2001 / Separation of Hydrogen Isotopes/Helium Using Gas Chromatography,,,, 150 196 C / He, H 2 D 2 Abstract In the hydrogen isotope facility and the fuel cycle of the fusion reactor, an effective means for analyzing hydrogen isotopes and decay product(helium) of tritium is very important from the viewpoint of system operation and control Chromatographic separation of the hydrogen isotopes/helium mixture was carried out by gas chromatograph at 196 C for quantitative analytical purpose Neon and partially deactivated alumina were employed as the carrier gas and the fixed column, respectively The chromatogram with complete separation was observed in order of He, H 2 and D 2 by the thermal conductivity detector In addition, fairly good separation conditions were obtained in a shorter retention time without any appearance of nuclear spin isomers for the practical applications of the hydrogen isotope separation and analysis
1 (gas chromatography) 1959 Gant Yang [1] Carter Smith [2,3] protium, deuterium tritium, (retention time) (stationary phase) [4 7], [4,8 10] Grant Yang[1] tritium 1atom% hydrogen, tritium hydride 161 molecular sieve, Smith Carter[2] tritium 10-4 tritium 196 Moore Ward[2] ferric chloride Genty Schott[5] (deactivation) CO 2,, Saeki [8] CO 2 BaCl 2 bubbling BaCO 3 ferric hydroxide, Yamanishi [7] manganese chloride (MnCl 2 ) JAERI ( )
[9 10] manganese chloride ortho para [7], MnCl 2 ( 196 ) (thermal conductivity detector, TCD) /,, 2 HETP(height equivalent to a theoretical plate) (peak resolution) (L, cm) HETP (V Ri, min) (W i, min) L HETP = (1) N i 2 V N = 16 Ri, ( i 1, 2, 3,,n) i W = i, n i (2) V V α = R1 o (3) 1,2 V V R2 o, V o, 1 2 (R 12 )
V V R = 2 R2 R2 (4) 12 W + W 1 2, V R1 V R1 1 2, W 1 W 1 1 2 (t, C) (0 C, 760Torr) V Psample ( Torr) 27315 ( ml at STP) = Vsampler ( ml) (5) 760 27315 + t sampler room 3 / /, (32 ) (manifold) ( 10-6 Torr) (10-2 1000 Torr) ( ) 196 molecular sieve column trap 1, (thermal conductivity detector, TCD) ( 196 ) ( ) DS6200 GC Microvolume TCD (Valco Instruments Co Inc) 2
10% (MnCl 2 ) 3m, (ID:17mm, L:3m) (ID:17mm, L:3m) Shimadzu 10% manganese chloride(mncl 2 ) (60 80mesh) molecular sieve 5A (60 80mesh) 5mm, 1m 150 24 230 10 Neon 1 100 /min (99999%) ISOTEC Inc (1A, 5,000 ) 1 Ionization nude vacuum gauge Gate valve TCD MFC Gas Chromatographic System Sampling System Baratron gauge Auto sampler (sample loop : 3 ml) Baratron gauge Turbo molecular pump To hood Rotary oil pump Neon Bombe Gas chromatographic system Al 2 O 3 (10% MnCl 2, 60-80 mesh) in Liquid Nitrogen System Molecular Sieve 5A (60-80 mesh) in Liquid Nitrogen System He H 2 D 2 1 2 / 1
Chemical purity 99998 % Gas chromatographic analysis Ar/O 2 N 2 CO CO 2 THC Water content Isotopic enrichment Mass spectroscopic analysis < 1 ppm H D < 3 ppm < 3 ppm < 3 ppm < 2 ppm < 2 ppm 01 atom % 999 atom % 4 196 C hydrogen (H 2 ) deuterium (D 2 ) 196 C hydrogen deuterium ortho hydrogen (o-h 2 ) hydrogen deuteride (HD) 1 Hydrogen hydrogen deuteride (HD) deuterium (D 2 ) ortho hydrogen (o-h 2 ) hydrogen deuteride (HD) ortho para ortho hydrogen hydrogen deuteride (HD) hydrogen (H 2 ) hydrogen deuteride (HD) deuterium (D 2 ) Ferric oxide [2,4] para ortho hydrogen (p-h 2 o-h 2 ) ortho para hydrogen (interconversion : p-h 2 o-h 2 ) hydrogen deuterium,
para hydrogen ortho hydrogen hydrogen ortho para hydrogen 3 MnCl 2 3 (He), (H 2 ) (D 2 ) 100 C 230 C 4 1 100 /min 32 30 60torr He H 2 D 2 196, 2 He H 2, D 2 5 10 /min
6 (3) 3 1 100 /min (1) HETP 7 HETP 2 He-H 2 -D 2 No Carrier gas flow rate ( /min) Sample mixture pressure (torr) Retention time He H 2 D 2 Peak area (%) Retention time Peak area (%) Retention time Peak area (%) 1 5 3425 82 324 227 318 297 358 2 10 4388 4 6 381 125 302 166 302 3 30 6182 19 264 52 274 66 462 4 50 5135 14 132 42 145 53 722 5 80 4136 11 131 31 145 40 723 Arbitrary unit Carrier gas flow rate: 80mL/min 30mL/min 50mL/min Packed column : Al 2 O 3 /MnCl 2 Column size: 3mx17mmID Column temp: 77K 10mL/min 5mL/min Retention time (min) 120 100 80 60 40 20 Packed column : Al 2 O 3 /MnCl 2 Column size: 3mx17mmID Column temp: 77K He H 2 D 2 0 10 20 30 40 Time (minutes) 0 0 20 40 60 80 100 Carrier gas flow rate (ml/min) 4 He-H 2 -D 2 5 He-H 2 -D 2
Separation factor (α) 4 3 2 1 Packed column : Al 2 O 3 /MnCl 2 Column size: 3mx17mmID Column temp: 77K α (H 2 /He) α (D 2 /He) α (D 2 /H 2 ) 0 0 20 40 60 80 100 Carrier gas flow rate (ml/min) HETP(cm) 020 015 010 005 He H 2 D 2 Packed column : Al 2 O 3 /MnCl 2 Column size: 3mx17mmID Column temp: 77K 000 0 20 40 60 80 100 Carrier gas flow rate (ml/min) 6 He-H 2 -D 2 7 He-H 2 -D 2 HETP / ortho para hydrogen hydrogen deuterium, hydrogen-deuterium hydrogen deuterium ortho para hydrogen D 2 HD HD He, H 2 D 2 He, H 2 D 2 3 32 D 2 80 /min 8 D 2 D 2 9
, TCD (µv min) D 2 ( ) 3 Sample no Carrier gas flow rate ( /min) Sample pressure (torr) Sample volume at STP ( ) Peak retention time (min) Peak area (µv min) 1 80 34142 136747 5473 17035505 2 80 22521 0902021 5892 11003105 3 80 20743 0830807 6006 10198761 4 80 15221 0609638 6304 7447713 5 80 11956 0478867 6567 5768269 6 80 8911 0356907 6853 4257457 7 80 6446 0258178 7181 3064323 8 80 3493 0139903 7692 1622760 8 D 2 9 D 2 5
( He, H 2 D 2 He H 2 D 2 H 2 D 2 /, 1 P L Gant and K Yang, Science, 129, 1548 (1959) 2 W R Moorer and H R Ward, JAmChemSoc, 80, 2909 (1958) 3 E H Carter, Jr, and H A Smith, JPhysChem, 67, 1512 (1963) 4 G F Shipman, Anal Chem, 34(7), 877 (1962) 5 C Genty and R Schott, Anal Chem, 42(1), 7 (1970) 6 D K Warner, R E Sprague and D R Bohl, MLM-2356 (1976) 7 T Yamanishi and H Kudo, JChromatogr, 475, 125 (1988) 8 M Saeki, T Hirabayashi, Y Aratono, T Hasegawa and E Tachikawa, JNuclSciTech, 20(9), 762 (1983) 9 M Tanase, K Kurosawa, M Fujie, H Sugai, S Okane and M Kato, Fusion Technology, 14, 1090 (1988) 10 M Tanase, M Kato, K Kurosawa, S Motoishi, S Okane and H Sugai, JNuclSciTech, 25(2), 198 (1988)