x AA = 0. 333 mmm 33. 6 mmm = 0. 000 The partial pressures p N2 = 0. 782 0. 999 bbb = 0. 772 bbb p O2 = 0. 208 0. 999 bbb = 0. 205 bbb p AA = 0. 000 0. 999 bbb = 0. 0000 bbb

Chapter 1 Exercise (#3) A gas at 250 K and 15 atm has a molar volume 12 percent smaller than that calculated from the perfect gas law. Calculate (a) the compression factor under these conditions and (b) the molar volume of the gas. Which are dominating in the sample, the attractive or the repulsive forces? Solution (a) 1) Compression factor Z Z = pp m RR = V m V o m (VV: aaaaaa mmmmm vvvvvv, VVV: ppppppp ggg mmmmm vvvvvv) 2) V m = 0.88 V o m Z = 0.88888 V o m = 0. 88 (b) 1) VV = ZZZ p = 0.88 0.00000 dd3 aaa K 1 mmm 1 (222 K) 11 aaa = 1. 2 dd 3 mmm 1 2) Z < 1 Attractive forces dominate

Chapter 1 Exercise (#4) The critical constants of methane are p c = 45.6 atm, V c = 98.7 cm 3 mol -1, and T c = 190.6 K. Calculate the van der Waals parameters of the gas. Solution 1) b = VV 3, a = 22 b 2 pp = 33 2 c pp 2) Substituting the critical constants b = 99. 7 cc3 mmm 1 3 = 33. 9 cc 3 mmm 1 a = 3 99. 7 11 3 dd 3 mmm 1 2 44. 6 aaa = 1. 33 dd 6 aaa mmm 2

Chapter 1 Exercise (#5) A certain gas obeys the van der Waals equation with a = 0.50 m 6 Pa mol -2. Its volume is found to be 5.00 10-4 m 3 mol -1 at 273 K and 3.0 MPa. From this information calculate the van der Waals constant b. What is the compression factor for this gas at the prevailing temperature and pressure? Solution 1) van der Waals equation 2) Substituting the data b = VV RR a (p + V 2 ) m b = 5. 00 11 4 m 3 mmm 1 8. 3333 J K 1 mmm 1 222 K 0. 55 m 3. 0 111 PP + 6 PP mmm 2 5. 00 11 4 m 3 mmm 1 2 = 0. 44 11 4 m 3 mmm 1

Chapter 1 3) Compression factor Z = pp m RR = 3. 0 111 PP (5. 00 11 4 m 3 mmm 1 ) 8. 3333 J K 1 mmm 1 (222 K) = 0. 66

Chapter 2 2.5(a) A sample of 4.50 g of methane occupies 12.7dm 3 at 310K. (a) calculate the work done when the gas expands isothermally against a constant external pressure of 200 Torr until its volume has increase by 3.3 dm 3. (b) Calculate the work that Would be done if the same expansion occurred reversibly. * 133.3 Pa = 1 Torr (a) p = p ee w = p ee ΔΔ p ee = (200 TTTT) (133.3PP T ooo) = 2.67 10 4 PP ΔΔ = 3.3dm 3 = 3.3 10 3 m 3 w = (2.67 10 4 PP) (3.3 10 3 m 3 ) = 88J

Chapter 2 2.5(a) A sample of 4.50 g of methane occupies 12.7dm 3 at 310K. (a) calculate the work done when the gas expands isothermally against a constant external pressure of 200 Torr until its volume has increase by 3.3 dm 3. (b) Calculate the work that Would be done if the same expansion occurred reversibly. * 133.3 Pa = 1 Torr (b) p = nn T V dd = ppp V 2 w = nnn 1 V dd = nnn ln V 2 V 1 V 1 4.50g n = = 0.2805 mmm 16.04g mml 1 RR = (8.3145J K 1 mml 1 ) (310K) = 2.577kk mml 1 w = (0.2805 mmm) (2.577kk mml 1 ) ln 16.0 dm3 12.7 dm 3 = 167J

2.13(a) When 3.0 mol O 2 is heated at a constant pressure of 3.25 atm, its temperature increases from 260 K to 285 K. Given that the molecular heat capacity of O 2 (g) at constant pressure is 29.4 J K -1 mol -1, calculate q, H, and U. q, H q p = C p ΔΔ = nc p ΔΔ = (3.0 mmm) (29.4J K 1 mml 1 ) (25K) = +2.2kk ΔΔ = q p = +2.2kk

2.13(a) When 3.0 mol O 2 is heated at a constant pressure of 3.25 atm, its temperature increases from 260 K to 285 K. Given that the molecular heat capacity of O 2 (g) at constant pressure is 29.4 J K -1 mol -1, calculate q, H, and U. U [Solution 1] [Solution 2] c p = c v + R c v = 21.1J K 1 mml 1 ΔΔ = c v c p ΔΔ ΔΔ = ΔΔ w = ΔΔ Δ(pp) = ΔΔ p ee ( nnt 2 p ee nnt 1 p ee = ΔΔ nnnn U = +1.6 kj

2.22(a) The standard enthalpy of decomposition of the yellow complex H 3 NSO 2 into NH 3 and SO 2 is +40 kj mol -1. Calculate the standard enthalpy of formation of H 3 NSO 2. Δ r H Φ (NH 3, g) = 46.11kk mml 1 Δ f H Φ (SO 2, g) = 296.83kk mml 1 NH 3 SO 2 (s) NH 3 (g) + SO 2 (g) Δ r H Φ = +40 kk mml 1 Δ f H Φ (NH 3 SO 2, s) = Δ r H Φ (NH 3, g) + Δ f H Φ (SO 2, g) Δ r H Φ = ( 46.11 296.83 40) kk mml 1

2.29(a) Set up a thermodynamic cycle for determining the enthalpy of hydration of Mg 2+ ions using the following data: enthalpy of sublimation of Mg(s), 167.2 kj mol -1 First and second ionization enthalpies of Mg(g); 7.646 ev and 15.035 ev; Dissociation enthalpy of Cl2(g), +241.6 kj mol -1 ; electron gain enthalpy of Cl(g), 3.78eV; enthalpy of solution of MgCl 2 (s), -150.5 kj mol -1 ; enthalpy of hydration of Cl - (g), 383.7 kj mol -1. Δ f H Φ (MMMM 2, s) = 641.32kk mml 1 1: sublimation of Mg(s), 167.2 kj mol -1, 2: first and second ionization enthalpies of Mg(g); 7.646 ev and 15.035 ev; = 737.7 kj mol -1, 1450.7 kj mol -1 3: dissociation enthalpy of Cl2(g), +241.6 kj mol -1 ; 4: electron gain enthalpy of Cl(g), 3.78eV = -364.7kJ mol -1, 5: enthalpy of solution of MgCl 2 (s), -150.5 kj mol -1 ; 6: enthalpy of hydration of Cl - (g), 383.7 kj mol -1 ; 7: formation of MgCl 2 (s), -641.32 kj mol -1.

3 4 2 2 6 1 7 5

( 150.5) ( 641.32) + (167.2) + (241.6) + 737.7 + 1450.7) + 2 ( 364.7) + 2 ( 383.7) + ΔH hyy (Mg 2+ ) = 0 1111kk mml 1

2.31(a) For a van der Waals gas, π T = a/v m2. Calculate U m for the isothermal expansion of nitrogen gas from an initial volume of 1.00 dm 3 to 24.8 dm 3 at 298K. What are the values of q and w? a = 1.352 dm 6 atm mol -2 b = 3.9 dm 3 mol -1 문제조건이부족해서추가합니다. 2.31(a) For a van der Waals gas, π T = a/v m2. Calculate U m for the reversible isothermal expansion of nitrogen gas from an initial volume of 1.00 dm 3 to 24.8 dm 3 at 298K. What are the values of q and w? a = 1.352 dm 6 atm mol -2 b = 3.9 dm 3 mol -1

2.31(a) For a van der Waals gas, π T = a/v m2. Calculate U m for the isothermal expansion of nitrogen gas from an initial volume of 1.00 dm 3 to 24.8 dm 3 at 298K. What are the values of q and w? a = 1.352 dm 6 atm mol -2 b = 3.9 dm 3 mol -1 U du m = V m,2 ΔU m = du m V m,1 U m T Vm dd + U m V m dd = 0 (IIIIIIIIII) du m = U m V m = V m,2 V m,1 T dv m = a V dv 2 m m a dv V m = a m T dv m 24.8dm 3 mml 1 1.00dm 3 mml 1 a V m dv m a = 24.8 dm 3 mml 1 + a 1.0 dm 3 = 0.9597a mmm dm 3 mml 1 = +131J mml 1

2.31(a) For a van der Waals gas, π T = a/v m2. Calculate U m for the isothermal expansion of nitrogen gas from an initial volume of 1.00 dm 3 to 24.8 dm 3 at 298K. What are the values of q and w? a = 1.352 dm 6 atm mol -2 b = 3.9 dm 3 mol -1 q, w w = ppv m w = p = V m,2 V m,1 RR V m b a V 2 m RR V m b a V 2 m dv m = V m,2 V m,1 RR V m b dv m V m,2 V m,1 w = ΔU m q a V m 2 dv m = q = V m,2 V m,1 V m,2 V m,1 RR V m b dv m RR V m b dv m + ΔU m

2.31(a) For a van der Waals gas, π T = a/v m2. Calculate U m for the isothermal expansion of nitrogen gas from an initial volume of 1.00 dm 3 to 24.8 dm 3 at 298K. What are the values of q and w? a = 1.352 dm 6 atm mol -2 b = 3.9 dm 3 mol -1 24.8dm 3 mml 1 RR q = V m b dv 24.8dm m = RRln V m b 3 mml 1 1.010dm 3 mml 1 1.010dm 3 mml 1 = (8.314J K 1 mml 1 ) (298K) ln = +8.05 10 3 J mml 1 w = ΔU m q = 7.92 10 3 J mml 1 24.8 3.9 10 2 1.00 3.9 10 2