제출문 환경부장관귀하 본보고서를 실내식물을이용한환경친화적공기정화시스템의개발 에관한연구 ( 총연구기간 : 2002 년 12 월 01 일 ~2004 년 05 월 31 일 ) 의최 종보고서로제출합니다. 2004 년 7 월 31 일 주관연구기관명 : 건국대학교 연구책임자 : 손기철 연 구 원 : 천세철 : 이재천 : 김판기 - 1 -
요약문 I. 제목실내식물을이용한환경친화적공기정화시스템의개발 Development of environment-friendly air purification system using indoor plants II. 연구개발의목적및필요성현대인들은하루중 80-95% 에이르는대부분의시간을한정된실내에서보낸다. 한편, 대부분의건물들은에너지효율을높이기위하여외부와차단되어있다. 이런이유로, 실내공기질 (Indoor air quality: IAQ) 은점점더악화되어지고있는실정이다. 이러한실내공기질악화에대한예측부족은현대인에게새로운 새집증후군 혹은 sick building syndrome 을초래하게하였다. 현재실내공기질개선을위한다양한기기적인방법들이사용되고있지만, 실내식물도입및관련용기개발을이용한실내공기질개선은다른방법에비해, 에너지소비량, 폐기물발생, 설치비, 심미적및원예치료적효과, 무재해성안전한기술등의측면에서탁월한방법이라고판단된다. 실제, 이러한연구가국외에서는조금씩연구되어와실내식물을이용한실내대기정화기능에대한부분적인실험과그가능성은어느정도진척되었다고판단된다. 그러나, 실내환경조절, 식물관리, 식물-토양을이용한정화기술의통합적적용 (coordinated application) 이이루어지지않았기때문에실제활용에있어서는별다른진척이없는실정이다. 따라서, 본연구는식물종류및환경에따른식물의기능성을조사분석함과동시에이러한식물을이용할수있는용기를개발함으로서, 실제활용상문제점을극복하고자하였다. 본연구과제를통하여식물의정화기능성확인뿐만아니라식물 / 배지 / 토양미생물을이용한실내공기정화시스템을개발함으로서, 1) 시스템을통하여실내환경을조절할수있고, 2) 자동관수방법으로식물을관리할수있으며, 3) 식물-배지-토양미생물의관계와공학적기술의접 - 2 -
목을통하여실내공기정화효율을극대화할수있었다고판단된다. III. 연구개발의내용및범위 실내식물과분토양을통한실내공기정화능및미생물영향을조사하고, 이를 토대로식물 - 토양을이용한실내공기정화시스템을개발하고자하였다. - 3 -
IV. 연구개발결과 1. 핵심결과요약 가. 실내식물관리용적정배지로기존의 peatmoss 배지대신에하이드로볼배지의가능성을확인하였음. 나. CO 2, O 3, 먼지, VOCs 감소에효과적인 C 3 /CAM 식물을선정하였으며, 최상의효과를위한환경요인을구명함. 다. 식물체에서는자체적으로 BTX(benzene, toluene, xylene) 가아닌다른휘발성유기물질 (bioeffluents) 를외부로방출함. 따라서, 일반적인 PID 측정기와같은 TVOCs 측정기로서는식물에의해서제거되어지는구체적인물질을분석할수없음. 라. 식물종별분내토양미생물군집에따라 VOCs의제거능이서로다름을확인함. 마. 식물배지에따라실내공기정화능력이매우다르며, 식물이있을경우증산작용에의해토양과식물지상부사이에미세공기순환이일어나며이때배지의 VOCs 제거능은식물자체의제거능을훨씬능가함. 바. 식물 / 배지 / 토양미생물을이용한공기정화시스템을 3차에걸쳐제작함. 사. 공기정화시스템의작동에따른식물의생리적반응을조사하여, 시스템작동의최적조건을구명함. 아. VOCs 제거에효과적인식물체 (a) 의배지내미생물군집을다른식물체 (b) 배지에접종하였을경우다른식물체 (b) 의 VOCs 제거능이훨씬좋아짐을발견하였음. 자. 식물 / 배지 / 토양미생물을이용한공기정화시스템은포름알데하이드와 VOCs 의제거능에있어기존 air cleaner에필적하는결과를나타내었음. 차. 식물자체와공기정화시스템은실내온열환경을긍정적인영향을미쳤으며, 실내먼지의경우는시스템을작동하지않을때가시스템을작동시킬때보다감소되어, 재시험이요구됨. 카. 공기정화시스템을통하여방출된정화된공기중에는인체에유해한토양 - 4 -
미생물이포함되어있지않음을확인함. 타. 시스템의효율성을높이기위한구체적보완실험이필요하다고판단됨. 파. 결론적으로, 본실험의결과로나타난식물의기능성과시스템의효능을볼때기존의 air cleaner 의기능뿐만아니라다양한부가적인기능이있어활용가치가매우높다고판단됨. 2. 실내저광도에적절한배지선정실험결과에따르면, 고광도하에서는 peatmoss 배지와하이드로볼배지의생육차이가큰것으로나타났으나, 실내의저광도하에서는생육및외관상차이가그다지크지않는것으로나타났다. 실제, 실내식물용배지는기존의 peatmoss 배지보다는하이드로볼배지가일반인의기호도, 실내재배에적절한화분용기, 다양한용기제작등을고려할때보다적정한것으로판단된다. 3. 실내공기질개선을위한기능성식물의선정가. 관엽식물을이용한실내이산화탄소조절 (C 3 /CAM 식물 ) 본연구는실내에서많이이용되고있는관엽식물을온도, 배지, 광도와이산화탄소농도에따른식물의생리적반응을조사하여실내환경조절에효율적인식물을구명하고, 식물에의한이산화탄소제거능을구명하고자실시하였다. 첫번째실험에서는헤데라, 벤자민고무나무, 파키라, 스파티필름, 시서스, 디펜바키아, 스킨답서스, 싱고니움의광도및엽육내 CO 2 농도변화에따른실내관엽식물의광합성반응을조사한결과, 약광에서의광합성능력을나타내는순양자수율은대부분의종에서높게나타났으며, 고광에서는헤데라, 벤자민고무나무, 파키라, 스파티필름이높은광합성능력을나타내었다. CO 2 를고정하는암반응과관련된탄소고정효율은헤데라, 벤자민고무나무, 파키라, 스파티필름, 스킨답서스에서높게나타났다. 고농도의 CO 2 에서헤데라, 벤자민고무나무, 파키라, 스파티필름이광합성율이높게나타났고증산율도높게나타났다. 조사한모든식물이내음성에강한것으로나타났으며, 실내광도인 50μmol m -2 s -1 이하의저광에서온도에따른유의차가나타나지않았다. 따라서, 기능성식물을실내에도입시에는헤데라, 벤자민고무나무, 파키라, 스파티필름등을이용하는것이효과적이다. - 5 -
두번째실험에서는벤자민, 헤데라, 인도고무나무, 싱고니움, 디펜바키아, 테이블야자, 파키라, 쉐프렐라홍콩, 드라세나의광도및엽육내 CO 2 농도변화에따른실내관엽식물의광합성반응을조사한결과, 순양자수율은벤자민, 헤데라, 쉐프렐라홍콩, 인도고무나무, 파키라에서높게나타났으며, 고광에서는벤자민, 인도고무나무, 파키라가가장높은광합성능력을나타내었다. 탄소고정효율은벤자민, 인도고무나무, 파키라에서높게나타났다. 광도 200μmol m -2 s -1 이상의고광에서는싱고니움, 쉐프렐라홍콩, 테이블야자, 인도고무나무에서피트모스배지에재배한식물이 hydroball 배지에재배한식물보다높은광합성을나타내고배지간에유의하게나타난것으로보아식물생육에있어서는피트모스배지가더적합한것으로생각된다. 그러나, 실내광도의 50μ mol m -2 s -1 이하의저광에서는배지에따른유의차가나타나지않은것으로볼때, 실내에이용시기능적인식물은파키라, 인도고무나무, 쉐프렐라홍콩, 헤데라, 디펜바키아라고판단된다. 특히, hydroball배지는무배수공용기에서사용가능하며, 분진발생율도낮아실내에서사용시적합하다고생각된다. 한편, 실내식물을이용하여밀폐된공간에서의이산화탄소흡수율을조사하고광합성율을비교하고자실내식물중헤데라 (Hedera helix L.), 벤자민고무나무 (Ficus benjamina L.), 파키라 (Pachira aquatica), 테이블야자 (Chamaedorea elegans), 인도고무나무 (Ficus elastica) 를대상으로피트모스배지와 hydroball 배지에순화된식물을각각 1,000ppm과 500ppm의이산화탄소를밀폐된챔버에주입하고, 광은 50과 200μmol m -2 s -1 두수준으로하여, 주간과야간의이산화탄소변화를측정하였다. 측정된이산화탄소의변화량을광합성속도 (μmolco 2 m -2 s -1 ) 로산출하였다. 모든품종에서주간에광도가높은 200μmol m -2 s -1 에서광합성율이높게나타났으며, 초기이산화탄소농도가 1,000ppm일때광합성율이높은것으로나타났다. 조사된품종중에서파키라가배지간차이없이약 3.4μmolCO 2 m -2 s -1 로가장높게나타났으며, 헤데라가약 2.6μmolCO 2 m -2 s -1 로높게나타났다. 또한, 주간의광도차이나이산화탄소농도는야간의호흡율에큰영향을미치지않은것으로나타났으며, 피트모스배지에순화된식물보다 hydroball 배지에순화된식물이야간의호흡율이낮은것으로나 - 6 -
타났다. 한편, CAM 식물인선인장의야간 CO 2 흡수량을최대로하기위한주 야간의최적환경조건을구명하고자, full-cam형선인장인마그니휘크스 (Notocactus magnificus Ritt.) 를선정하여광도, 일장, 주야온도변화에따른선인장의 CO 2 교환속도를측정하였다. 주간의광강도가 300μ mol m -2 s -1 일때주간의광주기 (16/8h, 8/16h) 가야간 CO 2 흡수량에결정적인영향을미치는반면, 주야간의온도는큰영향을미치지못하는것으로나타났다. 즉, 주간의광주기가길수록야간의 CO 2 흡수율이증가되었다. 그러나, 광도가감소될수록주간의광주기에따른야간의 CO 2 흡수율차이는점점더없는것으로나타났다. 나. 관엽식물을이용한실내오존제거실내식물의오존에대한감수성과생리적반응을알아보고, 오존에대한정화능을구명하고자실내식물중시서스 (Cissus rhombifolia Vahl), 헤데라 (Hedera helix L.), 스파티필름 (Spathiphyllum wallisii Regel), 싱고니움 (Syngonium podophyllum Schott Albo-Virens ), 디펜바키아마리안느 (Dieffenbachia sp. Marrianne ), 벤자민고무나무 (Ficus benjamina L. Hawaii ), 파키라 (Pachira aquatica Aubl.), 스킨답서스 (Scindapsus aureus Engler) 를대상으로 120ppb의오존을하루중 2, 4, 8시간씩 25일간처리하였다. 이중시서스에서만가시피해가나타났고, 엽육조직의파괴와변형, 기공닫힘도오존처리시간이길수록심각하였다. 엽록소함량과 chlorophyll fluorescence(fv/fm) 는종에따라오존처리구가대조구보다높게나타나기도하였다. 또시서스, 디펜바키아마리안느, 파키라, 스킨답서스의경우대조구에비해오존처리구의광합성이유의하게감소하였다. 한편대부분의종에서순양자수율과탄소고정효율은대조구와오존 2시간처리구의값이높고, 오존 8시간처리구에서낮았다. 즉, 하루중 2시간오존처리는종에따라생리적활성을증가시키며, 대체로오존처리시간이길어질수록광합성의광화학계와탄소고정계의피해가증가했다. 특히, 가시피해가두드러지게나타난시서스와광화학계의피해가심했던디펜바키아마리안느, 스킨답서스는오존에민감한종으로생각되며, 스파티 - 7 -
필름, 헤데라, 벤자민 고무나무는 오존처리 시간에 따른 생리적 활성의 감소 가 나타나지 않아 오존 저항종으로 밝혀졌다. 또한, 오존처리기간동안시서스와스파티필름의오존 8시간처리구는오존처 리기간이길어질수록광합성, 기공전도도, 그리고오존흡입량이점차감소하였 다. 그러나싱고니움과헤데라의경우증가하는경향을나타내었으며, 특히스파 티필름은오존처리기간동안의누적오존흡입량이다른종에비해월등히높았 다. 오존처리 25일후, 오존흡입량은오존처리시간이길수록감소하였으며, 특 히시서스, 스킨답서스는오존 2시간처리구에비해오존 8시간처리구에서오 존흡입량이두드러지게감소하였고, 벤자민고무나무의경우 2, 4, 8시간처리 구의오존흡입량이모두높았다. 결론적으로, 장기간오존처리시오존피해에대한식물의회복력은종에따 라다르게나타난다고판단된다. 또한, 오존 흡입량도 오존에 대한 식물의 감 수성에 따라 달라질 수 있고, 오존에 대한 저항종일수록 높게 나타난다고 판 단된다. 다. 관엽식물을이용한실내분진의흡수및흡착밀폐된실내공간에식물이분진제거에미치는영향을조사하고, 식물에의한분진흡착및흡수를구명하고자시행하였다. 밀폐공간에서식물이존재할때와존재하지않을때분진감소율을비교하고, 온도, 습도, 그리고광에따른분진제거율을비교하였다. 또한, 환경이제어된밀폐챔버에서관엽식물 5종의주 야간 TSP과 1.0μm와 0.5μm 입경의분진제거율을조사하고분진제거율과식물의생리적요인의상관관계를조사 분석하여, 식물에의한분진흡수를구명하고자하였다. 실내공간에서식물이없는경우에비해식물이있는경우의분진감소율이많았다. 또한, 초기의분진제거량을비교할때, 식물이 10% 보다는 20% 의부피를차지하는경우에약 3배정도의급격한분진감소를보였다. Ficus elastica는온도변화에따른분진제거에차이가없었다. 반면에, 습도가높을수록식물의기공전도도가낮아져분진을제거할수있는능력이저하됨에도불구하고빠른분진감소율을보였다. 또한, 광은식물의분진제거에영향을미치는 - 8 -
것으로나타났다. 밀폐챔버의식물종별주 야간분진제거율에있어서, 대조구에서는 TSP, 1.0μm, 그리고 0.5μm 모두주 야간차이가없었으나, 식물군에는야간보다는주간의분진감소율이많은것으로나타났다. 특히, 0.5μm의식물군에서는대조구와비교했을때, 분진감소폭의차이가크게나타났다. 측정위치별에따른분진제거에있어서, TSP에서는모든식물이측정위치간차이가없었으나, 1.0μm와 0.5μm 크기의입경에서는측정위치간차이가나타났다. 특히, 엽면적이크고광합성율이낮은 Ficus elastica의 P1( 식물체의수관부 ) 에서는분진감소가가장컸으나, 엽면적은작지만광합성율과기공전도도가높은 Syngonium podophyllum은 P1보다는 P2( 잎과잎사이 ), P3(P2에서 10cm 떨어진곳 ) 에서분진감소율이가장크게나타났다. 초기농도에서 1시간후의 TSP 분진감소량을종별로비교한결과, 주간과야간의총분진감소율은엽면적이클수록많은경향을나타냈다. 그러나단위면적당의분진감소율에있어서, 주간에는광합성율이좋은 Pachira aquatica가가장많았고, 야간에는반대로엽면적이많은 Ficus elastica의감소율이가장많았다. 식물종에따른주 야간분진제거를살펴보면, TSP에서는차이가없었으나, 입경별 (1.0μm와 0.5μm) 개수농도비교에서는대부분주간에분진제거율이가장크게나타났으며, 1.0μm 입경보다는 0.5μm 입경에서입자가작을수록더많이제거되었다. 또한야간에서도작지만분진제거가나타났다. 식물의생리적요인과분진제거율간의상관관계에있어서는 Ficus elastica 와 Ficus benjamina 모두광합성율과증산량이분진제거율과상관이높은것으로나타났다. 라. 관엽식물을이용한 VOCs 제거실내식물종류별과주 야간에따른 BTX에대한제거효과를알아보고자, 실내식물중서양담쟁이 (Hedera helix L.), 스파티필름 (Spathiphyllum Schott.), 벤자민고무나무 (Ficus benjamina L.), 파키라 (Pachira aquatica), 드라세나와네키 (Dracaena deremensis cv. Warneckii Compacta), 싱고니움 (Syngonium podophyllum), 디펜바키아 (Dieffenbachia amoena), 인도고무나무 (Ficus elastica) - 9 -
를이용하여, 4ppm의혼합된 BTX 가스를 287.1L의밀폐된챔버내에주입한후주간 ( 광도 :100μmol m -2 s -1 ) 과야간 ( 광도 : 0μmol m -2 s -1 ) 각각 12시간동안식물의 BTX의제거효과를조사하였다. 식물은토양과토양미생물의가스제거에대한영향을없고자화분을 teflon 필름으로밀폐하여지상부부위만노출시켰다. 주 야간에따른 BTX 제거에있어서는싱고니움이다른식물에비해서야간보다는주간에 BTX를많이감소시켰으며, 인도고무나무도싱고니움보다감소폭은적지만동일한경향을나타냈다. 또한, 단위엽면적당 BTX 제거효과에있어서는싱고니움, 아이비, 파키라, 스파티필름이벤젠제거에가장좋았으며, 톨루엔제거에는싱고니움, 아이비, 디펜바키아순으로, 크실렌에있어서는싱고니움과디펜바키아순으로제거효과가좋았다. 따라서, 식물종류에따른 BTX 제거효과에있어서는가스종류별에따라제거효과가다르게나타났지만, 싱고니움이 BTX 가스제거에가장효과적인식물로나타났다. 한편, 실내온도와광도의변화에따른식물의 BTX 제거효과를알아보고자, 싱고니움 (Syngonium podophyllum) 을이용하여온도와광도는각각 18, 24 와 50 μmol m -2 s -1, 100μmol m -2 s -1 로하여 12시간동안 4ppm의혼합된 BTX 의제거효과를조사하였다. 24 조건에서는벤젠, 톨루엔모두광도에상관없이주간이야간보다제거효과가더컸으나, 크실렌에는별다른차이가없었다. 한편, 18 에서는광도별에따른 BTX 제거효과가나타나지않았다. 따라서, 실내온도와광도의변화에따른싱고니움의복합 BTX 제거에있어서는 24 조건이 18 조건보다제거효과가크게나타났으며, 저온하에서는저광도보다는고광도에서가스제거가효과적으로나타났다. 또한, 지금까지대부분의실험이단독가스에대한식물의정화효과에대한것이었다. 따라서, 밀폐챔버내에벤젠과톨루엔의단일혹은혼합가스처리시식물의가스제거능비교와그에따른식물의생리적변화를알아보고자실험이수행되었다. 식물재료로는헤데라 (Hedera helix L.), 스파티필름 (Spathiphyllum Schott.), 싱고니움 (Syngonium podophyllum), 시서스 (cisus rhombifolia) 을사용하였으며, 주간 ( 광도 :100μmol m -2 s -1 ) 과야간 ( 광도 : 0μmol m -2 s -1 ) 각각 6시간 - 10 -
동안식물에의한벤젠과톨루엔의제거효과를조사하였다. 주간의경우, 벤젠과톨루엔의단일처리시스파티필름과싱고니움의가스제거효과가높게나타난반면, 시서스의제거효과는가장낮게나타났다. 그러나, 벤젠과톨루엔의혼합처리시에는시서스와헤데라의제거효과가높게나타난반면, 스파티필름과싱고니움의제거율은낮은것으로나타났다. 결과적으로볼때, 식물에의한가스제거율은식물종, 주야간, 그리고단독혹은복합가스처리에따라서로다르게나타났다. 한편, 벤젠과톨루엔의단일혹은혼합가스를 6 시간처리시모두가스처리전보다가스처리후에광합성율, 기공전도도, 증산율이감소하여생리적활성이감소되었다. 4. 식물별배양토에의한 VOCs 제거식물의분토양에존재하는미생물에의한휘발성유기화합물 (VOCs) 의제거효과가있는지를알아보기위한기본조사로서실내식물의배양에사용되는배양토의종류와식물의종류에따라서미생물의생존과번식, 미생물의분포에있어서어떠한차이가있는지를조사하였다. 배양토피트모스와하이드로볼, 그리고, 식물의종류는헤데라, 쉐프렐라, 드라세나, 스킨답세스, 인도고무나무, 백량금, 파키라, 스파티필름, 산세베리아, 테이블야자, 벤자민, 싱고니움, 디펜바키아, 네프로네피스, 관음죽이었다. 미생물의생존과번식이어떻게되는지조사하기위하여배양토의현탁액을 10-7 까지희석하여현탁액을도말하였고, 세균의배양을위해서는 Tryptic soy agar, 곰팡이의번식에대하여는산성 potato dextrose agar 를사용하였다. 또한, 인체에위해한세균에대하여는대장균, 살모넬라, 포도상구균을대상으로하여판별배지를이용, 조사하였다. 피트모스배양토는세균이 1그람당 1.1 x 10 8 의 colony forming unit(cfu) 로존재하여하이드로볼의 1.8 x 10 5 CFU에비하여현저히많은숫자의세균을가지고있었다. 진균의경우에있어서도배양토그람당균체수가피트모스는 3.6 x 10 7 CFU로하이드로볼의 1.8 x 10 7 의균체수에비하여많았으나세균에서와같은매우큰차이는보이지않았다. 그러나, 미생물의종류에서양상은유사하였다. 또한, 생육중인식물의배양토에따른미생물의밀도에서는하이드로볼은쉐프렐라식물이 3.7 x 10 5, 드라세나는 0.3 x 10 4, 피트모스배양토에서는스파티필름이 1.09 x 10 9, 드라세나는 1.0 x 10 7 의세균의 CFU가 - 11 -
존재하고있어식물종에따른미생물의밀도에큰차이가있음을보여주었다. 식물종에따른배양토에서의그람양성과그람음성그룹에있어서는양상에차이는있었지만, 인체에위해한미생물이발견되지않았으므로화분재배되는식물을실내에서재배한다고하여인체에위해한미생물이대기중에확산될염려는없는것으로생각되었다. 또한, 식물의종에따라서미생물의번식숫자가현저하게차이가나타나 VOCs 의제거능이미생물에의하여도차이가있을수있음을암시하여주었다. 5. 토양미생물을이용한 VOCs 제거능배양토로사용되는하이드로볼에재식되는실내식물의종류에따른하이드로볼에서식하는미생물에의하여 benzene, toluene, m, p-xylene, o-xylene 등의휘발성유기화합물제거효과가있는지를조사하고또한효과가있는배양토에서미생물을선발하고자식물종에따른배양토에서전체세균집단을배양하여휘발성유기화합물의제거능을조사하였다. 헤데라, 드라세나, 스킨답서스, 인도고무나무, 백량금, 파키라, 스파티필름, 산세베리아, 테이블야자, 벤자민, 싱고니움, 디펜바키아, 네프로네피스의식물배양토에서배양된세균집단을 Tryptic soy agar 가첨가된직경이 81mm이며높이가 170mm이고볼륨이 600ml병에접종하고 benzene 0.36ppm, toluene 0.18ppm, m, p-xylene 0.976ppm, o-xylene 0.56ppm의혼합가스를각병에주입하고최초의농도를다시확인하고 28 에서 12시간세균을배양한후각가스의양을측정하였다. 벤젠, 톨루엔, m, p-xylene 등에대하여최초농도에비하여최종농도의감소량이식물배양토의세균집단이첨가된것에비하여현저히작았으나 (LSD, P=0.05), o-xylene 은 control 에서감소량이현저히나타나식물배양토의세균집단에의한 o-xylene 의감소효과를비교할수없었다. 대조구는세균이배양되지않은것이사용되었다. 특히, 벤젠에대하여는대조구의감소율 (0.031-0.596) 에비하여스파티필름, 파키라, 인도고무나무, 백량금, 디펜바키아, 테이블야자등은감소율이 0.741-1.000으로식물배양토의세균집단에의한감소효과가현저히높았다 (LSD, P=0.05). 톨루엔에대하여는드라세나, 네프로네피스, 스파티필름, 인도고무나무, 디펜바키아, 테이블야자등의배양토의세균집단에의하여대조구의감소율 0.652-0.777에비하여감소율 - 12 -
이 0.906-1.000으로현저히높았다 (LSD, P=0.05). 이러한결과들은식물의배양토에있는미생물에의하여 VOCs가제거될수있으며또한식물의종류에따라서도 VOCs 제거능력이다양함을보여주었다. 6. 실내식물을이용한공기정화시스템의설계및제작 3차에걸쳐수정 제작된식물 / 배지 / 토양미생물을이용한실내공기정화시스템은다음과같은특징을지니고있다. 가. 공기정화시스템이단계적이다. 일차적으로는식물자체및배지를이용한정화기능이고, 이차적으로는식물-배지-토양미생물 / 기계적공기순환을이용한정화기능을가지고있다. 나. 공기정화외부가적효과 ( 온열환경 ) 를달성할수있는시스템이다. 다. 실내에서소음을최소화할수있는시스템으로제작되었다. 라. 식물생육에지장이없는자동관수시스템으로구성되어져있다. 7. 식물 / 배지 / 토양미생물을이용한공기정화시스템의성능실험가. 식물 / 배지를이용한공기정화시스템의팬사용에따른실내식물의생리적반응식물 / 배지를이용한공기정화시스템의효율성을높이기위해서팬을가동시키면근권부의수분의흡수방향과는반대되는공기의흐름이진행된다. 따라서시스템의팬사용에따른식물의수분흡수장애와생리적반응변화를조사하기위해서, 팬타이머 on/off 간격을각각 30분, 1시간, 2시간으로조절한상태에서광합성률, 기공전도도, 증산율, stem flux rate, 경계층저항치를 3일동안연속측정하였다. 이실험을위하여형태가서로다른대표적인실내식물인도고무나무 (Ficus elastica) 와싱고니움 (Syngonium podophyllum) 을선정하여조사하였다. 팬의작동유무에따른 stem flux rate는인도고무나무의경우는시간간격에따른미세한변화는있었지만, 주야간에따른본래의일중변화에큰영향을받지않았다. 반면에싱고니움의경우는시간간격에따른영향뿐만아니라일중변화에도영향을미치는것으로나타났다. 한편, 팬의가동유무에따른경계층저항치는두식물모두큰영향을받지않았으며, 팬이가동될경우저항치가 - 13 -
감소되어증산작용에긍정적인영향을미쳤다. 시스템의팬을작동시키지않았을때의생리적요인과비교해보면, 두식물모두시스템팬이 30분간격으로작동할경우에는광합성율, 기공전도도, 그리고증산율이시간이경과함에따라점차적감소하였다. 반면에 1시간또는 2시간간격의팬작동시에는두식물모두생리활성에별다른영향을받지않았다. 나. 식물 / 배지 / 토양미생물을이용한공기정화시스템의배지와식물종에따른 BTX 제거효과식물 / 배지 / 토양미생물을이용한공기정화시스템을이용하여배지와식물에따른혼합휘발성유기물질 (total 4 ppm BTX: benzene:toluene:m-xylene: o-xylene = 0.5ppm:3ppm:0.25ppm:0.25ppm) 의제거효과에대해서조사하였다. 사용된식물은산세베리아 (Sansevieria trifasciata), 헤데라 (Hedera helix L.), 스파티필름 (Spathiphyllum Schott.), 싱고니움 (Syngonium podophyllum), 인도고무나무 (Ficus elastica) 로 5종이었으며, 사용된배지는국산하이드로볼 (H), 루와사하이드로볼 (LH), 활성탄이 60% 포함된루와사하이드로볼 (LC) 였다. 모든식물들은각배지에서 6개월동안순화되었다. 시스템을작동하지않은상태에서식물종에상관없이 LC배지에서 BTX제거율이가장좋았다. 한편, 벤젠의경우는산세베리아, 톨루엔의경우는스파티필름의제거율이높아, 식물체자체와근권부의토양미생물이동시에관여된것으로추론된다. 한편, 시스템을작동한상태에서도시스템을작동하지않은상태와마찬가지로 LC배지에서 BTX의제거효과가탁월한것으로나타났으며, 시스템작동시에는식물종에따라가스종류차이는있었지만가스처리후 20분또는 60분후에 BTX가완전히제거되었다. 특히, 산세베리아의경우는가스처리후 20분내에모든가스가완전히제거되었다. 결과적으로, 실내에함유된휘발성유기물질의제거에는식물종뿐만아니라배지의선정도매우중요하며, 배지를정화필터로사용할경우식물체자체에부가적으로가스제거를탁월하게높일수있다. 다. 토양내미생물균주들의휘발성유기화합물제거능효과및식물토양내 - 14 -
접종시식물생육및공기정화효과에미치는영향 식물배지내근권부에서배양한전체세균집단에서단코로니의세균을분리하 였고, 이분리된균주들에대하여각각 VOCs의제거효과를조사하였다. 각균 주의세균현탁액을직경이 81mm, 높이 170mm이고, 600cc인 Tryptic soy agar (TSA) 가들은유리병에세균현탁액을접종하고벤젠 (1.8ppm), 톨루엔 (0.9ppm), m,p-자일렌 4.88ppm, o-자일렌 (2.845ppm) 이들은 VOCs 가스를주 입하고초기농도를바로측정한후 28 o C에 24시간배양후최종가스농도를 측정하여세균의가스제거효과를조사하였다. 각세균들은가스종류에따라 제거능력이다르게나타났다. 예를들면, 스킨010 균주는모든가스를현저히제 거하였으나, 히데56, 히데15, 히데11 등의세균은가스제거효과가거의없었다. 결론적으로, 스킨 010은모든가스에대한제거능력이탁월하여공기정화분식 물시스템에적용가능함을제시하였다. 벤젠, 톨루엔 등의 제거에 효과가 있 었던 파기라 세균 집단의 현탁액을 파키라, 인도고무나무, 싱고니움 등에 접 종하여 분식물에서 미생물 단독에 의한 가스 제거 효과가 있는지를 조사한 결과 벤젠과 톨루엔에 대하여 뚜렷한 감소 효과를 12시간 측정 기간 동안 볼 수있었다. 또한, m,p-자일렌과 o-자일렌은접종후초기 1-6시간후부분적으 로감소효과를보여주었으나, 시간이경과함에따라서제거효과가감소되었 다. 또한, 공기정화 시스템을 통과한 공기내 인체 유해한 세균의 유무를 조 사하기 위하여 일반 실험실의 공기내 세균과 비교시 거의 유사한 수준이었으 며, 거의 미미한 수준에 불과하여 식물 / 배지 / 토양미생물을 이용한 시스템으로 인한 인체 위해 미생물의 방출은 전혀 우려할 수준이 아닌 것으로 밝혀 졌 다. 라. 실내조건하에서식물 / 토양미생물을이용한공기정화시스템의성능실험실내식물의유무에따른실내광도, 온도, 습도와이산화탄소농도의변화를조사하기위하여, 벤자민고무나무 (Ficus benjamina), 싱고니움 (Syngonium podophyllum), 파키라 (Pachira aquatica) 와황야자 (Chrysalidocarpus lutescens) 의식물을각두분씩을동일한크기의방 2개중하나에두었다 ( 총방볼륨의 - 15 -
4%). 식물이있는방의온도는주간은높고, 야간에는낮았으며, 습도는주간과야간모두최소 5% 이상높아졌다. 또한, 이산화탄소농도에서는주간과야간모두식물이있는방이빈방에비해약 20~30ppm정도낮게유지되었다. 한편, 식물 / 배지 / 토양미생물을이용한공기정화시스템의성능실험을하기위해서, 실내공간 (11m 2.8m 2.5m=L W H) 에실내환경종합측정기, TSP, TVOCs 측정기를바닥에서부터 120cm 위지점에설치한후, 실내의 TVOCs, 포름알데히드, toluene, m-xylene, 총부유분진량, 0.5μm와 1.0μm 입경별개수농도를조사하였다. 측정조건은빈방 (E), 빈방에페인트를칠한카드보드를넣은경우 (Ep), 실내공간의 2% 부피의식물 ( 벤자민고무나무 2개, 싱고니움 4개 ) 이있는시스템이작동되지않는경우 (Pp), Pb의시스템이작동하는경우 (Sp), 시판되고있는공기청정기 (Ap) 가있는경우로하였다. 5% 의신나가함유된 10ml 의페인트를칠한 B5크기의하드보드지가실험을위한 VOCs 발생원으로사용되었다. TVOCs, 포름알데히드, toluene 과 m-xylene 을 4시간동안측정한결과, 빈방에 VOC발생원을넣은처리구 (Ep) 는시간이증가할수록휘발성물질이초기값보다증가하였으며, Pp 처리구는초기에는증가하나 4시간후에는감소하였고, Sp와 Ap 처리구는포름알데히드, TVOCs, toluene 과 m-xylene 을 4시간동안효과적으로제거하였다. 이러한사실로부터식물체자체가 bioeffluents 을발생시킴을알수있었다. 특히 Sp 처리구에서는 toluene 과 m-xylene 이 2시간이내에제거되는것으로나타났다. 한편, 총부유분진제거와 0.5μm입경미세먼지의감소에는 Pp 처리구가가장좋았으며, 1.0μm 입경미세먼지의감소에는 Ap 처리구가다른처리구에비해효과가가장좋았으나 3시간째부터는오히려증가하는경향을나타내었다. 결과적으로, 식물 / 배지 / 토양미생물을이용한공기정화시스템은실용적인면에서실내에존재하는오염물질인포름알데히드, TVOCs, benzene, toluene와 CO 2 의제거또는감소에있어서매우효과적이었으며, 기존의시판되는공기청정기효과와동일한성능을나타내는것으로판단되었다. - 16 -
V. 연구개발결과의활용계획식물의실내공기정화기능에대한부분적인실험은어느정도진척되고있다고판단된다. 그러나, 식물을이용한실제적정화기술은전무한형편이다. 이러한이유는환경조절, 식물관리, 정화기술의통합적적용 (coordinated application) 이이루어지지않았기때문이라고판단된다. 본연구과제를통하여식물 / 배지 / 토양미생물을이용한실내공기정화시스템이개발됨으로, 1) 시스템을통하여최적환경을조절할수있고, 2) 식물에자동관수를할수있으며, 3) 식물-배지 -토양미생물의상관성이해및공학적기술의접목을통하여실내공기정화효율을극대화할수있다. 더욱이, 이미실내식물의원예치료적효과에대해서는일반인들에게이미상당한정도로알려져있기때문에, 이시스템을사용할경우원예치료적효과 + 자동식물관리효과 + 실내공기정화등의상승효과를얻을수있을것으로판단된다. 따라서, 본연구개발을기초로하여시스템을상업화한다면, 그효용성이매우높다고판단된다. 또한가능한활용계획은다음과같다. 가. 실험결과의홍보를통한실내식물의기능성재평가와농업부문산업의재활성화유도 ( 현재, 본연구실에서환경부연구과제및기타과제의연구내용을종합하여일반인들에게실내식물의유용성을알리기위해 실내식물이사람을살린다 라는제목의책을발간하였음.) 나. 기능성식물의실내도입화를통하여기존의미적, 조경적개념의식물도입화를탈피한새로운친환경적주거환경을유도. 다. 식물-인간-환경에대한새로운관계성정립을통하여새로운의생명연구분야를창출. 라. 저부하형실내대기정화기술개발을통하여새로운주택설계및건설개념을확산시킬수있음. 마. 가정, 사무실, 주택, 지하철, 지하상점등심각한대기오염문제를안고있는건물내에이시스템을도입함으로서병든건물증후군 (sick building syndrome) 혹은새집증후군에대한새로운대처기술을제공. 바. System의제작및설치, 그리고운영에관련된부대산업창출효과. - 17 -
SUMMARY I. PROJECT TITLE Development of environment-friendly air purification system using indoor plants II. OBJECTIVE AND NECESSITY OF RESEARCH & DEVELOPMENT Indoor air in urban environments is in increasing need of improvement, and since city dwellers often spend over 90% of their time indoors, the quality of indoor air has become a major health consideration. According to the research, over three hundred VOCs have been detected in indoor air, generally as complex mixtures, although each compound is likely to be in very low concentration. The harmful effects of the chemical mixtures have been recognized as components of sick building syndrome particularly in air-conditioned house or buildings. At present, various technological methods are being used to improve the air quality, but the improvement of indoor air quality by the introduction of indoor plants and the development of related containers are considered an excellent method compared to other mechanical methods in terms of the amount of energy consumption, waste generation, the cost of installation, the aesthetic point of view, horticultural treatment effects and no-damage safety technology etc. Actually, this kind of study has been underway, and it seems that the partial experiment and the possibility of indoor air purification using indoor plants have been progressed to some extent. However, the coordinated applications such as control of indoor environment, maintenance of indoor - 18 -
plants, and the purification technology using both plants and soil has not been completed yet, so the practical use has had little progress. Therefore, this research was aimed to get over the problems by investigating various functions of plants according to their varieties and indoor environment and developing the special container which can make use of these plants. By the development of plant/medium/soil microorganism air purification system as well as the demonstration of removal of indoor air pollutants (CO 2, VOCs, fine particulates, O 3 ) by foliage plants, it could be strongly emphasized that 1) indoor environment could be controlled, 2) indoor plants could be automatically maintained, 3) finally, the efficiency of air purification could be maximized through the combination of both plants-medium-soil microorganism system and technology applied for container device. III. CONTENT AND SCOPE OF RESEARCH & DEVELOPMENT Firstly, the effects of plants and soil microorganism for the purification of indoor air were investigated and then, on the basis of those data, we developed environment-friendly air purification system using indoor plants and soil media. The details of research procedure are as follows. - 19 -
Indoor plant (C3/CAM plant) Day/night condition Indoor environment (light, temperature) First year (2003) Control of CO2 level Purification of Ozone Removal of fine particulates Removal efficiency of VOCs Investigation of soil microorganism in media Selection of functional plants Investigation of air purification by microorganism Development (Planing & Design) Air purification system using plant-media (Development) Circulati on of indoor air using fan Bio filter device Auto watering system (wick culture) Control of RH Effect of horticultural therapy Control Box Second year (2004) Investigation of the effect of air purification system using plant-media Injury of plants by system operation Air circulation & effluence of microorganism by system operation Removal of air pollutants by system operation Removal of fine particulates Control of indoor RH Comparison of efficiency between system and other mechanical devices IV. RESULTS OF RESEARCH & DEVELOPMENT 1. Summary of Major Conclusions: 1) The feasibility of hydroball based medium as the optimal medium for the - 20 -
maintenance of indoor plants was confirmed as compared to the peatmoss based media used widely.. 2) C 3 /CAM plants that are effective in reducing CO 2, O 3, dust and VOCs were selected and the environmental factors for maximizing the efficiency were identified. 3) It was unfolded that plants themselves also emit other volatile organic compounds (bioeffluents) not belonged to BTX compounds (benzene, toluene, xylene). Accordingly, BTX could not be analyzed by the TVOCs measuring apparatus such as PID meter. 4) It was confirmed that the removal efficiency of VOCs varies depending on the soil microorganism community in soil where each plant species were planted. 5) The indoor air purifying performance was significantly different depending on the plant media. When plants were planted in the medium, the delicate air flow occurred between medium and the upper part of plant above soil line by its transpiration. In this case, the removal efficiency of VOCs by medium far exceeds that of plant itself. 6) The air purification system system using plants/media/soil microorganism was organized at three phases. 7) The optimal conditions for system operation were identified by examining the changes in physiological reactions of plants according to the operation of air purification system. 8) When the microorganism community in the medium of certain plant (a) that is effective in removing VOCs was innoculated in the medium of other plant (b), the removal efficiency of other plant (b) against VOCs was much improved. 9) The air purification system using plants/media/soil microorganism showed the equivalent results to existing air cleaner on the market in terms of removal efficiency of formaldehyde and VOCs. - 21 -
10) The plants themselves and air purification system gave the positive impacts on indoor thermo-environment. The indoor dust was reduced more under idle condition of system than active condition of system, indicative of requiring of re-test. 11) It was confirmed that the filtered air emitted through air purification system didn't contain any microorganism harmful to human bodies. 12) It is considered that the detailed supplementary tests are required in order to improve the efficiency of system. 13) Fianlly, the functionality of plants and efficiency of system resulted from this study will have high application values because of a variety of additional vlaues as well as the functions of existing air cleaners. 2. Selection of proper media for growing plants under indoor low light condition According to the results, there was significant difference in plant growth between peat-moss based media and hydroball based media under high light intensity whereas there was no significant difference in both plant growth and visual appearance between them under indoor low light intensity. Practically, it was found hydroball media was much better than conventional eat moss media in consumer's preference, containers suitable for indoor condition, and the availability of various container aspects. 3. Selection of functional plants for the control of indoor air quality A. Removal of carbon dioxide (C 3 /CAM plant) by foliage plants The research was carried out to investigate physiological responses of the indoor foliage plants according to temperatures, media, light intensity levels and CO 2 levels, and to select efficient plants for the control of indoor environment and CO 2 removal efficiency by plants. - 22 -
For the first experiment, plants such as Hedera helix L., Ficus benjamina L. Hawaii, Pachira aquatica Aubl., Spathiphyllum wallisii Regel, Cissus rhombifolia Vahl, Dieffenbachia sp. Marrianne, Scindapsus aureus Engler, Syngonium podophyllum Schott Albo-Virens were selected. As a result of photosynthetic rate of foliage plants according to change of light intensity and carbon dioxide, apparent quantum yield, which stands for the photosynthetic rate under low light intensity, Hedera helix, Ficus benjamina, Pachira aquatica, and Spathiphyllum wallisii showed high photosynthetic rate under high light intensity. High degree of CO 2 fixation efficiency related to dark reaction was found out from Hedera helix, Ficus benjamina, Pachira aquatica, Spathiphyllum wallisii, and Scindapsus aureus. Besides, Hedera helix, Ficus benjamina, Pachira aquatica and Spathiphyllum wallisii showed high photosynthetic rate under high CO 2 concentration and high transpiration rate under high light intensity. All plants chosen in this study were also appeared to be strong for shade tolerance. Because there was no significant difference in photosynthetic rate between 16 and 22 under low light intensity below 50 μmol m -2 s -1, Hedera helix, Ficus benjamina, Pachira aquatica and Spathiphyllum wallisii are considered to be very functional plants for the control of indoor environment. For the second experiment, the Ficus benjamina L., Hedera helix L., Ficus elastica, Syngonium podophyllum, Dieffenbachia amoena, Chamaedorea elegans, Pachira aquatica, Schefflera arboricola cv. Hong Kong, Dracaena deremensis cv. Warneckii Compacta were chosen and cultivated in two different growth media of peatmoss (Sunshine, USA) or hydroball. As a result of photosynthetic rate of foliage plants according to change of light intensity and carbon dioxide, Ficus benjamina, Hedera helix, Schefflera arboricola, Ficus elastica and Pachira aquatica showed high apparent quantum yield, which stands for the photosynthetic rate under low light intensity, and Ficus benjamina, Ficus elastica and Pachira aquatica showed the highest photosynthetic rate under - 23 -
high light intensity. High degree of CO 2 fixation efficiency related to dark reaction was found out from Ficus benjamina, Ficus elastica and Pachira aquatica. Besides, in case of Syngonium podophyllum, Schefflera arboricola, Chamaedorea elegans and Ficus elastica under high light intensity over 200μ mol m -2 s -1, the plant in peatmoss medium had higher photosynthetic rate than that in hydroball medium, which shows that peatmoss medium is more appropriate not for indoor control, but for plant cultivation. In the meantime, under low light intensity of indoor below 50μmol m -2 s -1, there wasn't any significant difference depending on the type of soil. Subsequently, Pachira aquatica, Ficus elastica, Schefflera arboricola, Hedera helix and Dieffenbachia amoena are considered to be appropriate for functional plants for the control of indoor environment. Specially, it was found that hydroball medium was appropriate for the indoor because it could be used in containers without draining hole. Finally, carbon dioxide uptake and photosynthetic rate of indoor plants in an airtight chamber were compared. Among the indoor plants, Hedera helix L., Ficus benjamina L., Pachira aquatica, Chamaedorea elegans, and Ficus elastica were selected for the experiment and cultivated in two different growth media, peatmoss and hydroball. Then, each plant was placed in an airtight chamber with 1,000ppm or 500ppm of carbon dioxide and two different light intensity, 50 or 200μmol m -2 s -1. After the change of carbon dioxide in airtight chamber during day and night was measured by ppm unit, the carbon dioxide level was converted into the photosynthetic rate (μmolco 2 m -2 s -1 ). In all plants, photosynthetic rate were high during the day time when the light intensity was 200μmol m -2 s -1 instead of 50μmol m -2 s -1, and when the concentration of the initial carbon dioxide was 1,000ppm. Among the tested plants, Pachira aquatica and Hedera helix showed higher photosynthetic rate, approximately 3.4 and 2.6μmolCO 2 m -2 s -1, respectively, regardless of media. - 24 -
Moreover, the differences in light intensity and concentration of carbon dioxide during day period didn't have large effect on respiration rate at night period and the plant maintained in hydroball medium showed less respiration rate than that maintained in peatmoss medium at night period. On the contrary, the proper diurnal environment to maximize the rate of CO 2 uptake through stomata in cactus during night period was investigated. Notocactus magnificus showing full-cam mechanism were chosen and the CO 2 exchange rate was determined according to light intensity, photoperiod, and day/night temperature conditions. CO 2 uptake rates during night period was determinately affected by the length of day period but not by day/night temperature under the light condition of 300μmol m -2 s -1. That is, CO2 uptake rate during night period increased as day length icreased under high light intensity. However, the rate differences according to day length were gradually disappeared as light intensity decreased. B. Removal of indoor ozone by foliage plants This research was conducted to investigate the physiological responses, sensitivity, and ozone purification efficiency of indoor foliage plants exposed to ozone. For experiment, Cissus rhombifolia Vahl, Hedera helix L., Spathiphyllum wallisii Regel, Syngonium podophyllum Schott Albo-Virens, Dieffenbachia sp. Marrianne, Ficus benjamina L. Hawaii, Pachira aquatica Aubl., and Scindapsus aureus Engler were selected and placed in walk-in-type growth chamber. They were exposed to 120ppb ozone for 2, 4, 8hrs/day for 25 days. Only Cissus rhombifolia among 8 foliage plants, showed visible foliar injuries in few days after experimentation, in which the more ozone exposure time was prolonged, the more destruction and distortion of mesophyll tissue and closure of stomata were severe. Unexpectedly, chlorophyll contents and chlorophyll fluorescence (Fv/Fm) were higher in some foliage plants ozone exposed, instead of control group. - 25 -
In general, it was found that apparent quantum yield was high in control and 2 hrs/day ozone exposed group and low in 8 hrs/day ozone exposed group, and CO 2 fixation efficiency was high in 2 hrs/day ozone exposed group and low in 8 hrs/day exposed group, regardless of species. Especially Cissus rhombifolia, Dieffenbachia sp. Marrianne, Pachira aquatica, and Scindapsus aureus among foliage plants exposed by ozone showed a significant reduction in photosynthetic rate as compared to control group. These data indicated that 2 hrs/day ozone exposure rather stimulated physiological activities of plants than inhibited in some species, but, generally speaking, activities of photochemistry system and CO 2 fixation system of photosynthesis decreased in all plants with the increase of exposure time per day. According to these results, it was considered that Cissus rhombifolia, Dieffenbachia sp. Marrianne, Scindapsus aureus belonged to ozone sensitive species because of visible foliar injuries and significant reduction of physiological activities by 4 or 8 hrs/day ozone exposure, but Spathiphyllum wallisii, Hedera helix, Ficus benjamina belonged to ozone tolerant species because of physiological activities similar to those of control, despite of ozone exposure. Changes of physiological activities and ozone absorption rate during exposure period were evaluated. In Cissus rhombifolia and Spathiphyllum wallisii exposed by 8 hrs/day ozone, photosynthetic rate, stomatal conductance, and ozone uptake rate were continuously reduced until the termination of experiment as exposed days increased. However, in case of Hedera helix and Syngonium podophyllum, photosynthetic rate, stomatal conductance, and ozone uptake rate were reduced in the early days of experiment and then gradually increased. Cumulative ozone uptake rate was found to be the highest in Spathiphyllum wallisii. Ozone uptake rate of foliage plants that was measured at 25 days after experiment decreased as exposure time per day increased. Especially, ozone - 26 -
uptake rate of Cissus rhombifolia and Scindapsus aureus was significantly reduced in 8 hrs/day ozone exposed group as compared to that of 2 hrs/day ozone exposed group. On the other hand, ozone uptake rate of Ficus benjamina was higher than other foliage plants, regardless of exposure times per day. In conclusion, it was found that recovery efficiency or mechanism varied with species and ozone uptake rate also varied with the sensitivity of foliage plant against ozone, where the more ozone tolerant species, the more uptake rate increased. C. Adsorption and/or absorption of indoor fine particulate by foliage plants This research was conducted to investigate the effect of foliage plants on the removal of indoor particulate, where experiments were taken in the room or closed chamber, to examine the effect of indoor temperate, relative humidity, light intensity, and day/night period on the removal rate of particulate as affected by foliage plants, and to evaluate correlation between physiological factors and particulate removal efficiency of foliage plants. Firstly, as the room placed with foliage plants and just vacant room without foliage plants were compared, it was found that the removal rate of TSP (total suspended particulate) increased in the room with foliage plants, indicating of possible adsorption and/or absorption of particulate by foliage plants. For example, about 20% foliage plants of the room volume could reduce indoor TSP, which was calculated as initial removal rate, about 3 times more rapidly than that of 10% foliage plants. According to the experiment taken in closed chamber without foliage plants, there was no significant differences in the removal efficiency of TSP, 1.0μm, and 0.5μm particle between day and night period. However, all 5 foliage plants placed in closed chamber showed more reduction rates in indoor TSP, - 27 -
1.0μm, and 0.5μm particle during day period than night period, especially, profound reduction rate in 0.5μm particle. In removal efficiency of foliage plants according to measurement positions, there were no difference in TSP, but there were quite a difference in 1.0μm and 0.5μm particles. Specially, Ficus elastica which had large leaf area per plant and low photosynthesis rate showed a profound removal efficiency of particulate in P1 (above plant canopy) than other positions such as P2 (between leaves) and P3 (10cm far from P2), whereas Syngonium podophyllum which had a small leaf area, but high photosynthesis and stomatal conductance showed a great removal efficiency of particulate in P2 and P3 than P1. It was shown that TSP removal efficiency of foliage plants during day and night period increased as their leaf area increased. On the other hand, Pachira aquatica which had a high photosynthetic rate was most effective during day period, but Ficus elastica which had a large leaf area was extremely effective during night period, as the removal rate of particulate was calculated as per unit area of plant. In Ficus elastica, there was no difference in the removal efficiency of particulate according to the change of temperature, but showed rapid removal rate of particulate as relative humidity (RH) increased, despite of considering that the removal efficiency of particulate by foliage plant would be reduced by low stomatal conductance at higher RH. Light was also found to influence significantly the removal rate of particulate by foliage plants. In removal efficiency of particulate during day and night period, there was no difference in the removal efficiency of TSP(total suspended particulate), regardless of plant species, but the removal rate of 1.0μm and 0.5μm particle was highest during day period. Furthermore, the more particle size was small, the more the removal efficiency of particle by foliage plants increased. In both Ficus elastica and Ficus benjamina, photosynthetic rate and - 28 -
transpiration among several physiological factors were highly correlated with the removal rate of particulate by foliage plants with significance at 0.01 level. In conclusion, it was suggested that the presence of plant was very effective in removal of particulate at indoor space, because foliage plants absorbed easily the fine particulate which was harmful to human health. D. Removal of TVOCs (BTX) by foliage plants This study was conducted to investigate removal efficiency of indoor plants exposed to volatile organic compounds (TVOCs) containing benzene, toluene, and m, o-xylene (BTX) during day/night period. For experiment, Hedra helix L., Spathiphyllum Schott., Ficus benjamina L., Pachira aquatica, Dracaena deremensis ac. Warneckii Compacta, Syngonium podophyllum, Dieffenbachia amoena, and Ficus elastica were selected and placed in airtight chamber which had 0.2871m 3 (0.55 0.58 0.90m) volume. After 4ppm mixed gas was injected into an airtight chamber, removal efficiency by plants placed in the chamber was examined for 12 hours (light intensity:100μ mol m -2 s -1 ) and night (light intensity:0μmol m -2 s -1 ). In this case, the pot was sealed with teflon film, only the above plant part was exposed to TVOCs in order to get rid of the influence of both soil and soil microorganisms. Among indoor plants, Syngonium podophyllum showed the most removal efficiency of TVOCs during day period than night period, and Ficus elastica showed the same tendency though the decreased range as time goes was less than Syngonium podophyllum. According to the results of BTX removal efficiency per unit area, Syngonium podophyllum, Hedra helix, Pachira aquatica, Spathiphyllum spp. were showed higher than others in benzene removal. In removing toluene, Syngonium podophyllum was most effective, and followed by Dieffenbachia amoena and Hedra helix. Syngonium podophyllum was most effective in - 29 -
removal of xylene, followed by Dieffenbachia amoena. In conclusion, it was found that Syngonium podophyllum was the most effective species in removing of BTX gas although removal efficiency according to each gas was not equal. Besides, in order to investigate the effect of indoor temperature and light intensity on the removal of BTX by Syngonium podophyllum, removal efficiency was determined during 12 hours after injection of 4ppm BTX into chamber under conditions of 18 or 24C temperature and 50 μmol m -2 s -1 or 100μmol m -2 s -1 light intensity. Under 24 condition, benzene and toluene during day period was more effectively removed than night period, regardless of light intensity. However, there was no difference in xylene reduction according to day or night period. Additionally, there was no difference in removal efficiency by plant under 1 8 condition. For the effect of indoor temperature and light intensity on the Syngonium podophyllum plant's removal of mixed BTX, the elimination effect was greater under the 24 condition than the 18 condition, and the removal rate was higher under the high light intensity than under the low light intensity, when the temperature was low. Finally, another study was conducted to compare the gas removal efficiency of plants and identify the consequent physiological changes of plants when single gas or gas mixture of benzene and toluene was exposed in an air tight chamber. The plant species applied were Hedera helix, Spathiphyllum, Syngonium podophyllum and Cissus rhombifolia. Next, the removal efficiency of benzene and toluene using plants were examined for six hours during day condition with 100μmol m -2 s -1 light intenisty and night condition with no light apiece. For the day, while Spathiphyllum and Syngonium resulted in the highest removal efficiency in treating single gas (benzene or toluene) whereas the removal efficiency of Cissus was the lowest. However, when both benzene - 30 -
and toluene were treated as the same time, while Cissus and Hedera illustrated relatively higher removal efficiency, Spathiphyllum and Syngonium showed lower efficiency. As a result, the gas removal rate by plants varied depending on day or night condition, plant species, and single gas or gas mixture. Meanwhile, when single gas or gas mixture of benzene or toluene were exposed to plants for six hours, all physiological factors such as photosynthetic rates, stomatal conductibility, and transpiration rate were significantly reduced after gas treatment as compared to those before gas treatment. 4. Removal of indoor VOCs by plant growing media Effect of total bacterial population cultured from the cultivation media of different plants on removal of volatile organic compounds (VOCs) such as benzene and toluene was studied. Also, the bacteria effective for removal of VOCs was isolated from total bacterial population. Total bacterial populations of the cultivation media of Hedera helix L., Dracaena deremensis cv. Warneckii Compacta, Scindapsus aureus Engler, Ficus elastica, Ardisia crenat, Pachira aquatica, Spathiphyllum wallisii Regel, Sansevieria trifasciata Prain var. laurentii N. E. Br, Chamaedorea elegans, Ficus benjamina L., Syngonium podophyllum Schott Albo-Virens, Dieffenbachia sp. Marrianne, Nephrolepis exalatata Bostoniensis was inoculated into the glass bottle (diameter 81mm x height 170mm, 600ml) and then mixed VOCs of bezene (0.36ppm), toluene (0.18ppm), m,p-xylene (0.976ppm) and o-xylene (0.569ppm) were injected. The initial gas concentration of VOCs from bottles was measured and incubated for 12 hrs. Benzene, toluene and m,p-xylene was significantly reduced from inoculated treatments compared to non-inoculated (LSD, P=0.05). However, reduction of o-xylene in the inoculated could not be compared because the final gas concentration was reduced significantly even from the control. Compared to the control with reduction rate of 0.031-0.596, - 31 -
the reduction rates of benzene by the inoculation of total bacterial populations from the cultivation media were significantly great, ranged from 0.741-1.000 of Spathiphyllum wallisii Regel, Pachira aquatica, Ficus elastica, Ardisia crenat, Dieffenbachia sp. Marrianne, Chamaedorea elegans. Compared to the control with toluene reduction rate of 0.652-0.777, the reduction rates by the total bacterial populations of Dracaena deremensis cv. Warneckii Compacta, Nephrolepis exalatata Bostoniensis, Spathiphyllum wallisii Regel, Ficus elastica, Dieffenbachia sp. Marrianne, Chamaedorea elegans were significantly great with ranges of 0.906-1.000. These results indicate that the microbial population in plant cultivation media could play an important role in removal of VOCs. 5. Removal of indoor VOCs by soil microorganism Microbial diversity in indoor plant cultivation media used for growing the different kinds of plants as a basic study was investigated in order that microbes present in plant cultivation media could play a role in removing volatile organic compounds (VOC). There were two plant cultivation media, hydroball and peatmoss. Types of plants used for this study were Hedera helix L., dracaena deremensis cv. Warneckii Compacta, Schefflera arboricola cv. Hong Kong, Scindapsus aureus Engler, Ficus elastica, Ardisia crenat, Pachira aquatica, Spathiphyllum wallisii Regel, Sansevieria trifasciata Prain var. laurentii N. E. Br, Chamaedorea elegans, Ficus benjamina L., Syngonium podophyllum Schott Albo-Virens, Dieffenbachia sp. Marrianne, Nephrolepis exalatata Bostoniensis, Rhapis excels. Cultivation media were suspended with sterile distilled water for ten fold serial dilution to the 10-7 and the suspensions were spread on tryptic soy agar for bacterial culture and acidified potato dextrose agar for fungal culture. In addition, we investigated if harmful bacteria for human such as Escherichia coli and Salmonella exist in cultivation media is present. Bacterial population was higher in peatmoss with 1.1 x 10-8 colony forming unit (CFU) than hydroball with 1.8 x 10-5. However, the fungal population did not - 32 -
show a big difference as in case of bacteria. Although there was a difference in microbial population between cultivation media, microbial diversity was similar. Bacterial populations were different depending on the types of plants grown on cultivation media. Harmful bacteria for human was not cultured in the cultivation media, suggesting that growing plant indoor would not be a problem for human health. Also, the difference in microbial population depending on types of plants used suggested that efficacy of VOCs removal by plants grown indoor in cultivation media could be also attributed to microbes present in cultivation media. 6. Design and production of indoor air purification system using plant/medium/soil microorganism Characteristics of air purification system using plant/medium/microorganism which was designed and produced through this research were as followed. A. Operation for the removal of indoor air pollutants has two steps. As a first step, air pollutant will be purified by both plants themselves and media and, as a second step, will be purified by plant/medium/soil microorganism with mechanical aids. B. This system have additional functions such as control of thermo - environment as well as air purification. C. The system was designed to minimize noise problem produced by fan operation. D. Additionally, the plants which placed in this system will be maintained by auto-watering system. 7. Performance test of indoor air purification system using indoor plant and media - 33 -
A. Physiological responses of indoor plants according to fan operation of air purification system using plant/medium When a fan is in operation for the purpose of enhancing the efficiency of air filtering system using plants/medium, the air flows went reversely against direction of the water absorption from root system. Thus, for examining the water absorption disorders and changes of physiological reaction of plants according to the operation of fan in the system, the fan timer was adjusted to be active or inactive at the interval of 30 minutes, one hour, and two hours. With this condition, the photosynthetic rate, stomatal conductibility, transpiration rate using portable photosynthesis analysis, and stem flux rate and boundary leaf resistance using phytomonitoring system were consecutively measured for three days. For this test, the representative indoor plants with different shapes, Ficus elastica and Syngonium podophyllum were selected. While the stem flux rate depending on the activation or inactivation of fan was slightly changed according to the time interval for Ficus elastica, the intrinsic diurnal variations during the day or at night were not significantly impacted. On the contrary, Syngonium podophyllum illustrated the significant influences by time interval as well as diurnal variation. Meanwhile, for the boundary leaf resistance according to the activation or inactivation of fan, both plants didn't demonstrated the significant impacts. When the fan was activated, the boundary leaf resistance was reduced so that the transpiration was positively influenced. Compared to the physiological factors when the system fan was inactive, the photosynthetic rate, stomatal conductibility and transpiration rate in both plants were gradually reduced as times went by when the system fan was activated at the interval of 30 minutes. On the contrary, both plants didn't demonstrate the significant impacts in their physiological activities when the fan was activated at the interval of one hour or two hours. - 34 -
B. Removal efficiency of BTX as affected by indoor plant species and media in air filtering system using plant/medium/soil microorganism The removal efficiency of volatile organic compound(total 4 ppm BTX: benzene:toluene:m-xylene:o-xylene = 0.5ppm:3ppm:0.25ppm:0.25ppm) by media and plants was investigated using the air filtering system applying the plants, media and soil microorganism. Five plant species were used: Sansevieria trifasciata, Hedera helix L., Spathiphyllum Schott., Syngonium podophyllum and Ficus elastica. The media applied were the domestic hydroball (H), Luwasa hydroball (LH) and Luwasa hydroball (LC) containing active carbon of 60% (v/v). All plants were acclimatized in each medium for six months. With the above idle system without operation, the removal efficiency of BTX showed the best result in the LC medium regardless of plant species. Meanwhile, benzene and toluene demonstrated the highest efficiency in Sansevieria trifasciata and Spathiphyllum, respectively. This result suggested that both the plant body itself and soil microorganism in root system would be involved in the removal efficiency of BTX. In the same manner as the idlee system, the LC medium with the active system proved the remarkable removal efficiency of BTX. While the gas types varied by plant species in the active system, BTX was completely removed 20 or 60 minutes after treatment. Especially for Sansevieria trifasciata, the gas was thoroughly eliminated within 20 minutes after gas treatment. Consequently, the selection of medium as well as the plant species are important in removing the volatile organic compound included in a room and when a medium is used as the air purifying filter, removal efficiency could be tremendously enhanced by the medium additive to plant itself. C. Effect of Single Bacterial Strains and Inoculation of the Bacterial Population of Pachira aquatica into Several Different Plants media - 35 -
on the Removal of Volatile Organic Compounds Effect of single bacteria isolated from total populations cultured from the cultivation media of different plants on removal of volatile organic compounds (VOCs) such as benzene and toluene was studied. Bacterial suspension of each strain was inoculated into the glass bottle (diameter 81mm x height 170mm, 600ml) and then mixed VOCs of benzene (1.8ppm), toluene (0.9ppm), m,p-xylene (4.88ppm) and o-xylene (2.845ppm) was injected. The initial gas concentrations of VOCs from bottles was measured right after injections and incubated for 24 hrs. Each bacteria was different in the capacity of removal of different VOCs, i.e. Scin010 was good at the removal of every species of VOCs but some bacterial strains such as Hede56, Hide15, and Hide11 not good at removal of any other VOCs compared to the control. In the after all, Scin010 was the best for removal of every species of VOCs, suggesting that this strain could be very well utilized for VOCs removal related to the application in real. Microbial population from Pachira aquatica shown good capacity for the removal of benzene and toluene was inoculated into different plant pots such as P. aquatica, Ficus elastica, Syngonium podophyllum. The inoculated microorganisms had significant effect on the removal of benzene and toluene compared to the removal efficacy by the only plants, indicating that microbes in the rhizosphere could play a significant role in the removal of VOCs along with plants. In addition, the harmful bacteria to human was not detected at the level beyond hazardous critical point from the absorbed air passed through air purification systems made for the purpose of the removal of VOCs in the room. D. Performance Test of Air Filtering System using Plant/Soil Microorganism In order to examine the indoor luminosity, temperature, humidity and carbon - 36 -
dioxide concentration as affected by the existence of plants, Ficus benjamina, Syngonium podophyllum, Pachira aquatica or Chrysalidocarpus lutescens were selected and two plants per each species were placed (equivalent to 4% of room volume) in one of two rooms with the same size. The temperature of room with the plants was higher during the day and lower at night period. Its humidity became increased at least over 5% both during the day and at night. Moreover, the carbon dioxide concentration kept lower about 20 to 30 ppm in the room with plants during the day and night period than the room without plants. Meanwhile, for the performance test of air purification system using plant/medium/soil microorganism, the indoor air monitoring system, dust and TVOCs meter were installed 120cm above the floor in the room (11m 2.8m 2.5m=L W H). Then, the indoor TVOCs, formaldehyde, toluene and m-xylene concentration, TSP and the number of particulates with 0.5μm or 1.0μm particle size were examined. The measuring conditions were the empty room (E), the room with painted B5 sized hardboard (Ep), the room with the idle system containing plants equivalent to 2% of the room volume (two Ficus benjamina, four Syngonium podophyllum) (Pp), the room with active system containing plants mentioned in Pp (Sp), and finally the room with air purifier on the market (Ap). the B5 sized hardboard in which 10ml of paint containing 5% thinner was painted was used as VOCs source. According to the results from measuring TVOCs, formaldehyde, toluene and m-xylene, they were gradually increased from the initial values in the Ep treatment as times went by until 4 hours. In the Ep treatment, those compounds were initially increased but dropped after four hours, indicating that plants themselves evolved bioeffluents. Sp and Ap treatment effectively removed the formaldehyde, TVOCs, toluene and m-xylene and, in particular, it was found that Sp treatment completely removed toluene and m-xylene within two hours. The concentration of PM10 and number of - 37 -
micro-particulate with 0.5μm particle size was most effectively removed in the Pp treatment. For the removal of micro-particulate with 1.0μm particles size, Ap was the best at the begining among all treatments but micro-particulates were rather increased after three hours. In conclustion, the air purification system using plants/media/soil microorganism was practically proved to be remarkablely efficient in removing or reducing the contaminants in a room such as formaldehyde, TVOCs, benzene, toluene and CO 2. and its performance was estimated to be equal to or superior to air cleaner system on the market. V. PRACTICAL APPLICATION OF THE RESULTS At present, practical application of plants for the purpose of removal of indoor air pollutants was rarely not known. As far as we know, the reason is that the strategic approach for the development of this kind of system was not coordinated applications which contain control of indoor environment and plant automanagement as well as air purification. A possible application of the system developed through this research is as follows. A. Reconsideration of the importance of indoor introduction of foliage plants by public advertisement and consequent restoration of floricultural industry. B. Introduction of environment friendly living space using indoor plants C. Construction of new dimensional relationships between plant, human being, and environment and its application to medical science. D. Spreading a new concept of house/small building design and construction through the development of low energy consumming air purification system using plants. E. Reduction of sick building syndrome by this system. - 38 -
F. Production of subsidiary enterprise according to installation and management of this system. - 39 -
CONTENTS Chapter 1. Introduction...45 Section 1. Research goals...45 Section 2. Necessity of the research...46 Section 3. Research scopes...52 Chapter 2. The present status of domestic and foreign research...59 Section 1. Foreign research...59 Section 2. Domestic research...63 Section 3. Distinction between this research and domestic/foreign research...65 Chapter 3. Research contents and results...67 Section 1. Summary of Major Conclusions...67 Section 2. Control of CO 2 level by indoor foliage plants...68 1. Physiological responses of indoor plants according to temperature, light intensity, and carbon dioxide...68 2. Physiological responses of indoor plants according to temperature, light intensity, and carbon dioxide...105 3. Effects of foliage plants on the change of indoor CO 2 concentration during day and night period...126 4. Effects of light intensity, photoperiod, and day/night temperature on diurnal CO 2 exchange rate in cacti Notocactus magnificus...148 Section 3. Selection of plants sensitive to ozone exposure and investigation of of ozone purification efficiency by foliage plants...157 1. Effects of ozone exposure time on physiological responses and sensitivity of indoor - 40 -
plants...157 2. Effects of ozone exposure duration on purification efficiency and physiological responses of indoor plants...180 3. Visual injury phenomena of foliage plants by ozone exposure and their physiological changes according to ozone exposure time...194 Section 4. Adsorption and/or absorption of indoor fine particulate by foliage plants...202 1. Effect of foliage plants on the removal of indoor particulate...202 2. Effect of foliage plants on the adsorption and/or absorption of indoor fine particulate...218 Section 5. TVOCs removal by indoor plants...238 1. Design and production of gas tight chamber for measuring TVOCs...238 2. TVOCs (BTX) removal efficiency during day/night period according to foliage plant species...245 3. Effects of temperature and light intensity on the removal of TVOCs (BTX) of Syngonium...259 4. Removal efficiency of single or mixtures of volatile organic compound by different plants and their physiological responses...267 Section 6. Investigation of interrelationship between plant and soil media, and air purification efficiency by soil microorganism...284 1. Microbial diversity of indoor plant soil bed...284 2. Effect of microbe of cultivation media on removal of volatile organic compound...298 Section 7. Design and production of indoor air purification system using plant /soil media...312-41 -
1. Design direction of indoor air purification system...312 2. Planning & production of prototype of indoor air purification system...315 3. Patent application of indoor air purification system using plant/soil media...318 4. Production of indoor air purification system for practical experiments...320 5. Hardware correcttion and an improvement experiment of developed system...321 Section 8. Performance test of indoor air purification system using indoor plant and media...325 1. Physiological responses of indoor plants according to fan operation of air purification system using plant/medium...325 2. Removal efficiency of BTX as affected by indoor plant species and media in air filtering system using plant/medium/soil microorganism...341 3. Effect of Single Bacterial Strains and Inoculation of the Bacterial Population of of Pachira aquatica into Several Different Plants on the Removal of Volatile Organic Compounds...361 4. Performance test of air purification system using plant/medium/soil microorganism...378 Chapter 4. Accomplishment of research and contribution to the related fields...395 Section 1. Accomplishment of research...395 Section 2. Contribution to the related fields...397 Chapter 5. Future application of the research results...399 Chapter 6. References...401-42 -
목차 제 1 장서론...45 1 절연구개발의목적...45 2 절연구개발의필요성...46 3 절연구범위...52 제 2 장국내 외기술개발현황...59 1 절국외...59 2 절국내...63 3 절국내 외유사과제와의기술내용의차별성...65 제 3 장연구개발수행내용및결과...67 1 절핵심결과요약...67 2 절실내식물을이용한 CO 2 조절...68 1. 광도, CO 2 농도및배지종류에따른관엽식물의생리적반응...68 2. 온도, 광도, CO 2 농도에따른관엽식물의생리적반응...105 3. 관엽식물이주야간실내 CO 2 농도변화에미치는영향...126 4. 광도, 광주기및주 야간온도가마그니휘커스선인장의일중 CO 2 교환속도에미치는영향...148 3 절오존지표식물의선정과오존정화능조사...157 1. 오존처리시간에따른실내식물의감수성과생리적반응...157 2. 오존처리기간에따른실내식물의정화능과생리적반응...180 3. 오존처리가시피해현상및처리기간별생리적변화...194 4 절실내식물의분진제거및흡착유무...202-43 -
1. 관엽식물이실내분진제거에미치는영향...202 2. 관엽식물이미세분진의흡수및흡착에미치는영향...218 5 절실내식물의 TVOCs제거효과...238 1. TVOCs 측정용실험기자재제작및분석기기...238 2. 실내식물종류별에따른주 야간동안의 TVOCs(BTX) 제거효과...245 3. 온도와광량조건에따른싱고니움의 TVOCs의제거효과...259 4. 실내식물에의한단독혹은복합휘발성유기물질의제거능과그에따른생리적반응...267 6 절실내공기질개선을위한식물-토양의관계성및토양미생물의공기정화능조사...284 1. 실내식물분토양내미생물상연구...284 2. 분토양의토양미생물이휘발성유기화합물의제거에미치는영향...298 7 절식물 / 토양을이용한실내공기정화시스템의설계및제작...312 1. 실내공기정화시스템의설계방향...312 2. 실내공기정화시스템의초기버젼설계및제작...315 3. 식물 / 토양을이용한실내공기정화시스템의특허출원...318 4. 실내공기정화시스템실험용제작...320 5. 개발된시스템의하드웨어수정및개선실험...321 8 절식물 / 토양을이용한실내공기정화시스템의개선실험및성능실험...325 1. 식물 / 배지 / 미생물을이용한공기정화시스템의팬사용에따른실내식물의생리적반응...325 2. 식물 / 배지 / 토양미생물을이용한공기정화시스템의배지와식물종에따른 BTX 제거효과...341 3. 토양내미생물균주들의휘발성유기화합물제거능효과및식물체접종시식물생육및공기정화효과에미치는영향...361-44 -
4. 식물 / 토양미생물을이용한공기정화시스템의성능실험...378 제 4 장연구개발목표달성도및대외기여도...395 1 절연구개발목표달성도...395 2 절관련분야의기술발전에의기여도...397 제 5 장연구개발결과의활용계획...399 제 6 장참고문헌...401-45 -
제 1 장서론 1 절. 연구개발의목적 생활패턴및에너지효율지향적건물로인하여, 실내공기질이날로악화되어가고있으며, 삶의질에결정적인요인으로대두되었다. 실제로, 실내주공기오염원은밀폐된건물과그안에있는유기합성가구및설비들, 감소된환기율, 그리고사람으로부터방출되는생체방출물 (bioeffluents) 이며, 이러한실내공기질악화에대한예측부족은현대인에게새로운질병 (sick building syndrome) 을초래케하였다. 현재실내공기질개선을위한다양한기기적인방법들이사용되고있지만, 실내식물도입및관련용기개발을이용한실내공기질개선은다른방법에비해, 에너지소비량, 폐기물발생, 설치비, 심미적및원예치료적효과, 무재해성안전한기술등의측면에서탁월한방법이라고판단된다. 실제, 이러한연구가국외에서는조금씩연구되어와실내식물을이용한실내대기정화기능에대한부분적인실험과그가능성은어느정도진척되었다고판단된다. 그러나실내환경조절, 식물관리, 식물-토양을이용한정화기술의통합적적용 (coordinated application) 이이루어지지않았기때문에실제활용에있어서는별다른진척이없는실정이다. 따라서, 본연구는식물종류및환경에따른기능성을조사 분석함과동시에이러한식물을이용할수있는용기를개발함으로서, 실제활용상의문제점을극복하고자하였다. 본연구과제를통하여식물-토양대기정화시스템을개발할경우, 1) 시스템을통하여최적정화환경을조절할수있고, 2) 식물에게자동관수를할수있으며, 3) 식물-토양및공학적기술의접목을통하여대기정화효율을극대화할수있다고판단된다. - 46 -
2 절. 연구개발의필요성 현대인들은하루중 80-95% 에이르는대부분의시간을한정된실내에서보낸다 (Jenkins et al., 1992). 한편, 대부분의건물들은에너지효율을높이기위하여외부와차단되어있다. 이런이유로, 실내공기질 (Indoor Air Quality: IAQ) 은삶의질 (Quality of Life: QOL) 에중요하다. 이경우, IAQ에결정적인영향을미치는요인은온도이다 (Fang et al., 1998). 계절변화에따른실외의매우뜨겁거나차가운기후에서, 실내생활에필요한적절한온도유지는 heating and cooling air ventilation(hvac) system에의해이루어진다. 이러한시스템하에서는운영비의제한과거주자의안락함을향상시키기위해, 가능한한밀폐된건물구조를유지함으로써외부공기의실내유입이제한되게되었다. 한편, IAQ의다른한요소는실내대기중에발생되는유해물질들이다. 밀폐된실내에서는냉 난방기연료, 건축자재, 가구, 카페트, 벽지, 그리고거주자들의신체등으로부터발생하는많은유해물질 (CO 2, 분진, VOCs, O 3 ) 이축적되어실내공기를오염시킬뿐만아니라암유발, 호흡기계통의문제등을발생하여인체에심각한피해를줄수있다. 최근이러한증상은 Sick Building Syndrome(SBS) 으로규정되어지고있다. 특히, 일부의 VOCs는암유발물질로알려지고있으며, SBS와직접적으로연관이있는것으로밝혀졌다 (Kostainen, 1995). 그결과로써밀폐된빌딩은 VOCs 및다른오염물질들이축적되어궁극적으로빌딩거주자의건강과 QOL에지대한영향을미치게되었다. 요약하면, 실내공기오염의세가지주요인은 1) 밀폐된건물과그안에있는유기합성가구및설비들, 2) 감소된환기율, 그리고 3) 사람으로부터방출되는생체방출물 (bioeffluents) 이며, 이러한실내공기질악화에대한예측부족은현대인에게새로운질병을초래케하였다. 전통적으로, 실내에서발생되는 VOCs 및 VOCs 와다른공기오염물질들은외 부공기와의환기를통해서제거되거나희석되어졌다. 현재까지는주로기계적 - 47 -
인공조기술에의존하고있으나고가의장비가요구될뿐만아니라고비용이들며, 또한여러가지부작용을발생할수있다는단점을지니고있다. 더욱이, 이러한시설은실내에서자연과의교류를더욱제한시키는것으로, 오늘날환경친화적인삶의추구 (green amenity) 에결정적으로역행한다. 한편, 식물은기공을통해대기중으로증산작용에의해수분을방출함과동시에대기중의 CO 2 가스를흡수하여광합성을행하는데, 이러한과정에서대기중의오염물질도기공을통해흡수되므로대기중의오염물질농도가감소한다 (Furukawa 등, 1979; Kondo와 Saji, 1992). 식물체가잎을통해대기중의화학물질들을흡수하고이를체내다른부분으로전류시키거나생물학적으로이를분해할수있는능력을가지고있다는사실은이미여러차례보고된바있다 (Nishida 등, 1991; Wolverton, 1989). 이러한공기오염물질에는 VOCs, CO 2, O 3, NO 2, SO 2 등이포함된다 ( 손외, 2000; 채등, 1997; 홍, 2000; Darlington et al., 2000). 한편, 최근연구에따르면, 단지식물뿐만아니라배양토내미생물도실내공기정화에영향을미치는것으로밝혀졌다 ( 손등, 2000; Wood et al., 2002). 더욱이, 식물을이용한공기정화방안은가장환경친화적인방법으로서경제적일뿐만아니라건물기온상승억제효과및소음경감등의환경조절효과가높다 (Sato, 1978). 또한인간의지각과심리를안정시키는원예치료적효과도크며 (Lee와 Son, 1999; Son 등, 1998), 식재면적보다약 10-100배이상의엽면적을보유할수있어, 소량의분배치만으로도상당량의실내공기오염물질을정화할수있을것으로보인다. 현재는실내공기질개선을위해 1) 에너지측면에서저부하적이고, 2) 경제적측면에서저비용적이고, 3) 환경적인측면에서는친환경적인기술개발이없는실정이다. 따라서, 실내공간에있는 VOCs 및다른공기오염물질들의조절을위해서기계적인공기정화시스템대신에, 1) 다양한실내공기오염물질에대한실내식물의공기정화능구명, 2) 분토양이공기정화및미생물생성에미치는영향구명, 3) 식물-토양을이용한실내공기정화시스템 (biofilter) 의개발은경제적, 환경적, 기능적, 건강적측면에서볼때매우시급하다고판단된다. 결국, 식물을 - 48 -
이용한실내환경개선 (phytoremediation) 은새로운차원의 biofilteration 방법으로써, 다양한부가적인효과를고려할때시급히개발되어야할기술이라고판단된다. 실내오염물질의수준은건물구조, 지리학의위치, 거주자활동등과같이많은요인들에영향을받는다 (Otson과 Fellin, 1992). 대부분의오염물질은휘발성유기물질 (VOCs), 무기가스들, bioaerosol과미립자 (particulates) 들로서 (Table 1), 실내에는다양한 VOCs원이있다 (Table 2). 오염물질은건물재료와직물, 청소용매, 접착제, 페인트, 전자제품, 세탁된옷, 담배연기, 거주자자신들의가스발생으로부터일어난다 (Anonymous, 1994; Otson과 Fellin, 1992). 게다가, 방출세기와기간에매우다양하게작용한다. 예를들어어떤오염물질은청소용매같은출처에서한번발생하고, 사진복사같은간헐적인활동에서오는반면, 새로운카페트같은것에서는매우장시간지속적으로방출된다 (Godish, 1991). 따라서실내공기안에는공간과방출시간에의해결정되어지는다양한 VOCs의그룹이형성되어진다. 실내 VOCs는급성이나만성적인건강상태와관련되어져있다. 그러나한가지물질이거주자건강에영향을주기에충분히높은농도로존재하지는않는다. 오히려각각은극미량이지만다양한 VOCs들이복합적으로고농도를이루어거주자건강에영향을준다. 단기간징후는어지러움, 피로, 후두염, 호흡곤란, 두통, 흥분등이있으며, 장시간노출은천식, 기관과조직의손상, 선천적결핍, 암과관련되어져있다고판단된다 (Anonymous, 1994). 질 - 49 -
- 50 -
Table 2. 대표적인실내 VOCs 의예 (Kostiainen, 1995) Compound mean conc. (gm -3 ) Compound mean conc. (gm -3 ) 1,1,1-trichloroethane 1.55 n-decane 3.45 Trichloroethylene 0.97 n-undecane 2.22 Tetrachloroethane Chlorobenzene 0.46 0.02 n-dodecane n-tridecane 1.45 0.82 1,4-Dichlorobenzene 0.65 n-tetradecane 1.83 2,4-Dichlorobenzene 1,2,4-Trichlorobenzene 0.03 0.21 n-pentadecabe n-pentadecabe 1.73 1.08 Benzene 4.9 Methylcyclohexane 1.17 Toluene Ethylvenzene 21.27 3.2 n-propylcyclohexane Alpha-pinene 0.67 9.32 1,4-Xylene 7.2 Delta-3-carene 2.76 1,2-Xylene Styrene 2.37 0.75 Limonene Camphor 14.2 0.3 Propylbenzene 0.84 Hexanal 6.6 1,3,5-Trimethylbenzene 1,3,5-Triethylbenzene 0.86 0.02 Octanal Nonal 4.63 3.57 Napthalene 0.44 2-Furancarboxaldehyde 1.56 1-Methylnapthalene Biphenyl 0.08 0.16 Benzylaldehyde 1-Pentanol 2.09 2.56 n-heptane 1.67 Phenol 0.88 n-octane n-nonane 1.35 3.01 Acetic acid TVOC 2.56 123.22 1. 근권은노출된토양보다많은미생물집단을포함하고있다. 그러므로식물은분해집단 (degrader population) 을강화할수있는능력이있다. 또한, 식물의증산작용은근원부위로공기를잡아끌기때문에근권의세균이오염물질에직접적으로노출되게한다. 2. 식물은 VOCs를파괴할수있는능력이있다. 그러나실내환경에있어실 - 51 -
내식물은경계층저항 (boundary layer resistance) 때문에실내 VOCs에있어서그효과가제한적이라고판단된다. 한편, 실내공기를순환시킬수있는공기정화시스템에식물 (biofilter) 을첨가시키면이저항을상당히감소시킬수있을것이다. 3. 식물은또한공기로운반되는오염물질을축적할수있다 (Manning 과 Feder, 1980). 유기물질등은식물큐티클에흡착되거나혹은내부로축적할수있다 (Paterson et al., 1995; Simochi와 Hites, 1995). 그러므로식물은오염물질의 sink로작용하거나, 또는 biofilter에완충능력을줄수있을것이다. 4. 녹색식물은실내오염물로간주되는이산화탄소의 sink이다 (Godish, 1991). 광합성을통해녹색식물은이산화탄소와수분을이용해 biomass를증가시키고, 산소를방출한다. 5. 녹색식물의도입은심미적인목적뿐만아니라원예치료적목적을포함한다. 실내에서의녹색정원의관리및유지는거주자의심신의안정, 건강증진, 스트레스해소뿐만아니라근로자의생산성을향상시킬것이다. Fig. 1. Example of indoor air biofilter(canada) Fig. 2. Commercial air purification system (Sweden) - 52 -
3 절. 연구범위 1. 연구최종목표실내식물과분토양을통한실내공기정화능및미생물발생억제능을조사하고, 이를토대로식물-토양을이용한환경친화적실내공기정화시스템을개발하고그효과를검정하고자한다. 2. 연구범위연구범위는크게네가지로나눌수있다. 가. 실내식물의공기정화능조사 [CO 2, O 3, 분진 TSP(PM10), TVOCs(BTX)] 나. 실내공기질개선을위한식물-토양의관계성및미생물억제능조사다. 식물-토양을이용한대기정화시스템의구상및설계라. 식물-토양을이용한대기정화시스템제작 3. 연구재료식물재료 : 다음종중예비실험을통해최종 5-8종을선정하였다. 가. C 3 /C 4 식물 (1) Areca palm (Chrysalidocarpus lutescens) (2) Lady palm (Rhapis excelsa) (3) Bamboo palm (Chamaedorea seifrizii) (4) Cissus rhombifolia (5) Dracaena Janet Craig" (Dracaena deremensis Janet Craig") (6) English ivy (Hedera helix) (7) Dieffenbachia amoena (8) Ficus benjamina (9) Boston fern (Nephrolepis exaltata Bostoniensis") (10) Peace lily (Spathiphyllum sp.) (11) Corn plant (Dracaena fragrans "Massangeana") (12) Golden pothos (Epipremnum aureum) - 53 -
(13) Chlorophytum elatum (14) Pachira aquatica Aubl. (15) Syngonium podophyllum 나. CAM 선인장 (1) 비화옥 : Gymnocalycium baldianum (Speg.) Speg., (2) 금호 : Echinocactus grusonii Hildm., (3) 변경주 : Carnegia gigantea Br. & R. 측정대상물질 : CO 2, VOCs(Benzene, Toluene, xylene), 오존, 분진 (PM10) - 54 -
4. 연구범위및진행 - 55 -
5. 본연구의차별성 가. 실내식물의최대정화능효과를위한실내환경구명지금까지국내의관엽식물에대한연구는순화및실내환경하에서의식물의생리적변화에만초점을맞추어왔으며, 실내식물의최대효율성을높이기위한환경조절에대한연구는전무하다. 그러나실내식물의광주기, 광조사방법에따른최소에너지소비를통한최대실내공기환경조절방법의구명이필요하다. 나. C 3 /C 4 /CAM 식물의단독및복합적으로이용한실내환경조절방법 개발 C 3 /C 4 식물과 CAM 식물의이산화탄소의흡수패턴을구명하고이를바탕으로 - 56 -
C3/C4/CAM 식물의단독및복합이용을통해실내환경의조절가능성의조사 가필요하다. 다. 식물-토양시스템을통한대기정화기술개발현재까지국내외대부분의실험은단지식물자체의기능성을이용한대기정화능에대한연구에초점이맞추어져왔다. 실내공기정화시스템은식물과더불어분토양을필터로하여강제적인시스템을적용할수있다. 라. 정화 system의개발과적용에따른부가적인경제적 / 환경적효과창출일반인의경우, 실내식물의실내도입에대해서는상당히긍정적이다. 그러나장기외출이나관리기술에대한지식결여로실내도입한식물은몇달후에는죽을수밖에없다는고정관념을가지고있다. 따라서실내식물을이용한실내공기정화기능기술에앞서실내식물을자동관리할수있는용기의개발 ( 자동관수및관비, 타이머를이용한광주기조절등 ) 이매우중요하다. 따라서정화 system을사용할경우, 공기정화능뿐만아니라자동관리기능을갖추어야한다. 더욱이, 실내식물의도입은다양한부가적인효과를가져올수있다. 예를들면, 습도조절, 방향성물질발산등으로실내환경을더쾌적하게개선할수있고, 심신의원예치료적효과도가져올수있다. - 57 -
제 2 장국내외기술개발현황 1 절. 국외 식물을이용한실내공기정화에대한전반적인실험은미국, 캐나다등을중심으로활발히수행되어지고있다. 전체적으로볼때이분야의실험은크게두가지로나누어질수있다. 첫번째로는식물, 토양, 혹은식물-토양이다양한범위의실내오염물질의제거효과및제거메카니즘을구명하는것이고, 두번째는이러한결과를토대로실제적으로제작된 system이어떻게작동되며, 이러한시스템의작동에관련된문제점과개선, 그리고최적조건등을구명하는것이다. 첫번째에관해서는 1989년에미국 NASA의 Dr. Wolverton박사에의해서 Interior landscape plants for indoor air pollution abatement' 라는보고서가발표된후로부터본격적으로많은연구자에의해서다양한연구가진행되어왔다 (Wolverton et al., 1989). 이연구에따르면, 식물은실내환경내에서발생하는미량의다양한오염물질을제거할수는능력이있으며, 더욱이 activated carbon 을이용한 indoor air purification system을이용하여보다효과적으로오염물질을제거할수있음을보여주었다. 또한, 식물종에따른실내이산화탄소, VOCs, 오존의제거능, 습도및온도조절에대한연구들이진행되고있다. - 58 -
Biofilteration system: Fig. 3. Experimental set-up of indoor air biofilter. Air was drawn through four bioscrubbers (only two are shown)(a) by a dedicated air handling system(b) and returned it to the influent air mass(c). Fluxes were controlled with valves(d). To control influent, a peripheral computer (e) activated controlled air flow through one of four impingers of the specific VOC(f)(only one 한편, 두번째에관하여서는캐나다의 Dr. Darlington을중심으로건물내 shown). Biofilteration system을설비하여다양한오염물질제거실험이가장대표적이라고볼수있다 (Darlington et al., 1998; Darlington et al., 2000). 이연구진들이개발한시스템은 Fig. 2와같다. 이들은이시설을이용하여 1) 실내극소량으로존재하는 VOCs를이시스템으로제거할수있는가?, 2) 온도와유입속도에따른시스템의적정작동조건의구명, 3) 사용되는수분과미생물에 VOCs가어떤역할을하는가에대한연구들이진행중에있다. 이시스템은 Canada Life Assurance building (Toronto, Ontario, Canada) 의 1층에시설되어져있다. 이시스템은 3부분으로구성되어져있으며, 공기가유입되는일련의 bioscrubber, 수경재배되는식물들, 그리고유리수조이다 (Fig. 3). 한편, 현재까지 VOCs 관련논문중에서가장실질적이고구체적인연구가 수행된논문을살펴보면다음과같다. 특히, 이논문은실험상문제가되는 - 59 -
연구방법론에대해서도구체적으로기술하고있다. 본실험에서도메일을통 해실험상몇가지문제점을해결하기도하였다. Potted-plant/growth media interactions and capacities for removal of volatiles from indoor air. R.A. WOOD, R.S. ORWELL, J.TARRAN, F.TORPY and BURCHETT Plants and Environmental Quality Group, Faculty of Science, University of Technology, Sydney, Westbourne St., Gore Hill, NSW 2065, Australia Journal of Horticultural Science & Biotechnology(2002) 77(1):120-129 SUMMARY 3가지종류의식물, Howea forsteriana(becc. (Kentia palm), Spathiphyllum wallisii Schott. Petite(Peace Lily), 그리고 Dracaena deremensis Engl. Janet Craig을이용하여실내 Potted-plant/ 생장배지 microcosm이실내환경을오염시키는공기중의 VOCs 를제거하는능력에대한연구결과가제시되었다. 이러한실험은실험에사용된 potted-plant가 VOCs는오염물질을제거하는데완전한 biofilter로서역할을하는능력에대한최초의포괄적인증거들로제시되었다. 중요한사실은사용된실험조건하에서, 생장배지의미생물들이 VOCs 제거의 rapid-response이며, 식물의역할은주로근권부위의미생물을유지시키기위한것이다. IAQ 향상을위한 biofiltration system으로써의 potted-plant의이용은앞으로보다적극적으로연구되어질것이다. 실험결과를요약하면다음과같다. 분식물, 예를들면식물-생장-배지미생물은실내공기오염물질인두가지형태의 VOCs을감소시키거나제거시킬수있다. 이들생장조건하에서, 이것은 VOCs 제거의첫번째 rapid response" agent인생물배지의보통의미생물들이다. 시스템은화학물질의노출하에서향상시키고, 반복된조사 ( 처리 ) 의 performance 를유지한다. 초기노출후의제거율의이들증가는기질박테리아가유지할 - 60 -
수있는기초상태에서화학물질들을하나또는그이상의생화학경로의유도를나타난다. 이시스템은대기중의높은 VOCs의농도로다룰수있고, 가스조사와제거율은선형으로증가한다 ( 이들 dose-반응관계는현재더수행되고있다 ). 시스템은또한매우낮은 residual VOC 농도를제거할수있다. 만약 topped up이되지않는다면농도는 0까지효과적으로감소될수있기때문임. 현상은일반적으로나타났다비슷한반응은식물종류간과표준생장배지에서예상할수있으며, 다른형태의미생물의이들성분의실험은진행중이다. 식물종류간에있어서이들 VOCs에따른비교는다른종류들이다른미생물의군집그리고 / 또는그들의 root-zone 미생물간의관계를가지고있다고나타낸다. 그러므로실내공기는가스상물질들의혼합을포함하고있기때문에, 이것은 mixture of potted plant species는실내공기질을향상시키는데있어서가장효과적일것이다. 이것은실내경관에서사용되는심미적디자인적인요소와일치한다. 몇몇유럽과북아메리카기업은건물디자인의한부분으로써또는건축후시설물로서이미식물재료와 식물-여과 박스의통합된이용을개발시키고있다. 유사개발에있어서, 근거비료의기류, 피트베드또는활성탄소시스템을근거로둔 biofilter reactors" 는산업공정으로부터의대기중의 VOCs의제거에대한 bioengineering 해결책의일부분으로서계획되고있는중이다. 분-식물시스템은인공 biofilter systems의몇가지제한점을피할수있다. 앞으로실내식물의종류와최적의생장배지 / 미생물의최적상호관계를찾아내고적용하는것이가장중요한일이라고판단된다. 이연구논문의분석결과는다음과같다. 1. 식물을이용한공기질개선은첫번째는식물자체의흡수능력이고, 둘째는식물근권부에있는토양미생물의분해능력에의존된다. 2. 이러한것을시스템화함으로, 실제로실내환경에서활용할수있을것이다. 3. 기존의배양토가아니라, 앞으로실내환경내실내식물배지로확립되어 - 61 -
질하이드로볼을이용한수경재배에서도비슷한결과를얻을수있다. 4. 현재이연구는단순히연구수준에그치고있으며, 연구내용을실용화할시스템에대한것은아직없는실정이다. 5. 현재우리는 10ppb 정도의미량을측정할수있는기기를제작하였으나, 이실험에서는여전히고농도를측정하는 GC를사용하고있다. 6. 이실험에서사용되는챔버가우리가제작한챔버와비슷하다. 특히, 실내습도를떨어뜨리는방법은이논문을통해서명확한답을얻을수있었다 (e-메일을통해서 ). Dear Dr. Son, I am not quite sure what the problem is that you are talking about - we have in each chambers acopper coil with cooled water from a water-bath running thro it, which condenses any evapotranspiration, which is obviously going to be continuous (under light conditions at least). The water ponds in the bottom of the tank, but does not fog the sides or occlude the light. We assume that the RH in the chamber will be fairly high, but then why does that cause you a problem? We have air-conditioned buildings in Sydney, for example, that do not control RH, which may be 60% or so. Does it perhaps affect your GC readings? That might depend on the sort of equipment you have. Our group has been working for about 8 years on the indoor plants and pollution project, and the papers are scattered everywhere, but as I said before, the methods and approach are fully explained in the latest paper, which you cited. If you have any more questions on details please let me know. We do not have a homepage - not many groups at this university do so, tho we are thinking of getting one, Sincerely, margaret Burchett ----- Original Message ----- - 62 -
From: N úi <kcson@konkuk.ac.kr> Date: Wednesday, August 6, 2003 9:55 pm Subject: RE: Visiting Sydney? 7. 현재이연구는단지식물자체나식물-토양내미생물에의한공기질개선에대한연구이다. 그러나우리실험은한단계앞서기계적인공기흡입을시도할때어떤일이일어날것인가를알아보는것이며, 이것을통해서가장효율적이고가장효과적인공기질개선방법을모색하게될것이다. 한편, 연구결과의홍보로서는일본의예를들수있다. 현재일본시장에서는최근외국에서발표된연구결과를들을활용하여, 실내공기질을개선을할수있는기능성식물이라는제목으로관련된식물들을홍보지와곁들여판매하고있다. 즉, 연구결과로실내공기정화능이있는식물을숯이있는토양에넣어서, 다른식물에비해고가로판매하고있다. 실제적인효과는없다하더라도일반인들에게호감을줄수있는것만은사실이다. - 63 -
결과적으로볼때, 외국의경우다양하고심도있는연구들이많이진행되어왔지만, 실내환경단위의실증실험은부족한것으로판단된다. 즉, 기초실험및대규모시설실험에주로치중하고있으나, 일반인들의주거환경내에서실용화를목적으로한문제해결지향적 (problem solving oriented) 실증실험은부족하다는것이다. 2 절. 국내 대부분의국내연구들은 식물이실내공기정화에미치는영향 에대한것으로주로소형챔버내식물을도입한후목적물질을주입하고경시적으로측정하여, removal efficiency 및일정기간내제거된량을퍼센트로나타내고있다. 한편, 실내식물을이용해실내공기질및습도를조절하기위해서통계적모델링 - 64 -
과인공지능기법인 neural network 을이용해서예측모델링을제시하였으며, 시 스템개발을위한식물생장과용기내수분에대한연구들이진행되어져왔다. 현재까지국내에서수행된연구를살펴보면다음과같다. 1. 식물재료 : 관엽식물, 난, 자생식물 ( 채등, 1997; 손등, 2000; 홍, 2000; 박등, 1998) 2. 공기오염물질 : VOC 수종 (benzene, toluene, xylene) SO 2, NO 2, NH 3, HCHO( 채등, 1997; 손등, 2000) CO 2 ( 최등, 1998; 박과이, 1997a,b) O 3 ( 허등, 2000) 실내수분증산량및온도 ( 손등, 1998; 정과박, 1999) 3. 실험방법 : 챔버실험 현재까지발표된실험들을조사해보면, 대부분이소형챔버를이용해실험을 수행하고있으며, 다음과같은문제점들이있다. 가. 실제로실내공기정화의실용화를목적으로한실내식물에대한구체적연구가없다. 즉, 식물의광합성패턴에따라공기정화능에대한차이가있음이분명함에도불구하고이에대한실험은거의없는실정이다 ( 예, CAM 식물과 C 3 /C 4 식물의비교 ). 나. 단순히식물체만의제거능에대한측정만실시하였고, 식물 - 토양과연계된 실제적인실험이부족하다. 식물뿐만아니라식물과토양을연계하여실 험해야만정확한결과를도출할수있다고판단된다. 다. 현실적인농도와맞지않는농도에서실험이실시되었다. 저농도의오염물 질을측정하기위해서는고가의장비가필수적이다. 현재로서는장비부족 으로인하여, 실내의실제발생되는농도보다는훨씬높은농도에서실험 - 65 -
이수행되어지고있다. 라. 실제적인실용화기술이없다. 실험의대부분이기초수준에머무르고있으 며, 실용화를위한기초적실험이전무한편이다. 마. 실내대기환경을조절하기위한다양한시도는있었지만, 기초적수준에 머무르고있으며이를활용화할수있는다음단계의연구는없는실정 이다. 따라서, 실내식물을이용한실내공기정화능을구명하기위해서는, 1) 광합성패턴에따른정확한실내식물의선정, 2) 식물-토양과연계된실험, 3) 식물-토양공기정화시스템의개발과이에대한실용화실험이수행되어져야한다고판단된다. 3 절. 국내외유사과제와의기술내용의차별성 1. 실내식물의최대공기정화능효과를위한실내환경구명지금까지국내의관엽식물에대한연구는순화및실내환경하에서식물의생리적변화에만초점을맞추어왔으며, 실내식물의최대효율성을높이기위한환경조절에대한연구는전무하여이에대한연구가시급하다. 예를들면, 광주기, 광조사방법에따른최소에너지소비를통한최대실내공기환경조절방법의구명이필요하다. 2. C 3 /C 4 /CAM 식물의단독및복합적으로이용한실내환경조절방법개발 C 3 /C 4 식물의경우는주간동안에이산화탄소를흡수하고야간에방출하지만, CAM 식물의경우는그패턴이반대이다. 현재까지 CAM 식물의이산화탄소흡수와방출에대한국내연구는전무하며, 이를통하여야간대기환경을조절하는것에대한보고도없다. 따라서, C 3 /C 4 식물과 CAM 식물의이산화탄소의흡수패턴을구명하고이를바탕으로 C 3 /C 4 /CAM 식물의단독및복합이용을통해 - 66 -
실내환경의조절가능성의조사가필요하다. 3. 식물-토양시스템을통한대기정화기술개발현재까지국내외대부분의실험은단지식물자체의기능성을이용한대기정화능에대한연구에초점이맞추어져왔다. 그러나실제로단순히식물의대기정화능만으로는실내공기질을개선하는데는실내볼륨 / 식물의도입량과녹시율을고려할때지나치게많은식물이요구될수있다. 따라서실내식물이분에심겨져있다는사실에착안하여분토양을이용한정화기술도동시에개발하는것이필요하다고본다. 이경우의대기정화시스템은식물과더불어분토양을필터로하여강제적인시스템을적용할수있기때문에단순히식물만이용하는것보다더효율적으로대기를정화시킬수있다고판단된다. 4. 정화 system의개발과적용에따른부가적인경제적 / 환경적효과창출일반인의경우, 실내식물의실내도입에대해서는상당히긍정적이다. 그러나장기외출이나관리기술에대한지식결여로실내도입한식물은몇달후에는죽을수밖에없다는고정관념을가지고있다. 따라서, 실내식물을이용한실내공기정화기능기술에앞서실내식물을자동관리할수있는용기의개발 ( 자동관수및관비, 타이머를이용한광주기조절등 ) 이매우중요하다. 따라서정화 system을사용할경우, 공기정화능뿐만아니라자동관리기능을갖추어야한다. 더욱이, 실내식물의도입은다양한부가적인효과를가져올수있다. 예를들면, 습도조절, 방향성물질발산등으로실내환경을더쾌적하게개선할수있고, 심신의원예치료적효과도가져올수있다. - 67 -
제 3 장연구개발수행내용및결과 1 절. 핵심결과요약 1. 실내식물관리용적정배지로기존의 peatmoss 배지대신에하이드로볼배지의가능성을확인하였음. 2. CO 2, O 3, 먼지, VOCs 감소에효과적인 C 3 /CAM 식물을선정하였으며, 최상의효과를위한환경요인을구명함. 3. 식물체에서는자체적으로 BTX(benzene, toluene, xylene) 가아닌다른휘발성유기물질 (bioeffluents) 를외부로방출함. 따라서, 일반적인 PID 측정기와같은 TVOCs 측정기로서는식물에의해서제거되어지는구체적인물질을분석할수없음. 4. 식물종별분내토양미생물군집에따라 VOCs의제거능이서로다름을확인함. 5. 식물배지에따라실내공기정화능력이매우다르며, 식물이있을경우증산작용에의해토양과식물지상부사이에미세공기순환이일어나며이때배지의 VOCs 제거능은식물자체의제거능을훨씬능가함. 6. 식물 / 배지 / 토양미생물을이용한공기정화시스템을 3차에걸쳐제작함. 7. 공기정화시스템의작동에따른식물의생리적반응을조사하여, 시스템작동의최적조건을구명함. 8. VOCs 제거에효과적인식물체 (a) 의배지내미생물군집을다른식물체 (b) 배지에접종하였을경우다른식물체 (b) 의 VOCs 제거능이훨씬좋아짐을발견하였음. 9. 식물 / 배지 / 토양미생물을이용한공기정화시스템은포름알데하이드와 VOCs 의제거능에있어기존 air cleaner에필적하는결과를나타냄. 10. 식물자체와공기정화시스템은실내온열환경을긍정적인영향을미쳤으며, 실내먼지의경우는시스템을작동하지않을때가시스템을작동시킬때보다감소되어, 재시험이요구됨. - 68 -
11. 공기정화시스템을통하여방출된정화된공기중에는인체에유해한토양미생물이포함되어있지않음을확인함. 12. 시스템의효율성을높이기위한구체적보완실험이필요하다고판단됨. 13. 결론적으로, 본실험의결과로나타난식물의기능성과시스템의효능을볼때기존의 air cleaner의기능뿐만아니라다양한부가적인기능이있어활용가치가매우높다고판단됨. 2 절. 실내식물을이용한 CO 2 조절 1. 광도, CO 2 농도및배지종류에따른관엽식물의생리적반응 김민지ㆍ류명화ㆍ손기철 * 건국대학교원예과학과 Physiological Responses of Indoor Plants according to Temperature, Light Intensity, and Carbon Dioxide Min-Ji Kim ㆍ Myung Hwa Yoo ㆍ Ki-Cheol Son* Dept. of Horticultural Science, Konkuk Univ., Seoul 143-701, Korea (* corresponding author) Abstract. The objective of this study is to investigate physiological responses of 9 foliage plants according to media, light intensity levels, and CO 2 levels, and to select efficient plants for the indoor environment control based on their physiological characteristics. Such plants as Hedera helix L., Ficus elastica, Ficus benjamina L., Syngonium podophyllum, Schefflera arboricola cv. Hong Kong, Chamaedorea elegans, Dieffenbachia amoena, - 69 -
Pachira aquatica, Dracaena deremensis cv. Warneckii Compacta were chosen for the experiment and cultivated in two different growth media of peatmoss (Sunshine, USA) or hydroball. The light intensity was controlled at 0, 30, 50, 80, 100, 200, 400, and 600μmol m -2 s -1 PPFD and CO 2 level was controlled at 0, 50, 100, 200, 400, 700, 1000, and 1500μmolCO 2 mol -1. For measurement, a portable photosynthesis measuring system (Li-6400, Li Cor, USA) was used. As a result of photosynthetic rate of foliage plants according to change of light intensity and carbon dioxide, Ficus benjamina, Hedera helix, Schefflera arboricola, Ficus elastica and Pachira aquatica showed high apparent quantum yield, which stands for the photosynthetic rate under low light intensity, and Ficus benjamina, Ficus elastica and Pachira aquatica showed the highest photosynthetic rate under high light intensity. High degree of CO 2 fixation efficiency related to dark reaction was found out from Ficus benjamina, Ficus elastica and Pachira aquatica. Besides, there was no significant differences in photosynthetic rate of foliage plants between media under low light intensity such as below 50μmol m -2 s -1 and specially Hedera helix and Dieffenbachia amoena showed higher photosyntheic rate in hydroball medium than peatmoss medium under 1,000 ppm CO 2 level. Therefore, under low light intensity and high concentration of CO 2 characteristic of indoor condition, Dieffenbachia amoena, Pachira aquatica, and Hedera helix maintained in hydroball medium are considered to be appropriate for functional plants for the control of indoor environment. 서 언 식물은고대로부터인류와역사를같이하여왔으며, 그쓰임은식용으로부터 시작하여현재의관상과장식에이르기까지다양하게발달하였다. 식물의이용 - 70 -
은각시대의문화와사회현상의흐름에따라사용되어져왔다 (Shin 등, 1994; Park, 1989). 이러한식물이용증가는실외에서식물을이용하는것뿐만아니라도시인의생활이주로실내에서이루어지게됨에따라실내로까지식물을끌어들여이용하게되었다 (Snyder, 1990). 현대도시인의경우, 일상생활의대부분인하루 24 시간중 85% 이상을자연과차단된실내에서보내고있으며 (Shiotsu와 Ikeda, 1998), 그에따라서자연에대한그리움을해소시키고, 빌딩증후군으로대표되는정신적스트레스를완화시켜생활의활력을얻고자, 실내의식물도입이증가하고있다 (Dennis, 1985; Manaker, 1981). 식물은살아있는생명체로인공적인실내공간에생명력과활기를주고, 심신이안정되며쾌적한환경을조성해준다 (Gaines, 1977). 특히관엽식물의경우, 건물내부를장식하기위하여수십년전부터사용되어져왔고 (Manaker, 1981), 관엽식물을비롯한여러종류의식물을실내에서재배할경우쾌적한공간연출을할수있다 (Bales, 1995). 또한실내에식물을도입하여실내온도를 2.7 까지낮출수있다고하였으며 (Asaumi 등, 1991), 식물은실내오염물질제거등의환경적효과를얻을수있다 (Kimura 등, 1991a; Kimura 등, 1991b). 이처럼최근들어식물이실내환경조절에미치는여러가지효과에관한연구가진행되고있는것은현대인들의관심이쾌적공간창출 (green amenity) 로옮겨졌기때문이다. 한편, 현재까지식물을이용한공기정화에관한연구 ( 淸田등, 1992; 牛山등, 1993; Woleverton 등, 1989; Park과 Lee, 1997; Son 등, 2000; Han과 Lee, 2002; Hong, 2000), 식물의실내온열환경에미치는영향에관한연구 (Harazono와 Ikeda, 1990; Asaumi 등, 1993; Ishino 등 1994; Nishina 등, 1995; Son 등, 1998a; Son 등, 1998b), 식물로부터의음이온발생에관한연구 (Ueda, 1989; Yamazaki와 Tobioka, 1991; Park 등 1998) 등이국내 외에서활발히이루어지고있다. 실내에도입된식물체는생리작용인광합성작용을통해 CO 2 를흡수하고, O 2 를방출함으로밀폐된실내공간내의공기를정화할수있다 (Kondo와 Saji, 1992; Darrall, 1989; Park 등, 1997). 또한증산작용을통하여방출되는수분은건조하 - 71 -
기쉬운실내공기의습도및온도조절의효과가있다 (Snyder, 1990). 여름철과같은다습한환경하에서는 CO 2 농도가낮고광을약하게하여증산량을억제하고, 겨울철과같은건조한환경하에서는실내의광을가능한한최대로하고, 밀폐성을높여 CO 2 의농도를높임으로써식물의증산량을높여실내의습도상승효과를기대할수있다 (Son과 Kim; 1998). 그러나대부분식물을실내에서이용할경우비배관리가이루어지지못하여관엽식물의관상적가치와기능적가치를충분히이용하지못하고있는실정이다. 배양토는식물을지지하고영양분을주는역할을한다. 그러나식물의안정된생육이가능하기위해서는고형물, 토양공기및토양수의세가지요소가적절한균형을이루어식물의뿌리를둘러싼물리적환경이최적조건으로조절되어야한다 (Choi, 1995; Bunt, 1988). 또한토양의물리 화학적특성은식물의생육에직 간접적으로영향을주며 (Carson, 1971), 화학적으로안정된경량배양토가식물의생육에좋고 (Song 등, 1996), 배양토의구성물질에따라물리적성질에다르고, 이는배양토의조성, 식물의생육, 식물병의전이에큰영향을미친다고보고하고있다 (Beardsell 등, 1979; Francis, 1983; Song 등, 1996). 실내로식물을들여오게됨으로써식물을분에재배하게되는데, 분화재배에있어서중요한것은배양토이며 (Hong과 Jung, 1972), 각종화훼식물의종류에따른알맞은식재재료의개발에관한연구결과들도보고 (Higaki 와 Poole, 1978; Merrill 등, 1986; Sartin과 Ingram, 1984; Yoo, 1995) 된바있었다. 최근에는미국을중심으로화훼류의분식재배가활발하게이루어지고있으며분화생산시노지토양으로부터전염되는병해충을방지하기위해토양물리화학성을작물생육에적합하도록조절한인공배양토의이용량이급증하고있다 (Choi와 Lee, 1995; Nelson, 1991). 현재까지는대부분의실내식물의분토양은피트모스 (peatmoss) 를기본으로한배지를사용하고있는데, 최근들어식물의관리를용이하게하기위한무배수공용기사용이증가하고있다. 이러한경향으로볼때토양의선정이다시이루어져야할것이다. 따라서본실험에서는호텔, 사무실및가정에서가장많이이용되고있는관엽식물 9종을현재많이사용되고있는피트모스를기본으로한혼합배지와시중에판매되고있는다공성배지인하이드로볼배지에각각재배 순화시킴으로 - 72 -
써실내환경에서식물에적절한배지를조사하고, 관엽식물의생장에가장큰 영향을미치는광조건과이산화탄소농도를달리하여생리적반응을조사함으로 써실내환경에서가장효율적인식물을조사하고자수행하였다. 재료및방법 식물재료본실험에공시된식물은서울지역에서가장많이이용하는관엽류 (Park과 Shim, 1989; Kang 등, 1990) 중에서 9종을선정하여측정대상으로하였다. 일반적으로실내에서많이사용하고있는헤데라 (Hedera helix L.), 인도고무나무 (Ficus elastica), 벤자민고무나무 (Ficus benjamina L.), 싱고니움 (Syngonium podophyllum), 쉐프렐라홍콩 (Schefflera arboricola cv. Hong Kong), 테이블야자 (Chamaedorea elegans), 디펜바키아 (Dieffenbachia amoena), 파키라 (Pachira aquatica), 드라세나와네키 (Dracaena deremensis cv. Warneckii Compacta) 로하였다. 모든식물들은 2003년 1월재배농가에서일괄구입하여, 직경 18cm포트에피트모스배지 (Sunshine mixed No.1, SunGro Inc., USA) 와 hydroball 배지를사용하여각각이식하고, 자연광을 40% 차광하여 200±50μmol m -2 s -1 의광과온도 25±5, 습도 40±10% 를유지시킨건국대학교농과대학유리온실에서 2개월동안순화하였다. 관수는피트모스배지에이식한식물은 5일에한번씩, 하이드로볼에이식한식물은 1~2일에한번씩상면관수하였다. 1주마다액비 Technigro(N:P:K = 24:7:5, SunGro Inc., USA) 20ppm을엽면시비하였다. - 73 -
Table 1. Foliage plants used for the experiment. Hedera helix L. Plant species Plant age (years) 2 Plant height (cm) 14 ± 1.97 z Leaf area (cm 2 ) 1622.5 ± 306.14 Ficus elastica 3 41 ± 4.17 4864.7 ± 758.51 Ficus benjamina L. 2 46 ± 3.61 3437.2 ± 341.85 Syngonium podophyllum 2 24 ± 5.24 1709.1 ± 212.40 Schefflera arboricola cv. Hong Kong 2 79 ± 9.91 3856.5 ± 256.05 Chamaedorea elegans 2 39 ± 4.90 3700.5 ± 558.76 Dieffenbachia amoena 2 29 ± 2.12 3361.3 ± 494.03 Pachira aquatica 2 44 ± 6.86 3771.4 ± 632.55 Dracaena deremensis cv. Warneckii Compacta 2 38 ± 2.76 3836.7 ± 402.08 z Values are mean ± standard deviation (n=6) 광합성측정광도및엽육내 CO 2 농도변화에따른광합성반응 (light response curve, A-Ci curve) 을조사하기위하여, 휴대용광합성측정기 (Li-6400, Li Cor, USA) 를사용하였다. 측정잎에조사되는빛의광도와 leaf chamber에유입되는공기의 CO 2 농도를임의로조절하기위하여광합성측정기에 LED light source와 CO 2 injector system을부착하여사용하였다. 광도변화에대한광합성반응조사는광합성측정기의 leaf chamber에유입되는공기의유량을 250μmol s -1, 온도를 23, CO 2 농도를 400μmolCO 2 mol -1 조건에서측정하였다. 이때광도는 PPFD 0, 30, 50, 80, 100, 200, 400, 600μmol m -2 s -1 의수준으로조절하였다. 광도별광합성속도를측정하여광-광합성곡선 (light response curve) 을작성하고, 이곡선에서광보상점, 광포화점, 호흡률, 광합성능력, 순양자수율 (apparent quantum yield) 을산출하였다. 한편, 순양자수율은 Kok효과 (Kok, 1948) 의영향이작은 PPFD 0~100μmol m -2 s -1 영역에서광과광합성의직선회귀선 y = a + bx의기울기 b로하였다. 직선회귀선의 x절편 (L comp = -a / b) 을광보상점 (L comp ) 으로, 직선회귀의연장선과광도에따른광합성속도의증가가매우완만하게나타나는 PPFD 200μmol m -2 s -1 이상에서의광합성속도가서로만나는 - 74 -
접점 L sat = (A sat - a) / b을산출하여, 그값을광포화점 (L sat ) 으로하였다. 광합성능력은광포화점보다높은광도에서의광합성속도를평균하여그값으로하였다 (Kim 등 2001; Kim과 Lee, 2001). 엽육내 CO 2 농도변화에대한광합성반응측정은광도 700μmol m -2 s -1 에서수행하였으며, leaf chamber에유입되는공기의유량과온도는광도변화에대한광합성반응측정과동일한조건으로하였다. Leaf chamber에공급되는공기의 CO 2 농도를 0, 50, 100, 200, 400, 700, 1000, 1500μmolCO 2 mol -1 의수준으로하여광합성을측정함으로써엽육내부의 CO 2 농도를변화시켰다. 광합성측정기의 leaf chamber에공급되는 CO 2 농도를달리하여측정한광합성속도의결과를사용하여광합성반응 (A-Ci curve) 을작성하고, CO 2 보상점, 광호흡속도, 최대광합성속도, 탄소고정효율 (CO 2 fixation efficiency) 을산출하였다. 광합성에서 CO 2 고정계의활성을반영한탄소고정효율은 Ci에따른광합성의증가가직선적으로이루어지는 Ci 150μmolCO 2 mol -1 이하에서의회귀직선 y = a + bx의기울기 b로하였다 (Farquhar 등, 1980). 한편, 이회귀직선에서 y절편인 a, 즉 Ci의값이 0μmolCO 2 mol -1 일때의 CO 2 교환속도를광호흡속도로하였다. CO 2 보상점 (C comp ) 을직선회귀의 x절편인 C comp = -a / b로산출하였다 (Kim 등 2001; Kim과 Lee, 2001). 결과및고찰 광-광합성곡선 (Light response curve) 배지에따른광합성광화학계의변화를알아보고자측정잎에조사되는광도를달리하면서광-광합성곡선 (light response curve) 을작성하였다. 광-광합성곡선의낮은광도영역에서는광도에비례하여광합성속도도급격히상승하였다. 특히이영역에서는쉐프렐라홍콩, 테이블야자, 싱고니움과인도고무나무의경우는피트모스배지에재배한경우에서높았고, 헤데라와디펜바키아의경우는하이드로볼배지에재배한경우에서광합성이높았다. 또광도가상승함에따라서쉐프렐라홍콩, 테이블야자, 싱고니움과인도고무나무의경우는광합성속도가피트모스배지에재배한경우에서높았으나, 다른종들은배지간에별다 - 75 -
른차이를보이지않았다. 한편, 낮은광도영역에서는기공전도도, 엽육내 CO 2 농도, 증산율에서배지간차이가적었으나, 고광영역으로갈수록대부분의종에서피트모스배지에재배한경우에높게나타났다. 헤데라, 쉐프렐라홍콩, 인도고무나무, 파키라의경우다른종에비해기공전도도와증산율이매우높게나타났다. 광-광합성곡선을토대로하여광보상점, 광포화점, 호흡률, 광합성능력, 순양자수율 (apparent quantum yield) 을산출하였다 (Table 2). 광보상점은종별간에는유의차가있었으나배지간에유의차는없었으며, 그중헤데라의경우는피트모스배지에재배한경우가높게나타났다. 광포화점은종간에는유의차가있었고배지간에도유의차가인정되었으며, 쉐프렐라홍콩의경우피트모스배지에재배한경우가높았다. 호흡률은종별간에는유의차가있었으나, 배지간유의차가없었다. 헤데라의경우는하이드로볼배지에재배한경우가, 싱고니움은피트모스배지에재배한경우에서높게나타났다. 광합성능력은종별간, 배지간모두유의차가있었고, 싱고니움, 쉐프렐라홍콩, 테이블야자, 인도고무나무의경우는피트모스배지에재배한경우가높았다. 순양자수율은종별간에는유의차가있었으나배지간에유의차는없었으며, 테이블야자, 인도고무나무와싱고니움의경우는피트모스배지에재배한경우가높게나타났다. - 76 -
8 Photosynthetic rate (µmol CO. 2 m -2. -1 s ) 6 4 2 0 0.12 Hydroball Sunshine Stomatal conductance (mmol H 2 O. m -2. -1 s ) 0.10 0.08 0.06 0.04 0.02 0.00 600 Hydroball Sunshine Intercelluar CO 2 conc. (µmol CO 2. µmol -1 air) 500 400 300 200 100 1.6 1.4 Transpiration rate (µmolh 2 O. m -2. -1 s ) 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 100 200 300 400 500 600 700 Photosynthetic photon flux density (µmol. m -2. s -1 ) Fig. 1. Photosynthetic rate, stomatal conductance, intercelluar CO 2 concentration and transpiration rate of Ficus benjamina L. as affected by different soils and PPFD. - 77 -
8 Photosynthetic rate (µmol CO. 2 m -2. -1 s ) Stomatal conductance (mmol H 2 O. m -2. -1 s ) 6 4 2 0 0.12 0.10 0.08 0.06 0.04 0.02 0.00 600 Hydroball Sunshine Intercelluar CO 2 conc. (µmol CO 2. µmol -1 air) 500 400 300 200 100 1.6 1.4 Transpiration rate (µmolh 2 O. m -2. -1 s ) 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 100 200 300 400 500 600 700 Photosynthetic photon flux density (µmol. m -2. s -1 ) Fig. 2. Photosynthetic rate, stomatal conductance, intercelluar CO 2 concentration and transpiration rate of Hedera helix L. as affected by different soils and PPFD. - 78 -
8 Photosynthetic rate (µmol CO. 2 m -2. s -1 ) Stomatal conductance (mmol H 2 O. m -2. s -1 ) 6 4 2 0 0.12 0.10 0.08 0.06 0.04 0.02 0.00 600 Hydroball Sunshine Intercelluar CO 2 conc. (µmol CO. -1 2 µmol air) 500 400 300 200 100 1.6 1.4 Transpiration rate (µmolh 2 O. m -2. s -1 ) 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 100 200 300 400 500 600 700 Photosynthetic photon flux density (µmol. m -2. s -1 ) Fig. 3. Photosynthetic rate, stomatal conductance, intercelluar CO 2 concentration and transpiration rate of Syngonium podophyllum as affected by different soils and PPFD. - 79 -
8 Photosynthetic rate (µmol CO. 2 m -2. -1 s ) Stomatal conductance (mmol H 2 O. m -2. -1 s ) 6 4 2 0 0.12 0.10 0.08 0.06 0.04 0.02 0.00 600 Hydroball Sunshine Intercelluar CO 2 conc. (µmol CO 2. µmol -1 air) 500 400 300 200 100 1.6 1.4 Transpiration rate (µmolh 2 O. m -2. -1 s ) 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 100 200 300 400 500 600 700 Photosynthetic photon flux density (µmol. m -2. s -1 ) Fig. 4. Photosynthetic rate, stomatal conductance, intercelluar CO 2 concentration and transpiration rate of Schefflera arboricola cv. Hong Kong as affected by different soils and PPFD. - 80 -
8 Photosynthetic rate (µmol CO. 2 m -2. -1 s ) 6 4 2 0 0.12 Hydroball Sunshine Stomatal conductance (mmol H 2 O. m -2. -1 s ) 0.10 0.08 0.06 0.04 0.02 0.00 600 Intercelluar CO 2 conc.. (µmol CO 2 µmol -1 air) 500 400 300 200 100 1.6 1.4 Transpiration rate (µmolh 2 O. m -2. -1 s ) 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 100 200 300 400 500 600 700 Photosynthetic photon flux density (µmol. m -2. s -1 ) Fig. 5. Photosynthetic rate, stomatal conductance, intercelluar CO 2 concentration and transpiration rate of Chamaedorea elegans as affected by different soils and PPFD. - 81 -
8 Photosynthetic rate. (µmol CO 2 m -2 s -1 ) Stomatal conductance (mmol H 2 O. m -2 s -1 ) 6 4 2 0 0.12 0.10 0.08 0.06 0.04 0.02 Hydroball Sunshine 0.00 600 Intercelluar CO 2 conc.. (µmol CO 2 µmol -1 air) 500 400 300 200 100 1.6 1.4 Transpiration rate (µmolh 2 O. m -2 s -1 ) 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 100 200 300 400 500 600 700 Photosynthetic photon flux density (µmol. m -2 s -1 ) Fig 6. Photosynthetic rate, stomatal conductance, intercelluar CO 2 concentration and transpiration rate of Dieffenbachia amoena under two different soil and PPFD. - 82 -
8 Photosynthetic rate. (µmol CO 2 m -2 s -1 ) Stomatal conductance (mmol H 2 O. m -2 s -1 ) 6 4 2 0 0.12 0.10 0.08 0.06 0.04 0.02 Hydroball Sunshine 0.00 600 Intercelluar CO 2 conc. (µmol CO 2. µmol -1 air) 500 400 300 200 100 1.6 1.4 Transpiration rate (µmolh 2 O. m -2 s -1 ) 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 100 200 300 400 500 600 700 Photosynthetic photon flux density (µmol. m -2 s -1 ) Fig 7. Photosynthetic rate, stomatal conductance, intercelluar CO 2 concentration and transpiration rate of Ficus elastica under two different soil and PPFD. - 83 -
8 Photosynthetic rate (µmol CO. 2 m -2. -1 s ) 6 4 2 0 Hydroball Sunshine 0.12 Stomatal conductance (mmol H 2 O. m -2. -1 s ) 0.10 0.08 0.06 0.04 0.02 0.00 600 Intercelluar CO 2 conc. (µmol CO 2. µmol -1 air) 500 400 300 200 100 1.6 1.4 Transpiration rate (µmolh 2 O. m -2. -1 s ) 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 100 200 300 400 500 600 700 Photosynthetic photon flux density (µmol. m -2. s -1 ) Fig. 8. Photosynthetic rate, stomatal conductance, intercelluar CO 2 concentration and transpiration rate of Pachira aquatica as affected by different soils and PPFD. - 84 -
8 Photosynthetic rate (µmol CO. 2 m -2. -1 s ) Stomatal conductance (mmol H 2 O. m -2. -1 s ) 6 4 2 0 0.12 0.10 0.08 0.06 0.04 0.02 Hydroball Sunshine 0.00 600 Intercelluar CO 2 conc. (µmol CO 2. µmol -1 air) 500 400 300 200 100 1.6 1.4 Transpiration rate (µmolh 2 O. m -2. -1 s ) 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 100 200 300 400 500 600 700 Photosynthetic photon flux density (µmol. m -2. s -1 ) Fig. 9. Photosynthetic rate, stomatal conductance, intercelluar CO 2 concentration and transpiration rate of Dracaena deremensis cv. Warneckii Compacta as affected by different soils and PPFD. - 85 -
Table 2. Light compensation point, light saturation point, respiration rate, photosynthetic rate, and apparent quantum yield of 9 foliage plants according to two different media. Species Potting Medium Light Light compensation saturation point point (μmol m -2 s -1 ) (μmol m -2 s -1 ) Respiration rate (μmolco2 m -2 s -1 ) Photosynthetic rate (μmolco2 m -2 s -1 ) Apparent quantum yield (μmolco2 mol -1 ) Ficus benjamina L. Hydroball Sunshine 14.7 a z 17.0 a 122.2 a 120.9 a -0.606 a -0.718 a 3.91 a 3.88 a 0.044 a 0.042 a Hedera helix L. Hydroball 6.7 b 82.0 a -0.435 a 3.58 a 0.047 a Sunshine 11.8 a 94.0 a -0.674 b 3.72 a 0.048 a Syngonium podophyllum Hydroball Sunshine 9.4 a 5.1 a 97.9 a 83.4 a -0.359 b -0.202 a 2.42 b 3.31 a 0.029 b 0.046 a Schefflera arboricola cv. Hong Kong Hydroball Sunshine 13.8 a 15.6 a 107.1 b 150.7 a -0.746 a -0.834 a 3.71 b 5.98 a 0.046 a 0.051 a Chamaedorea elegans Hydroball Sunshine 9.3 a 7.5 a 65.5 a 78.6 a -0.247 a -0.270 a 1.61 b 2.98 a 0.029 b 0.038 a Dieffenbachia amoena Hydroball Sunshine 7.0 a 7.0 a 94.4 a 108.5 a -0.243 a -0.434 a 4.17 a 3.25 a 0.047 a 0.036 a Ficus elastica Hydroball 14.5 a 103.1 a -0.796 a 4.70 b 0.051 b Sunshine 13.7 a 123.1 a -0.885 a 6.48 a 0.057 a Pachira aquatica Hydroball 6.0 a 116.4 a -0.394 a 5.80 a 0.048 a Sunshine 6.2 a 105.4 a -0.339 a 5.74 a 0.052 a Dracaena deremensis cv. Warneckii Compacta Hydroball Sunshine 8.6 a 10.8 a 96.8 a 102.6 a -0.194 a -0.141 a 1.75 a 1.68 a 0.028 a 0.024 a Species (A) *** *** *** *** *** Potting Medium (B) NS * NS *** NS A B NS * ** *** ** z The difference of each factor between sunshine and hydroball in the same species was compared using t-test at P = 0.05. NS,*,**,*** Nonsignificant or significant at P = 0.05, 0.01 or 0.001, respectively. - 86 -
벤자민고무나무의광도와배지에따른광합성율을보면 (Fig. 1), 배지의차이는없었으며, 광도가높을수록광합성능력이높은값을보였다. 기공전도도도역시광도가높을수록높아졌고, 피트모스배지재배시에약간높은경향을나타내었으며, 유의차가인정되었다. 세포내이산화탄소의농도를보면피트모스배지재배시에높은값을나타내었으며유의차가있었다. 증산율은기공전도도와비슷하게광도가높을수록높은경향을나타내었다. 헤데라의광합성율은벤자민고무나무와같은경향을보였으며, 배지에관계없이광도의변화에따라서광합성능력이영향을받았다 (Fig. 2). 기공전도도를보면광도가높을수록높아졌으며, 피트모스배지에재배한경우가하이드로볼배지에서재배한것보다높게나타나유의차가인정되었다. 세포내이산화탄소농도는피트모스배지재배시에높았으며, 유의성도인정되었다. 증산율도기공전도도와비슷한경향을보였다. 싱고니움에있어서광도와배지에따른광합성율을보면 (Fig. 3), 광도에따른광합성능력은배지에따라서유의차가있으며, 피트모스배지재배시에더욱높았다. 기공전도도를보면광도가높을수록높아졌고, 피트모스배지재배시더높아, 배지간에유의차가있었다. 세포내이산화탄소의농도도피트모스배지재배시에높아유의차가있었다. 증산율도기공전도도와같이피트모스배지재배시에높게나타나유의차가있었다. 쉐프렐라홍콩에서광도와배지에따른광합성율을보면 (Fig. 4), 싱고니움과같이광합성율이피트모스배지재배시에높게나타나유의차가있었다. 기공전도도는광도가높을수록높아졌고광합성율과마찬가지로피트모스배지재배시에높게나타났으며유의차가있었다. 세포내이산화탄소의농도를보면배지에관계없이나타났으며, 증산율은피트모스배지재배시에높게나타났으나유의차는없었다. 테이블야자 (Fig. 5) 도싱고니움과쉐프렐라홍콩과마찬가지로피트모스배지재배시에광합성율이높게나타나유의차가있었다. 기공전도도또한하이드로볼배지재배시보다피트모스배지재배시에광도에따라높게나타나유의차가있었다. 세포내이산화탄소농도는배지에관계없이나타났다. 증산율은기공전도도와마찬가지로피트모스배지재배시에높게나타나유의차가있었다. - 87 -
디펜바키아의광도와배지에따른광합성율을보면 (Fig. 6), 배지간에유의차는없었으나하이드로볼배지재배시에광합성율이높게나타났다. 기공전도도도하이드로볼배지재배시에높게나타났다. 세포내이산화탄소농도도큰차이는없었으나하이드로볼배지재배시에약간높게나타났다. 증산율도또한기공전도도와마찬가지로하이드로볼배지재배시에높게나타났으나유의차는없었다. 인도고무나무 (Fig. 7) 는조사식물중가장높은암호흡을보였는데, 광합성의탄소고정반응계 ( 암반응 ) 에서발생하는호흡인광호흡또한가장높게나타났다 (Table 2). 광도및광합성속도가높을수록광호흡이크게나타난다는보고 (Jackson and Volk, 1970) 와비슷한경향을나타내었다. 광도와배지에따른광합성율을보면, 싱고니움과같이광도에따른광합성능력은피트모스배지재배시에더욱높게나타나, 배지에따라서유의차가있었다. 기공전도도를보면피트모스배지재배시더높아, 배지간에유의차가있었다. 세포내이산화탄소의농도도피트모스배지재배시에높아유의차가있었다. 증산율도기공전도도와같이피트모스배지재배시에높게나타났으며유의성이인정되었다. 파키라의광도와배지에따른광합성율은배지에따라서는영향을받지않았으며, 광도변화에따른광합성변화만을나타내었다 (Fig. 8). 기공전도도를보면광도가높을수록높아졌으며, 유의차는없었으나, 하이드로볼배지재배시에약간높은경향을나타내었다. 세포내이산화탄소의농도를보면배지에관계없이나타났다. 그러나증산율은광도가높을수록높은경향을나타내었으나배지간에는유의차가없었다. 드라세나와네키 (Fig. 9) 는배지에관계없이광도에따른광합성율을나타내었다. 기공전도도는배지에따른차이는보이지않았으며, 세포내이산화탄소의농도에서도배지간에는유의차가나타나지않았다. 증산율도유의차는없었으나, Asaumi 등 (1993) 이보고한바와유사하게드라세나와네키는가장낮은증산율을나타내었다. 엽육내 CO 2 농도에대한광합성곡선 (A-Ci curve) 배지의종류가광합성계의암반응에속하는탄소고정계의능력에미치는영향 - 88 -
을알아보고자 leaf chamber에유입되는공기의 CO 2 농도를조절하여측정한광합성과엽육내 CO 2 농도를사용하여광합성곡선 (A-Ci curve) 를작성하였다. 그리고이 A-Ci curve를이용하여 CO 2 보상점, 광호흡속도, 최대광합성속도, 탄소고정효율 (CO 2 fixation efficiency) 을산출하였다 (Table 3). CO 2 보상점은종별간에는유의차가있었으나, 배지간에는유의차가없었으며, 테이블야자의경우는하이드로볼배지에재배한경우가높았고, 헤데라와디펜바키아는피트모스배지에재배한경우에서높았다. 광호흡속도는종별간, 배지간모두유의차가있었으며, 쉐프렐라홍콩, 드라세나와네키의경우는피트모스배지에재배한경우가높았다. 최대광합성속도는종별간에는유의차가있었으나, 배지간에는유의차가없었으며, 헤데라, 테이블야자, 인도고무나무는피트모스배지에재배한경우에서높았고, 디펜바키아, 파키라는하이드로볼배지에재배한경우에서높게나타났다. 탄소고정효율은종별간, 배지간모두유의차가있었으며, 쉐프렐라홍콩, 테이블야자는피트모스배지에재배한경우에서높았으나, 디펜바키아의경우는피트모스배지에재배한경우가낮게나타났다. - 89 -
18 16 Schefflera arboricola Photosynthetic rate(µmolco 2. m -2. s -1 ) 14 12 10 8 6 4 2 0-2 18 16 14 12 10 8 6 4 2 0-2 18 16 14 12 10 8 6 4 2 0-2 Chamaedorea elegans Dracaena deremensis Hydroball Sunshine 0 200 400 600 800 1000 1200 1400 Interellular CO 2 concentration (µmolco. 2 mol-1 ) Fig. 10. A-Ci curves of indoor plants grown under two different soils. - 90 -
18 16 Ficus benjamina Photosynthetic rate(µmolco 2. m -2. s -1 ) 14 12 10 8 6 4 2 0-2 18 16 14 12 10 8 6 4 2 0-2 18 16 14 12 10 8 6 4 2 0-2 Hedera helix L. Syngonium podophyllum Hydroball Sunshine 0 200 400 600 800 1000 1200 1400 Interellular CO 2 concentration (µmolco. 2 mol-1 ) Fig. 11. A-Ci curves of indoor plants grown under two different soils. - 91 -
18 16 Dieffenbachia amoena Photosynthetic rate(µmolco 2. m -2. s -1 ) 14 12 10 8 6 4 2 0-2 18 16 14 12 10 8 6 4 2 0-2 18 16 14 12 10 8 6 4 2 0-2 Pachira aquatica Ficus elastica Hydroball Sunshine 0 200 400 600 800 1000 1200 1400 Interellular CO 2 concentration (µmolco. mol-1 2 ) Fig. 12. A-Ci curves of indoor plants grown under two different soils. - 92 -
Table 3. CO 2 compensation point, photo-respiration rate, maximum photosynthetic rate, and CO 2 fixation efficiency of 9 foliage plants according to two different media. Species Potting Medium CO 2 compensation point (μmolco 2 mol -1 ) photo-respiration rate (μmolco 2 m -2 s -1 ) Maximum photosynthetic rate (μmolco 2 m -2 s -1 ) CO 2 fixation efficiency (μmolco 2 mol -1 ) Ficus benjamina L. Hydroball Sunshine 60.8 a z 69.3 a 2.03 a 2.08 a 9.28 a 8.52 a 0.034 a 0.031 a Hedera helix L. Hydroball 77.9 b 1.24 a 6.48 b 0.016 a Sunshine 90.6 a 1.42 a 8.00 a 0.016 a Syngonium podophyllum Hydroball Sunshine 69.4 a 61.3 a 1.10 a 1.14 a 8.98 a 7.91 a 0.015 a 0.019 a Schefflera arboricola cv. Hong Kong Hydroball Sunshine 73.1 a 62.3 a 1.85 b 2.59 a 9.98 a 14.30 a 0.027 b 0.042 a Chamaedorea elegans Hydroball Sunshine 92.1 a 62.4 b 1.17 a 1.19 a 3.5 b 7.35 a 0.012 b 0.019 a Dieffenbachia amoena Hydroball Sunshine 60.0 b 82.5 a 1.32 a 1.23 a 10.67 a 7.36 b 0.022 a 0.015 b Ficus elastica Hydroball 62.6 a 2.39 a 10.22 b 0.039 a Sunshine 66.3 a 2.65 a 11.88 a 0.040 a Pachira aquatica Hydroball 50.8 a 1.63 a 13.62 a 0.032 a Sunshine 53.2 a 1.79 a 10.19 b 0.034 a Dracaena deremensis cv. Warneckii Compacta Hydroball Sunshine 93.6 a 67.5 a 0.89 b 1.48 a 4.72 a 4.34 a 0.012 a 0.017 a Species (A) *** *** *** *** Potting Medium (B) NS *** NS ** A B *** * *** *** z The difference of each factor between sunshine and hydroball in the same species was compared using t-test at P = 0.05. NS,*,**,*** Nonsignificant or significant at P = 0.05, 0.01 or 0.001, respectively. - 93 -
A-Ci curve에서최대광합성속도를살펴보면 (Fig. 10~12), 쉐프렐라홍콩과파키라가가장높은값을나타낸데비하여, 드라세나와네키와테이블야자는현저하게낮은값을나타냈다. 배지를비교해보면, 인도고무나무, 쉐프렐라홍콩, 테이블야자는피트모스배지에재배한식물이더높은값을나타내었고, 디펜바키아와파키라, 벤자민고무나무의경우는하이드로볼배지에재배한식물이더높은값을나타내었다. Choi 등 (1998) 과 Choi 등 (1999) 이보고한실내식물의광도에따른광합성율을보면, 광이 0μmol m -2 s -1 일때는품종이나배지에상관없이광합성작용대신호흡작용이일어났으며, 광포화점이상인 200μmol m -2 s -1 에서가장높은광합성율을보였다. 그중파키라같은경우는저광인 30μmol m -2 s -1 에서도광합성율이다른종에비해가장높고, 이값은드라세나와네키의 100μmol m -2 s -1 에서의광합성율과비슷한것으로나타났다. 모든종에서광 50μmol m -2 s -1 이상에서는광합성율이 1μmolCO 2 m -2 s -1 이상으로높아지는것을보였으며, 파키라, 인도고무나무, 헤데라는다른종에비해더욱높게나타났다. 또한배지에따라서는헤데라와디펜바키아의경우저광에서하이드로볼배지에재배된식물이높은광합성율을나타내었으며, 광도가 0~50μmol m -2 s -1 까지는배지간에유의차가없는것으로나타나, 이는식물종에따라서배지에관계없이저광에서도충분히광합성능력을나타낼수있다고생각된다. 기공전도도에서도보면, 광도가높을때기공전도도가높긴하지만, 헤데라, 디펜바키아, 인도고무나무와파키라의경우에서는저광에서의기공전도도가싱고니움과드라세나와네키의경우와비교할때고광에서의기공전도도보다높게나타났다. 싱고니움의경우광도가 0~30μmol m -2 s -1 에서는하이드로볼배지에재배된식물에비해피트모스배지에재배된식물이더높은기공전도도를나타내었으며, 헤데라, 테이블야자, 쉐프렐라홍콩의경우에서는광도가 100~200 μmol m -2 s -1 에서피트모스배지에재배된식물에서높은기공전도도를나타내었다. 9품종중인도고무나무와싱고니움의경우는모든광도에서피트모스배지에재배된식물이기공전도도가높게나타났다. 엽육세포의광합성활성을평가하는지표로사용하고있는엽육내 CO 2 농도를보면모든품종에서광도가 0μmol m -2 s -1 일때최대치를나타내었고, 광도가 - 94 -
증가할수록점차감소하여광도가 200μmol m -2 s -1 일때최소치를나타내었다. 싱고니움과인도고무나무의경우광도가 0μmol m -2 s -1 일때는하이드로볼배지에재배된식물이높게나타났는데광도가높아질수록피트모스배지에재배된식물에서높게나타났다. 벤자민고무나무의경우에서는광도가 0μmol m - 2 s -1 일때는배지간에차이가없었으나광도가높아질수록피트모스배지에재배된식물에서높게나타났다. 헤데라의경우는광도가 30μmol m -2 s -1 일때를제외하고는피트모스배지에재배된식물에서높게나타났다. 광도가 0~50μmo l m -2 s -1 에서는배지간에유의차가없었다. 증산율에서배지간의차이를보면헤데라, 테이블야자, 쉐프렐라홍콩, 인도고무나무의경우저광에서는차이가없고, 광도가높아질수록피트모스배지에재배한식물에서높게나타났다. 모든종에서광도가증가할수록높은증산율을나타내었으며, 특히헤데라와파키라의경우, 광도 30μmol m -2 s -1 에서의증산율이드라세나와네키의 200μmol m -2 s -1 에서의증산율보다더높게나타났다. 이러한결과로볼때헤데라, 테이블야자, 쉐프렐라홍콩, 인도고무나무는저광의실내에서재배하여도활발한식물의생리작용을통해실내가스교환을효율적으로할수있을것으로생각된다. 광도와광합성의관계가직선적으로나타나는 PPFD 100μmol m -2 s -1 이하의광도, 즉약광에서의광합성능력을나타내는순양자수율은빛에너지를화학에너지로변환시키는광화학계의활성을나타낸다 (Kim 등, 2001; Evans, 1987). 외부의스트레스를받지않고일정한환경조건에서생장한식물은일반적인환경조건인온도 25, 이산화탄소의농도가 350μmolCO 2 mol -1 일때대략 0.04~ 0.06mol CO 2 mol -1 photon 의순양자수율을나타내며, 종간 종내의차이가크게없는것으로알려져있다 (Bjokman and Demmig, 1987). 본실험에서도마찬가지로비슷한결과를나타내었으나, 종간에는유의차가있었다. 순양자수율은인도고무나무에서값이가장높고, 드라세나와네키에서가장낮았는데 (Table 2), 이는재배된배지가광화학계의활성에영향을준것보다는식물종간에유의차가있다고생각된다. 또한배지에따른것을보면싱고니움, 테이블야자, 인도고무나무에서는하이드로볼배지에재배된식물이낮은값을나타내유의차가있었으나, 인도고무나무같은경우는그값이다른종보다높 - 95 -
게나타났다. 약광조건에서는광도에비례하여광합성이급격히증가하는데, 광도가높아지면서광도의증가에따른광합성속도의상승이완만하게나타나는데, 이영역에서는광합성속도를결정하는요인이빛에너지를이용하여 CO 2 를고정하는암반응과관련된효소의활성이다. 광합성작용에의하여 CO 2 가고정되기위해서기공을통해 CO 2 가엽내에확산되고, 엽육세포의세포벽에도달한 CO 2 는탄소고정계에서 rubisco에의하여고정된다. 따라서 CO 2 농도가상승하면광호흡이억제되면서광합성속도가상승하게된다. 그러나 CO 2 농도가더욱상승하게되면광합성속도가더이상증가하지않는다 (Farquhar 등, 1980; Kim과 Lee, 2001). 본실험의결과에서탄소고정효율은벤자민고무나무, 파키라와인도고무나무에서높았고, 헤데라, 싱고니움, 테이블야자, 디펜바키아와드라세나와네키에서낮은값을나타내었다. 쉐프렐라홍콩과테이블야자에서는피트모스배지에재배한식물이높았고, 하이드로볼배지에재배한식물이낮았으며, 그에반해디펜바키아는하이드로볼배지에재배한식물이높았고, 피트모스배지에재배한식물이낮았다 (Table 2). 즉, 종간에탄소고정효율의유의차가있으며, 몇몇종에서만배지에따라탄소고정효율의차이가있음을확인할수있었다. 실내조건과유사한조건인광도 50μmol m -2 s -1 이하에서도파키라, 인도고무나무, 헤데라의경우는광도 200μmol m -2 s -1 일때의드라세나와네키보다더높은광합성율을나타내었다. 또한광도 50μmol m -2 s -1 이하에서는배지간에유의차가없는것으로나타나, 실내에서재배시에는배지는큰영향을미치지않음을알수있었다. 엽육내 CO 2 농도에서도저광도에서는배지간유의차가없는것으로나타나배지에관계없이실내에서재배하는것이가능함을알수있었다. 광도 50μmol m -2 s -1 에서파키라, 디펜바키아, 인도고무나무, 헤데라의경우기공전도도가높은값을나타내었으며, 또한파키라, 인도고무나무와헤데라의경우광도 50μmol m -2 s -1 에서의증산율이높은것으로나타나실내의저광에서도식물의생리적작용이활발한것을알수있었다. - 96 -
1400 1200 Schefflera arboricola 1400 1200 Ficus elastica Intercellular CO 2 concentration (µmolco 2. mol -1 ) 1000 800 600 400 200 0 1400 1200 1000 800 600 Dieffenbachia amoena Hydroball Sunshine 1000 800 600 400 200 0 1400 1200 1000 800 600 Pachira aquatica 400 400 200 200 0 0 0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600 CO 2 concentration (µmolco 2. mol -1 ) Fig. 13. Relationship between intercellular and outside CO 2 concentration. - 97 -
Table 4. Various physiological characteristics of 9 foliage plants. Species A z B y C x D w E v Ficus benjamina No High Middle Middle Middle Hedera helix No High Strong Middle High Syngonium podophyllum Schefflera arboricola Chamaedorea elegans Dieffenbachia amoena Yes Middle Strong Middle Middle No High Middle High High Yes Middle Strong Middle Low No Middle Strong High High Ficus elastica Yes High Middle High High Pachira aquatica No High Strong High High Dracaena deremensis No Low Middle Middle Low A z : Difference in photosynthetic rate between 16 and 22 under low light condition. B y : Photosynthetic rate under low light condition. C x : Degree of shade tolerance according to light compensation point and light saturation point. D w : Photosynthetic rate under high concentration of CO 2. E v : Transpiration rate. - 98 -
한편, 엽육내 CO 2 농도에따른광합성속도를실내에적용하기위하여실내의 CO 2 양과엽육내 CO 2 양과의상관관계를살펴본결과 (Fig. 13), 배지간에약간의차이는있지만그값이비례하여상관성이있음을알수있었다. 따라서차후에 A-Ci curve에있어서의엽육내 CO 2 농도를실내 CO 2 농도로생각하여, 실내의 CO 2 농도에따른식물의광합성율로판단할수있을것이다. 결과들을종합하여식물종에따른다양한생리적요인을비교해보면 (Table 4), 저광에서배지간의차이를볼때싱고니움, 테이블야자, 인도고무나무를제외하고는차이가없었으며, 저광에서의광합성율을나타내는순양자수율에서는벤자민고무나무, 헤데라, 쉐프렐라홍콩, 인도고무나무, 파키라에서높게나타났다. 내음성이강한식물은헤데라, 싱고니움, 테이블야자디펜바키아, 파키라였으며, 고농도의 CO 2 에서광합성율이높은식물은쉐프렐라홍콩, 디펜바키아, 테이블야자, 파키라였다. 헤데라, 쉐프렐라홍콩, 디펜바키아, 인도고무나무, 파키라는증산율이높게나타났으며, 겨울철이용시에상대습도를높이는데효과적이라고생각된다. 즉, 기능적인식물을실내에도입시에는파키라, 인도고무나무, 쉐프렐라홍콩, 헤데라, 디펜바키아등을이용하는것이좋을것으로판단된다. 본실험의결과, 실내조건하에서하이드로볼배지와피트모스배지간의식물생육의차이가없는것으로볼때, 건조시에도분진발생율도낮고다공성인하이드로볼배지의사용이가능하다고판단된다. 그러므로, 파키라, 인도고무나무, 쉐프렐라홍콩, 헤데라, 디펜바키아등의배지로하이드로볼을사용하여무배수공용기를사용한수경재배를하면, 실내식물의관리및실내환경조절에최적일것으로판단된다. - 99 -
인용문헌 Asaumi, H., H. Nishina, T. Fukuyama, and Y. Hashimoto. 1991. Simulative estimation for the environment inside room from the green amenity sapect. J. SHITAI 3:31-38. Asaumi, H., H. Nishina, N. Masui, and Y. Hasimoto. 1993. Measurement of transpiration rate, stomatal resistance and shading ratio of 'amenity plants'. Shita Journal 4:131-138. Balse, S.F. 1995. The kitchen garden. Raised beds and electric chairs. Horticulture 73:34-39. Beardsell, D.V., D.G. Nichols, and D.L. Jones. 1979. Physical properties of nursery potting mixtures. Sci. Hort. 11:1-8. Bjorkman, O. and B. Demmig. 1987. Photon yield of CO 2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489-504. Bunt. A.C. 1988. Media and mixes for container grown plants. Unwin Hyman. London Carson, E.W. 1971. The plant root and its environment. p.271-292. Univ. Press of Virginia. Charloottesville. VA. Choi, J.I., J.H. Seon, K.Y. Paek, and T.J. Kim. 1998. Photosynthesis and stomatal conductance of eight foliage plant species as affected by photosynthetic photon flux density and temperature. J. Kor. Soc. Hort. Sci. 39:197-202. Choi, J.I., E.J. Hahn, and K.Y. Paek. 1999. Photosynthetic charateristics and chlorophyll content of Hedera canariensis, Pachira aquatica, and Ficus benjamina in response to photosynthetic photon fluxes and CO 2 concentrations. J. Kor. Soc. Hort. Sci. 40:627-630. Choi. J.M. 1995. Changs of physical properties of feather-amended media. J. Kor. Soc. Hort. Sci. 36:707-714. - 100 -
Choi. J.M. and C.W. Lee. 1995. Effect of irrigation methods, nutrient concentrations and media on salt accumulation in media, growth and flowering of Easter lilles. J. Kor. Soc. Hort. Sci. 36:715-724. 淸田信, 平野高司, 石黑武. 1992. 觀葉植物のガス交換と室內ガス環境の改善. 環境情報科學 21:107-111. Darrall, N.M. 1989. The effect of air pollutants on physiological processes in plants. Plant Cell and Environ 12:1-30. Dennis, H. 1985. Interior landscape. Landscape Design 85:29-31. Evans, J.R. 1987. The dependence of quantum yield on wavelength and growth irradiance. Australian Journal of Plant Physiology 14:69-79. Farquhar, G.D., von S. Caemmerer, and J.A. Berry. 1980. A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species. Planta 149:78-90. Francis J.R. 1983. Physical properties of container media composed of a gasifier residue in combination with sphagnum peat, bark, or sand. J. Amer. Soc. Hort. Sci. 108:186-189. Gaines, R.L. 1977. Interior plantscaping, p.182. Architecrural Record Books, N.Y. Han, S.W. and J.S. Lee. 2002. Purification efficiency of O 3 and SO 2 by some oriental orchids. J. Kor. Soc. Hort. Sci. 43:487-491. Harazono, Y. and H. Ikeda. 1990. The effects on an indoor thermal environment with simple hydroponic cultivation on rooftops. J. Agr. Met. 46:9-17. Higaki T. and R. Poole. 1978. A media and fertilizer study in Anthurium. J. Amer. Soc. Hort. Sci. 103:98-100. Hong, J. 2000. Benzene and formaldehyde removal by indoor foliage plants. PhD Diss., Korea Univ., Seoul, Korea. Hong, Y.P. and N.W. Jung. 1972. The effect of growth and flowering according to compost materials on pot-flowers. J. Kor. Soc. Hort. Sci. - 101 -
12:55-59. Ishino, H., J. Tanimoto, and M. Yanagi. 1994. Study on the evaporation from foliage plant in indoor environment. J. Archit. Plann. Environ. Engng. 457:9-17. Jackson, W.A. and R.J. Volk. 1970. Photorespiration. Annual Review Plant Physiology 21:385-432. Kang, H., B.H. Kwack, and W.K. Sim. 1990. Assessing studies on the recent use and change of indoor landscaping plants at apartment houses in Seoul. Journal of the Korean Institute of Landscape Architecture 18:1-8. Kim, P.G. and E.J. Lee. 2001. Ecophysiology of photosynthesis 1: Effects of light intensity and intercellular CO 2 pressure on photosynthesis. Korean Journal of Agricultural and Forest Meteorology 3:126-133. Kim, P.G., Y.S. Yi, D.J. Chung, and S.Y. Woo. 2001. Effects of light intensity on photosynthetic activity of shade tolerant and intolerant tree species. J. Korean For. Soc. 90:476-487. Kimura, K., H. Ishino, J. Tanimoto, and S. Kato. 1991a. Experimental study on the effects of evaporation from foliage on the indoor moisture environment. Part 1. Experimental method and results of orthogonal experiment, p.787-788. Summaries of technical papers of annual meeting architectural institute of Japan Kimura, K., H. Ishino, J. Tanimoto, and S. Kato. 1991b. Experimental study on the effects of evaporation from foliage on the indoor moisture environment. Part 2. Analysis of variance and multiple regression analysis, p.789-790. Summaries of technical papers of annual meeting architectural institute of Japan Kok, B. 1948. A critical consideration of the quantum yield of chlorella-photosynthesis. Enzymologia 13:1-16. Kondo, N. and H. Saji. 1992. Tolerance of plants to air pollutants. J. Japan Soc. Air Pollut. 27:273-288. - 102 -
Manaker, G.H. 1981. Interior plantscapes. p.14-82. Prentice Hall, Englewood Cliffs, NJ. Merrill, L.E., K.C. Sanderson, J.C. Williams, and R.B. Reed. 1986. Response of Ilex cultivars root rot caused by Thilaviopsis basicola Berk & Br. Rerraris. J. Amer. Soc. Hort. Sci. 111:102-105. Nelson, P.V. 1991. Greenhouse operation and management. 4th ed. Prentice Hall, Englewood Cliffs, NJ. Nishina, H., H. Nakamura, H. Asaumi, Y. Masui, and Y. Hashimoto. 1995. Simulation model of thermal environment and comfort in rooms where plants are placed. Environ. Control in Biol. 33:277-284. Park, S.H. and K.K. Shim. 1989. A Study on the utilization status of the interior landscape plants in large buildings in seoul. Journal of the Korean Institute of Landscape Architecture 17:43-54. Park, S.H. and Y.B. Lee. 1997. Indoor CO 2 and NO 2 fixation in light-acclimatized foliage plants. J. Kor. Soc. Hort. Sci. 38:551-555. Park, S.H., Y.B. Lee, G.Y. Bea, and M. Kondo. 1998. Anion Evolution in plants and its involved factors. J. Kor. Soc. Hort. Sci. 39:115-118. Park, S.H. 1998. Mechanism of purification of air pollutants and evolution of anion by plants. PhD Diss., Univ. of Seoul, Seoul, Korea. Sartin, J.B. and D.S. Ingram. 1984. Influence of container mediu., lime, and nitrogen source on growth of woody ornamentals. J. Amer. Soc. Hort. Sci. 109:882-886. Shin, H.J., S.Y. Kim, Y.D. Park, and Y.C. Shin. 1994. A study on the utilization of plants in apartment interior space. Journal of Korea Traditional Landscape Garden Society 12:107-123. Shiotsu, Mika and Ikeda, Koichi Yoshizawa. 1998. Survey on human activity patterns according to time and place: Basic research on the exposure dose to indoor air pollutants Part 1. Transactions of AIJ. 511:45-52. Shin, H.J., S.Y. Kim, Y.D. Park, and Y.C. Shin. 1994. A study on the - 103 -
utilization of plants in apartment interior space. Journal of Korea Traditional Landscape Garden Society 12:107-123. Snyder, S.D. 1990. Building interiors, plants and automation, p.5-29. Prentice Hall, Englewood Cliffs, NJ. Son, K.C. and M.K. Kim. 1998. Influences of indoor light, temperature, absolute humidity, and CO 2 concentration on the changes of transpiration and photosynthesis rate of Pachira aquatica and their statistical modeling. J. Kor. Soc. Hort. Sci. 39:605-609. Son, K.C., D.K. Min, M.K. Kim, and H.J. Park. 1998a. Modeling for estimation of transpiration and photosynthesis rates of Pachira according to environmental changes using neural network. J. Kor. Soc. Hort. Sci. 39:854-857. Son, K.C., M.K. Kim, S.H. Park, and M.K. Chang. 1998b. Effect of foliage plant Pachira aquatica on the change of indoor temperature and humidity. Kor. J. Hort. Sci. Technol. 16:377-380. Son, K.C., S.H. Lee, S.G. Seo, and J.E. Song. 2000. Effects of foliage plants and potting soil on the absorption and adsorption of indoor air pollutants. J. Kor. Soc. Hort. Sci. 41:305-310. Song, C.Y., J.M. Park, J.M. Choi, C.S. Bang, and J.S. Lee. 1996. Effect of composted rice-hull on physico-chemical properties of growing media and growth of Petunia hybrida. J. Kor. Soc. Hort. Sci. 37:451-454. Ueda, M. 1989. Climatotherapy and forest aromatic bath. Public health 53:20-23. Woleverton, B.C., A. Johnson., and K. Bounds. 1989. Interior landscape plant for indoor air pollution abatement. p.1-2. NASA Report. 牛山章子, 木忖建一, 岩下剛, 淺田紀行, 增田達哉. 1993. 觀葉植物による室內空氣質の淨化效果に關する實驗硏究. 日本建築學會 1993 年度大會學術講演槪集 645-646. Yamazaki, T. and J. Tobioka. 1991. Studies on the evaluation of recreational - 104 -
functions of forests(Ⅱ). J. Jap. For. Soc. 102:679-682. Yoo, B.L. 1995. Effects of the mixed media made of several organic materials on the growth of Ficus benjamina. MS Thesis., Seoul City Univ., Seoul, Korea. - 105 -
2. 온도, 광도, CO 2 농도에따른관엽식물의생리적반응 김민지ㆍ류명화ㆍ손기철 * 건국대학교원예과학과 Physiological Responses of Indoor Plants according to Temperature, Lihgt Intensity, and Carbon Dioxide Min-Ji Kim ㆍ Myung Hwa Yoo ㆍ Ki-Cheol Son* Dept. of Horticultural Science, Konkuk Univ., Seoul 143-701, Korea (* corresponding author) Abstract. This study was carried out to investigate physiological responses of 8 foliage plants according to temperature, light intensity, and CO 2 level, and to select efficient plants for the indoor environment control. Such plants as Hedera helix L., Cissus rhombifolia Vahl, Ficus benjamina L.ꡐHawaii ꡑ, Syngonium podophyllum SchottꡐAlbo-Virensꡑ, Dieffenbachia sp.ꡐ Marrianneꡑ, Pachira aquatica Aubl., Spathiphyllum wallisii Regel, Scindapsus aureus Engler were selected for the experiment. The light intensity was controlled at 0, 25, 50, 75, 100, 150, 300, and 600μmol m -2 s -1 PPFD and CO 2 level was controlled at 0, 50, 100, 200, 400, 700, and 1000μmol CO 2 mol -1. For measurement, a portable photosynthesis measuring system (Li-6400, Li Cor, USA) was used. As a result of photosynthetic rate of foliage plants according to change of light intensity and carbon dioxide, apparent quantum yield, which stands for the photosynthetic rate under low light intensity, showed high in most of species. Hedera helix, Ficus benjamina, Pachira aquatica, and Spathiphyllum wallisii showed high photosynthetic rate under high light intensity. High - 106 -
degree of CO 2 fixation efficiency related to dark reaction was found out from Hedera helix, Ficus benjamina, Pachira aquatica, Spathiphyllum wallisii, and Scindapsus aureus. Besides, Hedera helix, Ficus benjamina, Pachira aquatica and Spathiphyllum wallisii showed the high photosynthetic rate under high CO 2 concentration, and high transpiration rate under high light intensity. All plants chosen in this study were appeared to be strong for shade tolerance. Because there was no significant difference depending on temperature under low light intensity of the indoor below 50μmol m -2 s -1, such functional plants as Hedera helix, Ficus benjamina, Pachira aquatica and Spathiphyllum wallisii are considered to be effective for houses or offices, where indoor CO 2 concentration could be high or indoor relative humidity could be low by an airtight condition. 서 언 최근산업사회로전환되면서생활공간이실외에서실내로이동되었고, 도시화로인하여인간은하루 24시간중 85% 이상을실내에서생활하게되었다 (Shiotsu와 Ikeda, 1998). 도시주거환경내의생활패턴이변화됨에따라실내공간에실내식물의이용이많아지고, 국내에는많은관엽식물생산단지가형성되었으며그규모도날로커지고있다. 또한학교, 호텔, 백화점, 병원, 사무실, 일반가정등각종실내공간에실내식물을이용하지않는곳이거의없을정도로광범위하게이용되고있다 (Suh 등, 1991; Son, 1987). 식물을실내에서재배하게되면쾌적한공간연출 (green amenity) 을할수있고 (Bales, 1995), 식물에의한실내공기정화효과 (Woleverton 등, 1989; Park과 Lee, 1997; Son 등, 2000) 뿐만아니라, 원예치료차원에서의심리적안정과스트레스경감등의부가적효과 (Relf와 Dorn, 1995; Son 등, 1997), 식물로부터의음이온발생의효과 (Park, 1998; Yamazaki와 Tobioka, 1991) 도얻을수있다. 따라서, 실내식물을이용한주거환경의최적화및지능성제어가요구되고있 - 107 -
어, 실내에서관엽식물의광합성및증산량을예측하기위한연구들이이루어졌다 (Son과 Kim, 1998; Son 등, 1998). 실내에도입된식물체는생리작용인광합성작용을통해이산화탄소를흡수하는반면, 산소를방출함으로밀폐된실내공간내의공기를정화하며, 증산작용을통하여대기중으로수분을방출함으로건조하기쉬운실내공기의습도및온도조절의효과가있다 (Synder, 1990). 관엽식물의대부분은내건성과내음성이타화훼식물에비해비교적강한편으로, 높은온도와낮은광도에서잘자라는생육습성을가지고있어실내에서많이재배되고있다 (Lee, 1981). 그러나관엽식물이다른식물에비해광포화도가낮아실내환경에가장적합한식물임에도불구하고실제재배농가와실내환경과는차이가발생하여생산지에서구입되어실내에도입된식물은관상가치가저하되거나관상기간이단축되고있다. 또한관엽식물이용시에호텔이나단독주택의경우온습도조절의부적절성으로인한건조나저온피해가많이발생되고아파트경우재배자의기술정도와환경차이때문에엽면적이나엽수, 초장등에서심한차이가발생되고있다 (Suh 등, 1991). 순화과정을거친후적절한실내환경으로관리한다면실내식물로서최대한기능을발휘할수있는데, 실제가정주부나관리자들이과학적으로식물을관리하는데필요한기초자료는미비한실정이다. 따라서실내식물의최적유지와최대기능을발휘할수있는적절한환경조건이조사되어야한다고생각된다. 식물의생장과광합성능력은식물의생장환경즉, 광, 온도, CO 2 농도, 상대습도등에따라다르게나타날수있으며 (Choi 등, 1999; Choi 등, 1998), 환경에대한식물체의반응은매우복잡한것으로보고되고있다 (Karlsson과 Heins, 1985; Son 등, 1998). 이에본연구는실내식물을실내환경에적절히이용하기위해, 실내에서많이이용하는관엽식물을대상으로온도, 광도그리고이산화탄소의변화량에대한관엽식물의생리적반응을조사하기위하여실시하였다. - 108 -
재료및방법 식물재료본실험에공시된식물은호텔, 사무실및가정에서가장많이이용하는관엽류 (Park과 Shim, 1989; Kang 등, 1990) 중에서 8종을선정하였다. 일반적으로실내에서의기호도및이용도가높은헤데라 (Hedera helix L.), 시서스 (Cissus rhombifolia Vahl), 벤자민고무나무 (Ficus benjamina L.ꡐHawaiiꡑ), 싱고니움 (Syngonium podophyllum SchottꡐAlbo-Virensꡑ), 디펜바키아마리안느 (Dieffenbachia sp.ꡐmarrianneꡑ), 파키라 (Pachira aquatica Aubl.), 스파티필름 (Spathiphyllum wallisii Regel), 스킨답서스 (Scindapsus aureus Engler) 로하였다. 모든식물들은경기도에위치한재배농가에서엽면적이비슷한것으로일괄구입하여, 직경 12 혹은 18cm (3치혹은 6치 ) 포트에혼합상토 (Sunshine mixed No.1, SunGro Inc., USA) 를사용하여이식하고, 자연광을 60% 차광하여 200±50 μmol m -2 s -1 의광과온도 25±5, 습도 40±10% 를유지시킨건국대학교농과대학유리온실에서 6개월동안순화과정을거쳤다. 관수는혼합상토에이식한식물은 5일에한번씩상면관수하였고, 4주마다액비 Technigro(N:P:K = 24:7:5, SunGro Inc., USA) 200ppm을시비하였다. 공시재료는수분부족에의한영향이없도록측정 2일전에물을충분히공급하고오전 8시부터오후 1시사이에측정을수행하였다. 광합성측정휴대용광합성측정기 (Li-6400, Li Cor, USA) 를사용하여, 광도및엽육내 CO 2 농도변화에따른광합성반응 (light response curve, A-Ci curve) 을조사하였다. 측정잎에조사되는빛의광도와 leaf chamber에유입되는공기의 CO 2 농도를임의로조절하기위하여광합성측정기에 LED light source와 CO 2 injector system을부착하여사용하였다. 광도변화에대한광합성반응조사는광합성측정기의 leaf chamber에유입되는공기의유량을 250μmol s -1, CO 2 농도를 400μ - 109 -
molco 2 mol -1 조건에서측정하였다. 이때온도는 16 와 22 의두수준으로하였고, 광도는 PPFD 0, 25, 50, 75, 100, 150, 300, 600μmol m -2 s -1 의수준으로조절하였다. 광도별광합성속도를측정하여광-광합성곡선 (light response curve) 을작성하고, 이곡선에서광보상점, 광포화점, 호흡률, 광합성능력, 순양자수율 (apparent quantum yield) 을산출하였다 (Kim 등 2001). 한편, 순양자수율은 Kok효과 (Kok, 1948) 의영향이작은 PPFD 0~100μmol m -2 s -1 영역에서광과광합성의직선회귀선 y = a + bx의기울기 b로하였다 (Evan and Thomas, 2000; Ro 등, 2001). 직선회귀선의 x절편 (L comp = -a / b) 을광보상점 (L comp ) 으로, 직선회귀의연장선과광도에따른광합성속도의증가가매우완만하게나타나는 PPFD 200μmol m -2 s -1 이상에서의광합성속도가서로만나는접점 L sat = (A sat - a) / b을산출하여, 그값을광포화점 (L sat ) 으로하였다. 광합성능력은광포화점보다높은광도에서의광합성속도를평균하여그값으로하였다 (Kim 등 2001). 엽육내 CO 2 농도변화에대한광합성반응측정은광도 700μmol m -2 s -1 에서수행하였으며, leaf chamber에유입되는공기의유량과온도는광도변화에대한광합성반응측정과동일한조건으로하였다. 광합성측정기의 leaf chamber에공급되는 CO 2 농도는 0, 50, 100, 200, 400, 700, 1000μmolCO 2 mol -1 의수준으로하였다. 측정한광합성속도의결과를사용하여엽육내 CO 2 농도 (Ci) 와광합성 (A) 의관계를나타내는 A-Ci curve를작성하고, CO 2 보상점, 광호흡속도, 최대광합성속도, 탄소고정효율 (CO 2 fixation efficiency) 을산출하였다 (Kim 등 2001; Kim과 Lee, 2001). 광합성에서 CO 2 고정계의활성을반영한탄소고정효율은 Ci에따른광합성의증가가직선적으로이루어지는 Ci 150μmolCO 2 mol -1 이하에서의회귀직선 y = a + bx의기울기 b로하였다 (Farquhar 등, 1980). 한편, 이회귀직선에서 y절편인 a, 즉 Ci의값이 0μmolCO 2 mol -1 일때의 CO 2 교환속도를광호흡속도로하였다. CO 2 보상점 (C comp ) 은직선회귀의 x절편인 C comp = -a / b로산출하였다 (Kim 등 2001; Kim과 Lee, 2001). - 110 -
결과및고찰 광-광합성곡선 (Light response curve) 온도에따른광합성광화학계의변화를알아보고자측정잎에조사되는광도를달리하면서측정한광합성속도를사용하여광-광합성곡선 (light response curve) 을작성하였다 (Fig. 1). 광-광합성곡선의낮은광도영역 (PPFD 0~100μ mol m -2 s -1 ) 에서는광도에비례하여광합성속도도상승하였다. 특히이영역에서는헤데라의경우는 22 에서, 스킨답서스와싱고니움의경우는 16 에서광합성이높게나타났다. 또고광도영역 (PPFD 200~600μmol m -2 s -1 ) 에서는벤자민, 싱고니움, 스파티필름의경우는 16 에서높게나타난반면, 시서스, 디펜바키아, 헤데라의경우는 22 에서높게나타났으나, 다른종에서는온도간에차이를보이지않았다. 벤자민, 파키라, 스파티필름, 싱고니움의경우는 16 에서기공전도도가높게나타난반면, 헤데라, 스킨답서스의경우는 22 에서높게나타났다. 세포내 CO 2 농도는스킨답서스를제외하고는 16 에서높게나타났다. 증산율은기공전도도와동일하게나타났으며, 헤데라, 벤자민, 파키라, 스파티필름은다른종에비해값이높았다. 광-광합성곡선을토대로하여광보상점, 광포화점, 호흡률, 광합성능력, 순양자수율 (apparent quantum yield) 을산출하였다 (Table 1). 광보상점은식물종간에는유의차가있었으나, 온도간에는유의차가없었으며, 시서스의경우 22 에서높았고, 디펜바키아의경우는 16 에서높게나타났다. 광포화점은종별간, 온도간모두유의차가있었으며, 그중시서스의경우만 22 에서높게나타났다. 호흡률은종별간, 온도간모두유의차가나타났으며, 시서스, 디펜바키아와싱고니움의경우에서는 16 에서높게나타났다. 광합성능력은종별간, 온도간에는모두유의차가인정되었으며, 그중시서스와디펜바키아의경우에서는 22 에서높게나타났다. 순양자수율은종별간에는유의차가있었으나온도간에는유의차가없었고, 헤데라의경우는 16 에서높게나타났고, 디펜바키아는 22 에서높게나타났다. - 111 -
7 6 Hedera helix 7 6 Ficus benjamina 5 5 4 4 3 3 2 2 1 1 0 22 o C 16 o C 0-1 -1 6 Pachira aquatica 6 Spathiphyllum wallisii 5 5 4 4 Photosynthetic rate (µmol CO 2.m -2.s -1 ) 3 2 1 0-1 6 5 4 3 Cissus rhombifolia 3 2 1 0-1 6 5 4 3 Dieffenbachia sp. 'Marrianne' 2 2 1 1 0 0-1 -1 6 5 Scindapsus aureus 6 5 Syngonium podophyllum 4 4 3 3 2 2 1 1 0 0-1 0 100 200 300 400 500 600 700-1 0 100 200 300 400 500 600 700 PPFD (µmol.m -2.s -1 ) PPFD (µmol.m -2.s -1 ) Fig. 1. Photosynthetic rate of 8 foliage plants under 16 or 22 as affected by various PPFD. - 112 -
0.10 0.10 Hedera helix Ficus benjamina 0.08 0.08 0.06 0.06 0.04 0.04 0.02 0.00 22 o C 16 o C 0.02 0.00 0.10 Pachira aquatica 0.10 Spathiphyllum wallisii Stomatal conductance(mmol H 2 O. m -2. s -1 ) 0.08 0.06 0.04 0.02 0.00 0.10 0.08 Cissus rhombifolia 0.08 0.06 0.04 0.02 0.00 0.10 0.08 Dieffenbachia sp. 'Marrianne' 0.06 0.06 0.04 0.04 0.02 0.02 0.00 0.00 0.10 Scindapsus aureus 0.10 Syngonium podophyllum 0.08 0.08 0.06 0.06 0.04 0.04 0.02 0.02 0.00 0.00 0 100 200 300 400 500 600 700 PPFD (µmol. m -2. s -1 ) 0 100 200 300 400 500 600 700 PPFD (µmol. m -2. s -1 ) Fig. 2. Stomatal conductance of 8 foliage plants under 16 or 22 as affected by various PPFD. - 113 -
500 500 Hedera helix Ficus benjamina 400 400 300 300 200 200 100 22 o C 16 o C 100 0 0 500 Pachira aquatica 500 Spathiphyllum wallisii Intercelluar CO 2 conc. (µmol CO 2. µmol -1 air) 400 300 200 100 0 500 400 300 Cissus rhombifolia 400 300 200 100 0 500 400 300 Dieffenbachia sp. 'Marrianne' 200 200 100 100 0 0 500 Scindapsus aureus 500 Syngonium podophyllum 400 400 300 300 200 200 100 100 0 0 100 200 300 400 500 600 700 0 0 100 200 300 400 500 600 700 PPFD (µmol. m -2. s -1 ) PPFD (µmol. m -2. s -1 ) Fig. 3. Intercelluar CO 2 concentration of 8 foliage plants under 16 or 22 as affected by various PPFD. - 114 -
1.0 1.0 Hedera helix Ficus benjamina 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.0 22 o C 16 o C 0.2 0.0 0.8 Pachira aquatica 0.8 Spathiphyllum wallisii 0.6 0.6 Transpiration rate (µmolh 2 O. m -2. s -1 ) 0.4 0.4 0.2 0.2 0.0 0.0 0.8 Cissus rhombifolia 0.8 Dieffenbachia sp. 'Marrianne 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.0 0.8 Scindapsus aureus 0.8 Syngonium podophyllum 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0 100 200 300 400 500 600 700 0.0 0 100 200 300 400 500 600 700 PPFD (µmol. m -2. s -1 ) PPFD (µmol. m -2. s -1 ) Fig. 4. Transpiration rate of 8 foliage plants under 16 or 22 as affected by various PPFD. - 115 -
Table 1. Light compensation point, light saturation point, respiration rate, photosynthetic rate, and apparent quantum yield of 8 foliage plants according to two different temperature. Species Hedera helix Temperature 22 16 Light compensation point (μmol m -2 s -1 ) 2.79 a z 2.78 a Light saturation point (μmol m -2 s -1 ) 139.7 a 108.9 a Respiration rate (μmolco2 m -2 s -1 ) -0.093 a -0.109 a Photosynthetic rate (μmolco2 m -2 s -1 ) 4.98 a 5.27 a Apparent quantum yield (μmolco2 mol -1 ) 0.042 b 0.052 a Ficus benjamina 22 16 6.21 a 6.31 a 86.6 a 99.7 a -0.246 a -0.277 a 3.70 a 4.14 a 0.042 a 0.046 a Pachira aquatica 22 16 3.35 a 3.27 a 85.7 a 80.1 a -0.161 a -0.105 a 3.88 a 3.69 a 0.050 a 0.047 a Spathiphyllum wallisii 22 16 2.61 a 2.17 a 92.7 a 91.9 a -0.052 a -0.059 a 4.58 a 4.62 a 0.053 a 0.053 a Cissus rhombifolia 22 16 4.21 a 1.12 b 85.2 a 65.4 b -0.097 b 0.039 a 3.74 a 3.20 b 0.047 a 0.049 a Dieffenbachia sp. ꡐMarrianne' 22 16 1.58 b 5.92 a 81.3 a 65.4 a 0.015 a -0.032 a 3.54 a 2.23 b 0.038 a 0.028 b Scindapsus aureus 22 16 3.70 a 1.88 a 51.8 a 55.4 a -0.159 b -0.040 a 3.82 a 2.99 a 0.051 a 0.053 a 22 Syngonium 16 podophyllum Species (A) Temperature (B) A B 2.96 a 3.09 a *** NS ** 69.2 a 67.9 a *** ** NS -0.051 b 0.024 a *** * *** 2.79 a 3.02 a *** * NS 0.045 a 0.043 a *** NS ** z The difference of each factor between 22 and 16 in the same species was compared using t-test at P = 0.05. NS,*,**,*** Nonsignificant or significant at P = 0.05, 0.01 or 0.001, respectively. - 116 -
광-광합성곡선의낮은광도영역에서는광도에비례하여광합성속도도상승하였는데, 이영역에서는헤데라와디펜바키아의경우는 22 에서높은광합성을나타내었고, 벤자민고무나무, 스파티필름, 스킨답서스, 싱고니움의경우는 16 에서높은광합성을나타내었다 (Fig. 1). 벤자민고무나무, 파키라, 스파티필름, 디펜바키아, 싱고니움의기공전도도는 22 보다 16 에서높게나타났으며, 시서스, 헤데라, 스킨답서스의경우는작은경향이지만 16 보다 22 에서높게나타났다 (Fig. 2). 세포내 CO 2 의농도를보면 (Fig. 3) 스킨답서스에서만 22 에서높게나타났고, 이를제외한모든종에서 16 에서높았다. 증산율도기공전도도와비슷한경향을보였는데벤자민고무나무, 파키라, 스파티필름, 디펜바키아, 싱고니움의경우 22 보다 16 에서높게나타났으며, 헤데라, 시서스, 스킨답서스의경우 22 에서높게나타났다 (Fig. 4). 엽육내 CO 2 농도에대한광합성곡선 (A-Ci curve) 온도가광합성계의암반응에속하는탄소고정계의능력에미치는영향을알아보고자 leaf chamber에유입되는공기의 CO 2 농도를조절하여측정한광합성과엽육내 CO 2 농도를사용하여광합성곡선 (A-Ci curve) 를작성하였다. 그리고이 A-Ci curve를이용하여 CO 2 보상점, 광호흡속도, 최대광합성속도, 탄소고정효율 (CO 2 fixation efficiency) 을산출하였다 (Table 2). CO 2 보상점은종간에는유의차가나타났으나, 온도간에는유의차가나타나지않았다. 또한, 싱고니움의경우는 22 에서높게나타났고, 다른품종에서는온도간에큰차이를보이지않았다. 광호흡속도에서도종간에는유의차가나타났으나, 온도간에는유의차가나타나지않았으며, 싱고니움의경우는 16 보다 2 2 에서높게나타났고, 다른품종에서는온도간큰차이를보이지않았다. 최대광합성속도는종간, 온도간모두유의차가있었으며, 벤자민고무나무, 파키라, 시서스, 스킨답서스, 싱고니움의경우에서는 22 에서높게나타났다. 탄소고정효율은종간에는유의차가인정되었으나, 온도간에는유의차가인정되지않았고, 모든종에서온도간에차이가나타나지않았다. A-Ci curve에서최대광합성속도를살펴보면 (Fig. 5), 벤자민고무나무와파키라가가장높은값을나타낸데비하여, 싱고니움과스킨답서스는낮은값을 - 117 -
나타내었다. 온도에따라비교해보면, 모든종의최대광합성속도는 22 에서높은값을나타내었으며, 헤데라, 스파티필름, 시서스, 디펜바키아, 스킨답서스, 싱고니움에서는 16 와 22 시험구간의광합성속도차이가비교적작았으나, 벤자민고무나무와파키라는그차이가더욱심하여 16 시험구가 22 시험구의절반에미치지못하였다. - 118 -
12 10 Hedera helix 12 10 Ficus benjamina 8 8 6 6 4 4 2 2 0 22 o C 16 o C 0-2 -2 10 Pachira aquatica 10 Spathiphyllum wallisii Photosynthetic rate (µmolco 2. m -2. s -1 ) 8 6 4 2 0-2 10 8 Cissus rhombifolia 8 6 4 2 0-2 10 8 Dieffenbachia sp. 'Marrianne' 6 6 4 4 2 2 0 0-2 -2 10 Scindapsus aureus 10 Syngonium podophyllum 8 8 6 6 4 4 2 2 0 0-2 -2 0 200 400 600 800 1000 0 200 400 600 800 1000 Interellular CO 2 concentration (µmolco 2. µmol -1 ) Interellular CO 2 concentration (µmolco 2. µmol -1 ) Fig. 5. A-Ci curves of 8 foliage plants under 16 and 22. - 119 -
Table 2. CO 2 compensation point, photo-respiration rate, maximum photosynthetic rate, and CO 2 fixation efficiency of 8 foliage plants according to two different temperature. Species Temperature CO 2 compensation point (μmolco 2 mol -1 ) photo-respiration rate (μmolco 2 m -2 s -1 ) Maximum photosynthetic rate (μmolco 2 m -2 s -1 ) CO 2 fixation efficiency (μmolco 2 mol -1 ) Hedera helix 22 53.5 a z 1.54 a 7.01 a 0.030 a 16 49.4 a 1.66 a 7.02 a 0.031 a Ficus benjamina 22 60.1 a 2.48 a 9.75 a 0.037 a 16 58.0 a 1.80 a 5.56 b 0.032 a Pachira aquatica 22 62.0 a 2.17 a 8.35 a 0.033 a 16 52.7 a 1.65 a 4.15 b 0.034 a Spathiphyllum wallisii 22 68.1 a 1.87 a 7.07 a 0.029 a 16 63.6 a 2.07 a 7.39 a 0.028 a Cissus rhombifolia 22 65.4 a 1.33 a 5.68 a 0.018 a 16 61.6 a 1.45 a 4.94 b 0.022 a Dieffenbachia sp. 22 64.4 a 1.97 a 4.65 a 0.034 a ꡐMarrianneꡑ 16 74.5 a 1.53 a 4.93 a 0.020 a Scindapsus 22 86.3 a 3.45 a 5.30 a 0.037 a aureus 16 82.1 a 2.51 a 4.30 b 0.030 a 22 85.6 a 1.71 a 5.59 a 0.019 a Syngonium 16 54.6 b 0.83 b 3.57 b 0.014 a podophyllum Species (A) * *** *** *** Temperature (B) NS NS *** NS A B NS NS *** NS z The difference of each factor between 22 and 16 in the same species was compared using t-test at P = 0.05. NS,*,**,*** Nonsignificant or significant at P = 0.05, 0.01 or 0.001, respectively. - 120 -
광에너지를화학에너지로변환시키는광화학계의활성을나타내는순양자수율은광도와광합성의관계가직선적으로나타나는 PPFD 100μmol m -2 s -1 이하의광도, 즉약광에서의광합성능력을나타낸다고알려져있다 (Kim 등, 2001; Evans, 1987). 온도에따른순양자수율의유의차는없었다. 디펜바키아가다른종에비해서광합성율이낮게나타났고, 22 에서유의성이인정되었는데, 이는내한성이약한식물로 16 의낮은온도에서광화학계에피해를입은것으로생각된다 (Table 1). 세포내 CO 2 농도에따른광합성곡선에서세포내 CO 2 농도가낮은영역에서는 CO 2 농도가부족한상태이기때문에촉매역할을하는 rubisco의함량에의해광합성이결정된다. CO 2 농도가상승하면광호흡이억제되면서광합성속도가상승하게된다. 이구간의직선회귀식의기울기는탄소고정효율로서광합성에서 CO 2 를고정하는효소인 rubisco의활성및함량을반영한다. 그러나 CO 2 농도가더욱상승하게되면광합성속도가더이상증가하지않는다 (Farquhar 등, 1980; Kim과 Lee, 2001). 실험결과에따르면, 탄소고정효율은종간에는유의차가인정되었으나, 온도간에는유의차가나타나지않았다. 그중헤데라, 벤자민고무나무, 파키라, 스킨답서스의경우는다른종에비해높게나타났고, 시서스와싱고니움에서는다른종에비해낮은값을나타내었다. 이는탄소고정효율값의차이는있으나낮은온도가탄소고정계에는영향을주지않은것으로생각된다 (Table 2). - 121 -
Table 3. Various physiological characteristics of 8 foliage plants. Species A z B y C x D w E v Hedera helix No High Strong High High Ficus benjamina No High Strong High High Pachira aquatica No High Strong High High Spathiphyllum wallisii No High Strong High High Cissus rhombifolia No High Strong Middle Middle Dieffenbachia sp. ꡐMarrianne' Yes Middle Strong Middle Middle Scindapsus aureus No High Strong Middle Middle Syngonium podophyllum No High Strong Middle Middle A z : Difference in photosynthetic rate between 16 and 22 under low light condition. B y : Photosynthetic rate under low light condition. C x : Degree of shade tolerance according to light compensation point and light saturation point. D w : Photosynthetic rate under high concentration of CO 2. E v : Transpiration rate. - 122 -
결과들을종합하여식물종에따른다양한생리적요인을비교해보면 (Table 3), 저광에서온도간의차이를볼때디펜바키아를제외하고는차이가없었으며, 저광에서의광합성율을나타내는순양자수율에서도저온으로인해피해를받은디펜바키아를제외하고는높게나타났다. 조사한모든식물이내음성에강한것으로나타났으며, 고농도의 CO 2 에서광합성율이높은식물은헤데라, 벤자민고무나무, 파키라, 스파티필름이었다. 또한, 고농도의 CO 2 에서광합성율이높은식물이증산율도높게나타났다. 또한실내온도에서 Pachira aquatica, Ficus benjamina의광합성율과증산율이높다고알려진보고 (Son 등, 1988; Park과 Lee, 1997) 와같이 22 에서 Pachira aquatica, Ficus benjamina의광합성율과증산율이높게나타났다. 따라서, 기능성식물을실내에도입할경우, 상대습도가낮은겨울철에는증산율이높고광합성율이높은헤데라, 벤자민고무나무, 파키라, 스파티필름등을이용하는것이좋을것이다. 또한, 밀폐로인해내부의이산화탄소농도가높아진사무실의경우에도헤데라, 벤자민고무나무, 파키라, 스파티필름등을이용하는것이효과적일것이라생각된다. 초 록 본연구는관엽식물 8종을선정하여온도, 광도와이산화탄소농도에따른식물의생리적반응과실내환경조절에효과적인식물을구명하고자실시하였다. 식물재료로는헤데라, 벤자민고무나무, 파키라, 스파티필름, 시서스, 디펜바키아, 스킨답서스, 싱고니움을사용하였으며, 광도는 PPFD 0, 25, 50, 75, 100, 150, 300, 600μmol m - 2 s -1 의수준으로조절하고, CO 2 농도는 0, 50, 100, 200, 400, 700, 1000μmolCO 2 mol -1 의수준으로조절하여휴대용광합성측정기 (Li-6400, Li Cor, USA) 로측정하였다. 광도및엽육내 CO 2 농도변화에따른관엽식물의광합성반응을조사한결과, 약광에서의광합성능력을나타내는순양자수율은대부분의종에서높게나타났으며, 고광에서는헤데라, 벤자민고무나무, 파키라, 스파티필름이높은광합성능력을나타내었다. CO 2 를고정하는암반응과관련된탄소고정효율은헤데라, 벤자 - 123 -
민고무나무, 파키라, 스파티필름, 스킨답서스에서높게나타났다. 고농도의 CO 2 에서광합성율이높은식물은헤데라, 벤자민고무나무, 파키라, 스파티필름이었다. 한편, 헤데라, 벤자민고무나무, 파키라, 스파티필름은증산율도높게나타났으며, 조사된모든식물의내음성은매우강한것으로나타났다. 실내광도인 50μmol m -2 s -1 이하의저광에서온도에따른유의차가나타나지않은것으로볼때, 건물의밀폐로인해실내의이산화탄소농도가높아지거나, 상대습도가낮은일반가정이나사무실에기능성식물을도입시에는헤데라, 벤자민고무나무, 파키라, 스파티필름등을이용하는것이효과적이고, 저광의실내에서도충분히활용가능한것으로판단된다. 인용문헌 Balse, S.F. 1995. The kitchen garden: Raised beds and electric chairs. Horticulture 73:34-39. Choi, J.I., J.H. Seon, K.Y. Paek, and T.J. Kim. 1998. Photosynthesis and stomatal conductance of eight foliage plant species as affected by photosynthetic photon flux density and temperature. J. Kor. Soc. Hort. Sci. 39:197-202. Choi, J.I., E.J. Hahn, and K.Y. Paek. 1999. Photosynthetic charavteristics and chlorophyll content of Hedera canariensis, Pachira aquatica, and Ficus benjamina in response to photosynthetic photon fluxes and CO 2 concentrations. J. Kor. Soc. Hort. Sci. 40:627-630. Evans, J.R. 1987. The dependence of quantum yield on wavelength and growth irradiance. Australian Journal of Plant Physiology 14:69-79. Evan, H.D. and R.B. Thomas. 2000. Photosynthetic responses to CO 2 enrichment of four hardwood species in a forest understory. Oecologia 122:11-19. Farquhar, G.D., von S. Caemmerer, and J.A. Berry. 1980. Abiochemical model of photosynthetic CO 2 assimilation in leaves of C3 species. Planta. - 124 -
149:78-90. Karlsson, M.G. and R.D. Heins. 1985. Modeling light and temperature effects on Chrysanthemum morifolium. Acta Horticulturae 174:235-240. Kim, P.G. and E.J. Lee. 2001. Ecophysiology of photosynthesis 1: Effects of light intensity and intercellular CO 2 pressure on photosynthesis. Korean Journal of Agricultural and Forest Meteorology 3:126-133. Kim, P.G., Y.S. Yi, D.J. Chung, and S.Y. Woo. 2001. Effects of light intensity on photosynthetic activity of shade tolerant and intolerant tree species. J. Korean For. Soc. 90:476-487. Kok, B. 1948. A critical consideration of the quantum yield of chlorella-photosynthesis. Enzymologia 13:1-16. Lee, Y.M. 1981. Growth requirements of indoor trees. J. Kor. Ins. Land. Arch. 9:19-42. Park, S.H. and Y.B. Lee. 1997. Indoor CO 2 and NO 2 fixation in light-acclimatized foliage plants. J. Kor. Soc. Hort. Sci. 38:551-555. Park, S.H., Y.B. Lee, G.Y. Bea, and M. Kondo. 1998. Anion Evolution in plants and its involved factors. J. Kor. Soc. Hort. Sci. 39:115-118. Relf, D. and S. Dorn. 1995. Horticulture:Meeting the needs of special population. HortTechnology 5:94-103. Ro, H.M., P.G. Kim, I.B. Lee, M.S. Yiem, and S.Y. Woo. 2001. Photosynthetic characteristics and growth responses of dwarf apple(malus domestica Borkh. cv. Fuji) saplings after 3 years of exposure to elevated atmospheric carbon dioxide concentration and temperature. Trees 15:195-203. Shiotsu, Mika and Ikeda, Koichi Yoshizawa. 1998. Survey on human activity patterns according to time and place: Basic research on the exposure dose to indoor air pollutants Part 1. Transactions of AIJ. 511:45-52. Son, K.H. and D.Y. Yeam. 1987. Effects of light intensities and temperatures in various indoor sites on growth of certain foliage plants. J. Kor. Soc. Hort. Sci. 28:173-184. - 125 -
Son, K.C., S.K. Park, H.O. Boo, G.Y. Bea, K.Y. Beak, S.H. Lee, and B.G. Heo. 1997. Horticultural therapy. 1st ed., p.35-95. Seowon Press, Seoul, Korea. Son, K.C., S.H. Lee, S.G. Seo, and J.E. Song. 2000. Effects of foliage plants and potting soil on the absorption and adsorption of indoor air pollutants. J. Kor. Soc. Hort. Sci. 41:305-310. Son, K.C., D.K. Min, M.K. Kim, and H.J. Park. 1998. Modeling for estimation of transpiration and photosynthesis rates of Pachira according to environmental changes using neural network. J. Kor. Soc. Hort. Sci. 39:854-857. Son, K.C. and M.K. Kim. 1998. Influences of indoor light, temperature, absolute humidity, and CO 2 concentration on the changes of transpiration and photosynthesis rate of Pachira aquatica and their statistical modeling. J. Kor. Soc. Hort. Sci. 39:605-609. Snyder, S.D. 1990. Building interiors, plants and automation, p.5-29. Prentice Hall, Englewood Cliffs, NJ. Suh, Y.N., J.S. Lee, C.K. Sang, and I.Z. Chi. 1991. Studies on the present status of cultivation and utilization of foliage plants. J. Kor. Soc. Hort. Sci. 32:533-544. Woleverton, B.C., A. Johnson, and K. Bounds. 1989. Interior landscape plant for indoor air pollution abatement. p.1-2. NASA Report. Yamazaki, T. and J. Tobioka. 1991. Studies on the evaluation of recreational functions of forests(Ⅱ). J. Jap. For. Soc. 102:679-682. - 126 -
3. 관엽식물이주야간실내 CO 2 농도변화에미치는영향 김민지ㆍ류명화ㆍ손기철 * 건국대학교원예과학과 Effects of foliage plants on the change of indoor CO 2 during day and night period.. concentration Min-Ji Kim ㆍ Myung Hwa Yoo ㆍ Ki-Cheol Son* Dept. of Horticultural Science, Konkuk Univ., Seoul 143-701, Korea (* corresponding author) Abstract. This study was carried out to predict and ultimately control indoor CO 2 level on the basis of measurement of CO 2 exchange rate between day and night time of the indoor plants in an airtight area and calculation of their photosynthetic rate and respiration rate. Among the indoor plants, Hedera helix L., Ficus benjamina L., Pachira aquatica, Chamaedorea elegans, and Ficus elastica were selected for the experiment and cultivated in two different growth media, peatmoss and hydroball. Then, each plant was placed in an airtight chamber with 1,000ppm or 500ppm of carbon dioxide and two different light intensity, 50 or 200μmol m -2 s -1. After the change of carbon dioxide in airtight chamber during day and night was measured by ppm unit. Finally, the measured amount of carbon dioxide was converted into the photosynthetic rate (μmolco 2 m -2 s -1 ). In all plants, photosynthetic rate were high during the day time when the light intensity was 200μmol m -2 s -1 instead of 50μmol m -2 s -1, and when the concentration of the initial carbon dioxide was 1,000ppm. Among the tested plants, Pachira aquatica and Hedera helix showed higher photosynthetic rate, approximately 3.4 and 2.6μmolCO 2 m -2 s -1, regardless of - 127 -
media. Moreover, the differences in light intensity and concentration of carbon dioxide during day period didn't have large effect on the amount of respiration rate at night period, and the plant maintained in hydroball medium showed less respiration rate than that maintained in peatmoss medium at night period. Comparing the carbon dioxide uptake of the above plant part with the below ground part during day period, the ground part appeared to take approximately 20% of the carbon dioxide uptake of the whole plant and it occupied about 20% of total carbon dioxide releasing from the whole plant during night period. Meanwhile, 1,140 minutes were taken for the reduction of CO 2 level from 1,000ppm to 500ppm under temperature of 23 in indoor space with 3m (the width) 4m (the length) 2.5m (the height). In conclusion, on the occasion of measuring photosynthetic rate of the whole plant using chamber, it was found to be very convenient for measuring as well as consistant with the data obtained by expensive experimental equipment, and, consequently, able to practically predict the control of indoor carbon dioxide level by foliage plants. 서 언 도시의대기는자동차및에너지사용량의증가그리고산업활동이활발해짐에따라광화학산화물, 질소산화물 (NOx), 탄화수소류, 유해한화학물질및분진등과같은도시형대기오염물질의발생이증가되고있다 (Bae와 Lee, 1996). 대기오염은각종형태로배출되어환기에의해실내로유입될수있으며에너지절약및효율을높이기위한건물의밀폐화로인하여주택및사무실의냉난방, 연료도구등의사용으로인해실내오염물질은계속증가되고있다 (Wolverton 등, 1989; Kim, 1993). 현대도시인들의생활형태는산업화에따라옥외활동이점차감소하고, 실내에서하루 24시간중 85% 이상을차지하고있다 (Shiotsu와 Ikeda, 1998). 따라서, - 128 -
인간은실외대기환경보다실내환경에더많은영향을받게되고, 현대도시생활의삶의질은실내공기질 (indoor air quality) 과밀접한관계가있으며 (Robinson과 Nelson, 1995), 그에따라실내공기의청정도유지는인간의건강생활에중요한요소가되고있다. 실내의이산화탄소는실내의종합적인오염정도를평가하는척도로사용되며, 필요환기량의기준이된다 (Yoon, 1994). 이산화탄소는실내의거주자나동물의대사작용에의해생산되어호흡기를통하여배출되고, 실내에서사용되는석유, 가스스토브, 곤로등의개방형연소기구를통해발생된다. 예를들어대표적인활동수준의사무직에종사하는어른이배출하는이산화탄소의양은약 200ml /min 이다 (Woods, 1980). 특히, 연통이없는가스난로에서배출되는오염물질에대한연구결과이산화탄소농도가 1,930~11,100ppm으로나타났다 (Traynor 등, 1985). 이와같은이산화탄소의주요발생원은실내의거주자나그곳에서사용되는개방형연소기구로인하여일반적으로실내농도는실외농도보다높다 ( 池田, 1992). 현재실내공간에서의사람수에영향을받는이산화탄소는공기정화장치를이용하여실내탄산가스의적정농도를허용치로유지하거나환기를통해외기를유입시켜실내공기를희석시키는방법이사용되고있다. 그러나오염물질의방출을줄이거나방출된오염물질을정화시키기위한기술이다각도로검토되고있지만 (Kim, 1993), 환기시스템이나고효율여과장치의기계적인방법을이용하여실내공기를개선시킨다는것은많은비용의부담과함께장기운영에의한기계자체의오염을확인할수없는등의어려움이있다. 식물을실내에도입함으로써공기정화효과에대한연구 (Woleverton 등, 1989; Park과 Lee, 1997; Son 등, 2000; Hong, 2000; Han, 2001) 가많이보고되었는데이는공학적방법이아닌생물학적방법으로서부작용을개선하고공학적방법에의한처리에비해비용이적게들고, 다른오염물질의발생을배제할수있는장점도가지고있다. 따라서, 본연구에서는생물학적방법으로실내에서많이이용하는관엽식물 5종을선정하여광합성측정기기를사용하여이산화탄소농도를측정한기존의실험과는달리, 밀폐된챔버에서식물종, 식물이재배된배지, 광도와주입된이 - 129 -
산화탄소농도에따른식물체자체와근권부에서의이산화탄소교환율을직접측 정하고기초광합성율과비교함으로, 실내환경에적용가능한구체적자료를 얻고자수행하였다. 재료및방법 식물재료본실험에공시된식물은서울지역에있는호텔, 사무실및가정에서가장많이이용하는관엽류 (Park과 Shim, 1989; Kang 등, 1990) 중에서헤데라 (Hedera helix L.), 벤자민고무나무 (Ficus benjamina L.), 파키라 (Pachira aquatica), 테이블야자 (Chamaedorea elegans), 인도고무나무 (Ficus elastica) 5종을선정하였다 (Table 1). 모든식물들은 2003년 1월재배농가에서일괄구입하여, 직경 18cm포트에피트모스배지 (Sunshine mixed No.1, SunGro Inc., USA) 또는 hydroball배지를사용하여각각이식하고, 자연광을 40% 차광하여 200±50μmol m -2 s -1 의광과온도 25±5, 습도 40±10% 를유지시킨건국대학교농과대학유리온실에서 6개월동안순화시켰다. 관수는혼합상토에이식한식물은 5일에한번씩상면관수하였고, hydroball에이식한식물은 1~2일에한번씩관수하였다. 4주마다액비 Technigro(N:P:K=24:7:5, SunGro Inc., USA) 200ppm을시비하였다. - 130 -
Table 1. Foliage plants used in the experiment. Plant species Plant age (years) Hedera helix 2 Ficus benjamina 2 Pachira aquatica 2 Chamaedorea elegans 2 Ficus elastica 3 Potting medium Plant length (cm) Leaf area (cm 2 ) Hydroball 15.7 ± 0.58 z 1519.7 ± 92.45 Sunshine 16.3 ± 2.52 2068.7 ± 249.41 Hydroball 52.7 ± 2.08 3937.0 ± 881.80 Sunshine 51.0 ± 7.07 4331.7 ± 583.66 Hydroball 59.7 ± 3.51 4271.3 ± 666.62 Sunshine 51.0 ± 7.00 4638.3 ± 674.47 Hydroball 46.0 ± 5.20 4200.0 ± 818.46 Sunshine 50.0 ± 4.58 4518.0 ± 816.58 Hydroball 48.7 ± 4.73 5464.7 ± 686.31 Sunshine 53.7 ± 1.53 6764.3 ± 91.87 z Values are mean ± standard deviation (n=3) 실내이산화탄소측정을위한생장상제작본실험을위해제작한생장상은 5T 두께의 stainless와유리를사용하여 0.6m( 가로 ) 0.6m( 세로 ) 0.9m( 높이 ) 의크기로, 총체적은 324L로만들었다. 모서리나연결부위는실리콘으로마감하여가스누출을방지하였고, 팬을두곳에설치하여생장상내의공기가잘혼합되도록하였다. 밀폐챔버는온습도를제어할수있는환경조절생육상 ( 두리과학, DF-95G-1485) 에넣어챔버내환경을조절하였다 (Fig. 1). 챔버내습도조절을위해 2m stainless tubing( 관 : 직경 4mm) 를챔버내바닥부분에돌려서설치하여, 8~10 물을자동온도조절장치에의해순환시켜제습이되게하였다. 형광등과메탈등으로챔버외부에서조명하였으며, 광도는 200μmol m -2 s -1 정도가되도록조절하였다. 온도는 23±2, 습도는 50~60% 로유지시켰다. - 131 -
Fig. 1. The gas-tighted chamber for experiment. 배지종류나광도에따른주 / 야간의이산화탄소교환능력측정측정식물을밀폐챔버에넣고챔버내에 CO 2 는건축법에나타난실내공기환경기준인 1,000ppm, 환기장치가적절히가동되고있는초고기밀주택에서측정된결과나타난 500ppm( 小峯, 1992) 을기준으로하여초기 CO 2 농도를조절하고실내식물의 CO 2 의변화량을측정하였다. 생장상의광도는 50과 200μmol m - 2 s -1 두수준으로조절하였으며, 온도는 23±2, 습도는 50~60% 로유지하였다. 실험은토양별로 3개체씩반복적으로수행하였으며, CO 2 농도는실내종합환경측정기 (BABUC A, LSI, Italy) 로모니터링하였다. 식물전주에대한 CO 2 교환량과식물자체만의지상부와식물체를제외한지하부의 CO 2 교환량을비교하고자, 지하부를 polyethylene film으로밀봉한상태와밀봉하지않은상태를반복적으로수행하였다. 측정후에밀폐형챔버에서 CO 2 변화량 (ppm) 을광합성속도 (mgco 2 dm -2 h -1 ) 로산출하였다 ( 加藤榮등, 1981). - 132 -
P = [ CO 2 ] x1 -[CO 2 ] x2 10 6 V 60 ΔM 273 273+ T 44 22.4 100 L [1] P : 광합성속도 (mgco 2 dm -2 h -1 ) [CO 2 ] x1 : 초기의 CO 2 농도 (ppm) [CO 2 ] x2 : 마지막의 CO 2 농도 (ppm) V : 생장상체적 (l) ΔM : 시간 (min) T : 측정시의온도 ( ) L : 엽면적 (cm 2 ) 계산된광합성속도 (mgco 2 dm -2 h -1 ) 를국제단위 μmolco 2 m -2 s -1 로변환 시켰다. 즉, 0, 1 기압에있어서 1mol 의 CO 2 는 44g, 기체의용적은 22.4L 로하 고, 20, 1 기압에서는다음과같이된다 ( 大政謙次등, 1995). 1 mgco 2 dm -2 h -1 = 0.631 μmolco 2 m -2 s -1 [2] 한편, 식물을챔버에넣고 12 시간측정시에도습도의변화가없었으며, 지속적 으로같은율로감소함으로모든측정을챔버삽입후 1 시간동안측정하였다. 결과및고찰 본실험은식물종별로피트모스배지혹은 hydoball 배지에재배 순화된후주 / 야간의이산화탄소교환능력과광도에따른이산화탄소교환능력에대해알아보고자실시하였다. 주 야간에밀폐챔버내에식물을넣어식물종별로광도와초기이산화탄소량에따라 1시간동안이산화탄소의변화를관찰하여, 광도와초기이산화탄소농도에따른주 야간의이산화탄소교환량을나타내었다 (Fig. 2~6). 결과에따르면, 모든품종에서주간에초기이산화탄소의농도가 500ppm일때보다 - 133 -
1,000ppm일때감소하는폭이크게나타났다. 한편, 주간의이산화탄소흡수에비해서, 야간의이산화탄소방출은매우적게나타났다. 또한, 주간의광도가 50 μmol m -2 s -1 일때보다 200μmol m -2 s -1 일때이산화탄소감소율이높게나타났으나, 야간에는주간의광도에큰영향을받지않은것으로나타났다. 식물의지상부와지하부의이산화탄소변화량을비교한결과, 주간동안에는지상부와지하부모두이산화탄소가감소하였고, 야간동안에는이산화탄소가증가하였다. 또한, 주야간모두지하부의이산화탄소변화량은지상부의 25~40% 로나타났다 (data not shown). Fig. 2. Change in CO 2 concentration in gas-tighted chamber with Hedera helix as affected by initial CO 2 level (500 or 1,000ppm) at 200 or 50 μmol m -2 s -1 light intensity during day and night period. H, hydroball(,,, ); S, sunshine(,,, ); 200 and 50, Light intensity (μmol m -2 s -1 ); 1000 and 500, initial CO 2 level (ppm). - 134 -
Fig. 3. Change in CO 2 concentration in gas-tighted chamber with Ficus benjamina as affected by initial CO 2 level (500 or 1,000ppm) at 200 or 50 μmol m -2 s -1 light intensity during day and night period. (Legends were referred to Fig. 2.). - 135 -
Fig. 4. Change in CO 2 concentration in gas-tighted chamber with Pachira aquatica as affected by initial CO 2 level (500 or 1,000ppm) at 200 or 50 μmol m -2 s -1 light intensity during day and night period. (Legends were referred to Fig. 2.). - 136 -
Fig. 5. Change in CO 2 concentration in gas-tighted chamber with Chamaedorea elegans as affected by initial CO 2 level (500 or 1,000ppm) at 200 or 50 μmol m -2 s -1 light intensity during day and night period. (Legends were referred to Fig. 2.). - 137 -
Fig. 6. Change in CO 2 concentration in gas-tighted chamber with Ficus elastica as affected by initial CO 2 level (500 or 1,000ppm) at 200 or 50 μmol m -2 s -1 light intensity during day and night period. (Legends were referred to Fig. 2.). - 138 -
이산화탄소의변화량을광합성속도로산출한결과를보면 (Table 2), 모든품종에서주간에광도가높은 200μmol m -2 s -1 에서높은값을나타내었으며, 초기이산화탄소농도가 1,000ppm일때높게나타났다. 반면, 모든품종에서배지간에는큰차이가없었다. 식물전주에대한식물지하부의광합성율을비교한결과, 식물지하부가식물전주에대하여약 20% 정도를차지하는것으로나타났다. Pachira aquatica 광합성속도가가장높은값을나타내었고, Hedera helix가다음으로높게나타났으며, Ficus elastica, Ficus benjamina, Chamaedorea elegans 순으로나타났다. 또한, 야간의호흡율에서는주간의광도나이산화탄소농도차이에큰영향을받지않은것으로생각되며, 배지간에는적은차이이기는하나피트모스배지에재배된식물보다 hydroball 배지에재배된식물이야간에낮은호흡율을나타내었다. - 139 -
Table 2. Change in CO 2 concentration in gas-tighted chamber where foliage plant were hold as affected by initial CO 2 level (500 or 1,000ppm) at 200 and 50 μmol m -2 s -1 light intensity during day and night period. Species D/N Z L Y I X Photosynthetic rate (μmolco 2 m -2 s -1 ) Potting Medium Sunshine Hydroball Hedera helix Ficus benjamina Pachira aquatica Chamaedorea elegans Ficus elastica Day Night Day Night Day Night Day Night Day Night Whole plant Plant part Soil part Whole plant Plant part Soil part 200 1000 2.81±0.08 w 2.26±0.31 0.54±0.40 2.54±0.33 2.33±0.20 0.22±0.14 500 1.45±0.11 1.20±0.14 0.26±0.23 1.56±0.38 1.35±0.29 0.21±0.10 50 1000 1.70±0.13 1.23±0.39 0.47±0.34 1.49±0.07 1.17±0.05 0.32±0.04 500 0.82±0.36 0.91±0.16 0.20±0.27 0.62±0.30 0.58±0.18 0.32±0.34 200 1000-0.55±0.06-0.34±0.08-0.22±0.09-0.48±0.01-0.37±0.09-0.12±0.10 500-0.38±0.09-0.16±0.15-0.22±0.09-0.34±0.06-0.20±0.16-0.14±0.10 50 1000-0.56±0.16-0.53±0.05-0.03±0.14-0.48±0.06-0.40±0.01-0.07±0.06 500-0.42±0.17-0.36±0.05-0.06±0.20-0.42±0.06-0.35±0.19-0.08±0.13 200 1000 1.65±0.21 1.29±0.19 0.36±0.06 1.77±0.16 1.35±0.16 0.42±0.24 500 0.75±0.21 0.60±0.16 0.15±0.05 0.78±0.10 0.63±0.16 0.15±0.20 50 1000 1.10±0.10 0.92±0.09 0.19±0.03 1.10±0.18 1.06±0.13 0.04±0.06 500 0.46±0.09 0.35±0.02 0.11±0.11 0.53±0.12 0.36±0.12 0.16±0.18 200 1000-0.37±0.05-0.30±0.04-0.07±0.05-0.32±0.10-0.26±0.02-0.06±0.09 500-0.35±0.12-0.31±0.12-0.03±0.03-0.26±0.05-0.17±0.03-0.09±0.02 50 1000-0.42±0.05-0.40±0.03-0.02±0.03-0.41±0.04-0.30±0.06-0.11±0.02 500-0.38±0.09-0.36±0.09-0.03±0.06-0.32±0.00-0.23±0.04-0.09±0.04 200 1000 3.34±0.70 3.08±0.71 0.26±0.13 3.50±0.92 3.08±0.60 0.43±0.89 500 1.68±0.63 1.43±0.25 0.26±0.39 1.92±0.18 1.68±0.49 0.23±0.40 50 1000 2.16±0.21 1.98±0.26 0.18±0.06 2.30±0.26 1.97±0.59 0.33±0.52 500 1.04±0.25 0.92±0.22 0.12±0.03 1.52±0.51 1.25±0.72 0.28±0.21 200 1000-0.30±0.12-0.24±0.05-0.07±0.07-0.23±0.01-0.20±0.02-0.03±0.04 500-0.40±0.04-0.31±0.01-0.08±0.04-0.37±0.10-0.29±0.04-0.08±0.12 50 1000-0.51±0.16-0.33±0.03-0.19±0.13-0.46±0.14-0.34±0.08-0.12±0.06 500-0.53±0.17-0.36±0.09-0.18±0.10-0.41±0.08-0.35±0.09-0.06±0.02 200 1000 1.97±0.36 1.59±0.23 0.38±0.31 1.50±0.26 1.16±0.32 0.33±0.33 500 0.96±0.13 0.85±0.22 0.11±0.09 1.04±0.05 0.99±0.09 0.05±0.10 50 1000 1.17±0.09 0.85±0.45 0.32±0.54 0.81±0.33 0.67±0.18 0.14±0.18 500 0.63±0.11 0.60±0.24 0.02±0.17 0.52±0.12 0.48±0.21 0.04±0.27 200 1000-0.27±0.06-0.23±0.02-0.03±0.08-0.21±0.05-0.21±0.03-0.00±0.04 500-0.28±0.05-0.17±0.11-0.11±0.13-0.21±0.04-0.17±0.01-0.04±0.04 50 1000-0.47±0.06-0.38±0.07-0.08±0.08-0.31±0.08-0.23±0.07-0.08±0.01 500-0.44±0.04-0.35±0.06-0.08±0.02-0.30±0.05-0.28±0.04-0.02±0.07 200 1000 1.91±0.24 1.87±0.06 0.04±0.19 2.21±0.40 2.02±0.29 0.19±0.12 500 0.82±0.04 0.66±0.08 0.15±0.04 0.92±0.30 0.77±0.37 0.15±0.08 50 1000 1.43±0.10 1.38±0.12 0.04±0.22 1.59±0.22 1.55±0.15 0.04±0.18 500 0.64±0.02 0.51±0.04 0.13±0.05 0.74±0.15 0.62±0.11 0.12±0.10 200 1000-0.19±0.04-0.17±0.03-0.02±0.06-0.29±0.04-0.22±0.09-0.07±0.05 500-0.24±0.04-0.17±0.04-0.07±0.05-0.32±0.02-0.27±0.02-0.05±0.02 50 1000-0.30±0.05-0.22±0.02-0.08±0.07-0.37±0.05-0.36±0.05-0.01±0.01 500-0.32±0.07-0.28±0.02-0.04±0.08-0.43±0.08-0.34±0.05-0.09±0.04 Z D/N: Day/Night. Y L: Light intensity (μmol m -2 s -1 ). X I: Initial CO 2 concentration (ppm). W Mean±SD, n=3. - 140 -
Fig. 7. CO 2 exchange rate on shoot and root for whole plants during day and night. 주간동안식물체지상부에서이산화탄소가흡수되는것뿐만아니라, 지하부에서도이산화탄소가흡수된다. 따라서, 주간에식물체지상부의이산화탄소흡수율과지하부의이산화탄소흡수율을비교한바, 지하부가전주의이산화탄소흡수율중약 20% 를차지하는것으로나타났다. 야간에도식물체지하부가식물전주의이산화탄소방출의약 20% 를차지하는것으로나타났다. 또한, 식물이주간에흡수하는이산화탄소양은야간에방출하는이산화탄소양보다큰값으로, 야간에방출되는이산화탄소의양은주간에흡수되는이산화탄소의양에비해약 20~40% 밖에미치지않은것으로나타났다. - 141 -
Table 3. Comparison of photosynthetic rate calculated from CO 2 concentration in gas-tighted chamber where the whole plant was held and measured by portable photosynthesis system at 50μmol m -2 s -1 light intensity, 500ppm CO 2 concentration. Plants Species Hederahelix Ficus benjamina Pachira aquatica Chamaedorea elegans Ficuselastica Medium Photosynthetic rate (μmolco 2 m -2 s -1 ) A value B value Sunshine 0.91 1.85 Hydroball 0.58 2.18 Sunshine 0.35 1.33 Hydroball 0.36 1.25 Sunshine 0.92 2.85 Hydroball 1.25 2.16 Sunshine 0.60 1.60 Hydroball 0.48 1.22 Sunshine 0.51 2.13 Hydroball 0.62 1.68 A value: photosynthetic rate calculated from the concentration in gas-tighted chamber where the whole plant was held. B value: phothsynthetic rate measured by portable photosynthesis system (Li-6400, Li Cor, USA). - 142 -
한편, 광 50μmol m -2 s -1 과 CO 2 농도 500ppm의조건에서휴대용광합성측정기로측정된광합성율과본실험에서계산된광합성율을비교한결과, 휴대용광합성측정기로측정된값이약 3배정도높았다 (Table 3). 그러나, 식물체의이산화탄소교환능력을조사하기위해서, 광합성측정기를이용할경우, 고가의장비와소모품이필요하고, 식물의단위엽면적에대한광합성율만을알수있다. 또한, 광합성측정기를이용하여식물전체의광합성율을구하려면, 한개체의많은잎들을반복적으로측정하여평균정도로계산할수있게된다. 모든잎을측정하기가어렵고한개체내에서도발육정도에따라각각의잎에서일어나는광합성능력이다르며측정부위나식물상태에따라서도광합성능력이다르므로식물전체의광합성율을알아내는데는많은문제점이있다. 또한측정된광합성율을엽면적으로곱하여식물전주에대한광합성율을계산한다고할지라도, 실제값에비해오차가매우크게나타나며, 실용화시상황에대한예측이불가능하다. 그러나본실험에서이용된것처럼챔버내에식물체를넣어이산화탄소변화량을측정하게되면고가의장비가없어도측정가능할뿐만아니라, 측정방법도간단하고몇번의반복측정만으로식물체에대한광합성율을간편하게구할수있고, 계속적인반복측정을통해오차값을줄이게되면, 식물체에대한광합성능력의일반화도할수있을것이다. 또한실제상황에대한예측이가능할뿐아니라, 측정이간편하고단시간에가능하며, 정확한값을구할수있을것이다. 따라서식물체의총광합성을실제환경에적용할수있게된다. 예를들면, 파키라의단위면적당광합성율은휴대용광합성측정기를이용할경우약 2.5μmolCO 2 m -2 s -1 이고, 챔버를이용할경우는약 1μmolCO 2 m -2 s -1 이다. 이를 4,000cm2의엽면적으로곱하게된다면, 휴대용광합성측정기를사용할경우는 10,000μmolCO 2 m -2 s -1 이고, 챔버를사용할경우는 4,000μmolCO 2 m - 2 s -1 이다. 두값의차는 6,000μmolCO 2 m -2 s -1 이된다. 이는파키라한주의광합성율에대한오차가커짐을알수있다. 밀폐형챔버에서 CO 2 변화량 (ppm) 을광합성속도 (μmolco 2 m -2 s -1 ) 로산출한것을토대로, 밀폐된실내공간에서식물을이용하여식 1을변형하여이산화탄소변화량을추정할수있을것이다. 앞선실험이나, 선행연구 (Choi 등, 1998; - 143 -
Choi 등, 1999) 에서식물의광합성율을기준으로실내공간의이산화탄소농도, 체적, 온도를광합성속도산출식에대입하고, 식물의엽면적을확인한다면, 광합성속도를산출한것의역으로감소된이산화탄소농도를구할수있다. 식 1, 2 를변형하면다음과같다. 1/0.631 mgco 2 dm -2 h -1 = 1 μmolco 2 m -2 s -1 [3] [ CO 2 ] x2 =[CO 2 ] x1-10 6 P 1 V ΔM 60 273+ T 273 22.4 44 L 100 [4] P : 광합성속도 (mgco 2 dm -2 h -1 ) [CO 2 ] x1 : 초기의 CO 2 농도 (ppm) [CO 2 ] x2 : 마지막의 CO 2 농도 (ppm) V : 생장상체적 (l) ΔM : 시간 (min) T : 측정시의온도 ( ) L : 엽면적 (cm 2 ) 예를들어, 가로3m 세로4m 높이2.5m인공간에실내온도가 23, 이산화탄소농도가 1,000ppm이있었다면, 30분동안감소율을알고자할때, 광합성율이약 3μmolCO 2 m -2 s -1 이고, 엽면적이약 5,000cm2인식물을실내공간의전체볼륨의약 10% 정도로배치한다고가정하고, 6개체의값을구한다면 1시간후의이산화탄소량은약 974ppm정도이다. 또다른예로, 동일한면적과환경조건에서이산화탄소가 1,000ppm인방을 500ppm으로만들고자한다면얼마만큼의시간이걸리는지알아본다면, 약 1,140 분의시간이걸리게된다. 이처럼, 실생활에적용할때실내공간의체적에따른식물의비율, 이산화탄소가제거되는시간, 정해진시간동안제거된이산화탄소량을계산할수있을것이다. 결과들을종합해볼때, 식물체당엽면적이넓은식물이많은이산화탄소의 - 144 -
감소율을나타내었으나, 광합성속도로값을산출하였을때는그결과가약간차이가있었다. 그러나, 식물들은엽수가적으나광합성이뛰어난잎보다광합성율이뛰어나지는못한다고할지라도많은수의잎으로광합성을하게되어, 최종적으로식물체전체의광합성의값을높이는것이목표일것이다. 결론적으로, 실내식물을구입시에엽면적이넓은식물을구입하며, 배지간에는큰차이가나지않으므로, 분진발생율도낮고, 야간에호흡율도낮은 hydroball 를사용함으로써야간이산화탄소발생율을낮출뿐만아니라, 주간에식물을창가에배치하여높은광을이용하여식물의광합성율을높이는것이좋을것이라생각된다. 또한, 실내공간의볼륨에따라서식물체의이용수를달리하고, 실내에존재하는고농도의이산화탄소를식물이흡수하여신선한산소를배출함으로실내오염물질의제거뿐만아니라쾌적한환경을조성하는데에도효과적일것이라판단된다. 앞으로밀폐챔버를이용하여식물의광합성율을계산하는것이비록간편하고저렴한방법이긴하지만, 실제생활에적용하기위해서밀폐된챔버에서만측정하여계산하기보다는실제공간에서좀더구체적이고정확한결과를얻기위해시뮬레이션이필요하다고생각된다. 초 록 밀폐된공간에서의실내식물전체주의주야간이산화탄소교환율을조사한후광합성율및호흡율을산출하고, 실내이산화탄소량을예측하고자하였다. 실내식물중헤데라 (Hedera helix L.), 벤자민고무나무 (Ficus benjamina L.), 파키라 (Pachira aquatica), 테이블야자 (Chamaedorea elegans), 인도고무나무 (Ficus elastica) 를대상으로피트모스배지와 hydroball배지에순화된식물을각각 1,000ppm과 500ppm의이산화탄소를밀폐된챔버에주입하고, 광은 50과 200μ mol m -2 s -1 두수준으로하여, 주간과야간의이산화탄소변화를측정하였다. 측정된이산화탄소의변화량을광합성속도 (μmolco 2 m -2 s -1 ) 로산출하였다. 모든품종에서주간에광도가높은 200μmol m -2 s -1 에서광합성율이높게나타났으며, 초기이산화탄소농도가 1,000ppm일때광합성율이높은것으로나 - 145 -
타났다. 조사된품종중에서파키라가배지간차이없이약 3.4μmolCO 2 m -2 s -1 로가장높게나타났으며, 헤데라가약 2.6μmolCO 2 m -2 s -1 으로높게나타났다. 또한, 주간의광도차이나이산화탄소농도는야간의호흡율에큰영향을미치지않은것으로나타났으며, 피트모스배지에순화된식물보다 hydroball 배지에순화된식물체가야간의호흡율이낮은것으로나타났다. 주간에식물체지상부의이산화탄소흡수율과지하부의이산화탄소흡수율을비교한바, 지하부가전주의이산화탄소흡수율중약 20% 를차지하는것으로나타났다. 야간에도식물체지하부가식물전주의이산화탄소방출의약 20% 를차지하는것으로나타났다. 한편, 가로3m 세로4m 높이2.5m인공간에서실내온도가 23, 이산화탄소농도가 1,000ppm이었던것이 500ppm으로되는데약 1,140분이걸리는것으로나타났다. 결과적으로, 챔버를이용하여식물체전주 (whole plant) 의광합성을측정할경우, 측정이간편하고고가장비의실험결과와별다른차이가없으며, 식물을이용한실내이산화탄소량의조절에대한실제예측이가능하다. 인용문헌 Bae, G.Y. and Y.B. Lee. 1996. Ethylene evolution in tomato plants by ozone in relation to leaf injury. J. Kor. Air Poll. Res. Assn. 12:333-340. Choi, J.I., J.H. Seon, K.Y. Paek, and T.J. Kim. 1998. Photosynthesis and stomatal conductance of eight foliage plant species as affected by photosynthetic photon flux density and temperature. J. Kor. Soc. Hort. Sci. 39:197-202. Choi, J.I., E.J. Hahn, and K.Y. Paek. 1999. Photosynthetic charavteristics and chlorophyll content of Hedera canariensis, Pachira aquatica, and Ficus benjamina in response to photosynthetic photon fluxes and CO 2 concentrations. J. Kor. Soc. Hort. Sci. 40:627-630. 池田耕一. 1992. 室內空氣汚染のメカニズム. 原出版社. 東京. 加藤榮, 宮地重遠, 村田吉男. 1981. 光合成硏究法. 共立出版株式會社. 東京. - 146 -
Kim, Y.S. 1993. A perspective on indoor air pollution. J. Kor. Air Poll. Res. Assn. 9:33-43. Han, S.W. 2001. Removal efficiency of indoor air pollutant gases using oriental orchids. PhD Diss., Seoul Woman's Univ., Seoul, Korea. Hong, J. 2000. Benzene and formaldehyde removal by indoor foliage plants. PhD Diss., Korea Univ., Seoul, Korea. Ministry of Environment. 1997. Environment white paper. Ministry of Environment. Park, S.H. and Y.B. Lee. 1997. Indoor CO 2 and NO 2 fixation in light-acclimatized foliage plants. J. Kor. Soc. Hort. Sci. 38:551-555. Robinson, J. and W.C. Nelson. 1995. National human activity pattern survey data base. U.S. EPA. Research Triangle Park, NC. Shiotsu, Mika and Ikeda, Koichi Yoshizawa. 1998. Survey on human activity patterns according to time and place: Basic research on the exposure dose to indoor air pollutants Part 1. Transactions of AIJ. 511:45-52. Son, K.C., S.H. Lee, S.G. Seo, and J.E. Song. 2000. Effects of foliage plants and potting soil on the absorption and adsorption of indoor air pollutants. J. Kor. Soc. Hort. Sci. 41:305-310. 少峯裕巳. 1992. 高氣密高斷熱住宅の空氣質に實態と基準の提案. 住宅水潗向上に伴う. 東京. 大政謙次, 近藤矩朗, 井上賴直. 1995. 植物の計測と診斷. 朝食書店. 東京. Traynor, G.W., J.R. Girman, M.G. Aote, and J.F. Dillworth. 1985. Indoor air pollution due to emissions from unvented gas-fired space heater. J. Air Poll. Cont. Assn. 33:9. Woleverton, B.C., A. Johnson., and K. Bounds. 1989. Interior landscape plant for indoor air pollution abatement. p.1-2. NASA Report. Woods, J.E. 1980. Environmental implications of conservation and solar space heating. Energy Research Institute, Oowa State Univ., Ames, Iowa, BEUL 80-3. Meeting of the New York Academy of Sciences, New York, January - 147 -
16. Yocom, J.M., W.A. Cote, and W. Clink. 1974. A study of indoor-outdoor air pollution relationship. Nat. air Poll. Cont. Adm. 1:35-40. Yoon, D.W. 1994. The characteristics of indoor air quality and improvement of air environment. J. Arch. Inst. Kor. March. 30-37. - 148 -
4. 광도, 광주기및주 야간온도가마그니휘커스선인장의일중 CO 2 교 환속도에미치는영향 이상덕 1 정승일 2 손기철 2* 1 경기도농업기술원고양선인장시험장, 2 건국대원예과학과 Effects of Light Intensity, Photoperiod, and Day/Night Temperature on Diurnal CO 2 Exchange Rate in Cacti Notocactus magnificus Sang Deok Lee 1, Seung Il Jung 2, and Ki Cheol Son 2* 1 Koyang Cactus Experiment Station, ARES., Koyang 411-450, Korea 2 Dept. of Horticultural Science, Konkuk Univ., Seoul 143-701, Korea ( * Corresponding author) Abstract. In order to investigate the proper diurnal environment to maximize the rate of CO 2 uptake through stomata in cactus during night period. Notocactus magnificus showing full-cam mechanism were chosen and the CO 2 exchange rate was determined according to light intensity, photoperiod, and day/night temperature conditions. CO 2 uptake rates during night period was determinately affected by the length of day period but not by day/night temperature under the light condition of 300μmol m -2 s -1. That is, CO2 uptake rate during night period increased as day length icreased under high light intensity. However, the rate differences according to day length were gradually disappeared as light intensity decreased. Additional key words: crassulacean acid metabolism, photosynthesis, CO 2-149 -
uptake rate, indoor air quality, indoor environment 서 언 현대도시인의경우하루 24시간중 90% 이상을다양한실내공간에서보내게되면서 (Shiotsu와 Ikeda, 1998), 자연에서느낄수있는정서적안정감을생활공간의주변에서추구하는경향이늘어나고있다. 따라서실내공간에식물의도입이필연적으로증가하고있다. 특히실내로의식물의도입은장식적인효과뿐만아니라다양한실내오염물질을흡수하여실내공기질을개선하는효과와원예치료적인효과도줄수있다 (Son 등, 1997). 그러나대부분의실내식물들은야간의경우광합성없이순수한호흡만을하는 C 3 식물이므로야간동안실내에이산화탄소를방출하게된다. 따라서실내에식물의도입이주간동안은실내공기질개선에효과적일수있으나, 야간동안은이산화탄소의증가로인해일반인들에게부정적인영향을미칠수도있다. 따라서, 실내식물의도입이급격히증가되고있는현재추세와야간 CO 2 증가로인한일반인들의우려를고려한다면 (personal communication), 야간의실내 CO 2 농도를감소시키는일환으로선인장과같은 CAM 식물을이용하는것도가능하다고판단된다. 한편, CAM 형광합성을나타내는선인장이라할지라도품종에따라흡수 / 방출형태및량이서로달라, full-cam 형, week-cam 형, 그리고 non-cam 형선인장으로분류되어지며 (Neales와 Hew, 1975), 조사된선인장중비화옥 (Gymnocalycium baldianum) 과변경주 (Carnegia gigantea) 는가장전형적인 full-cam 형선인장인것으로밝혀졌다 (Lee 등, 2003a). 두종모두주간의광강도가 300μmol m -2 s -1 이상일때야간 CO 2 흡수량이최대를나타내었다. 두종모두야간 CO 2 흡수량을증대시키기위한환경은주간에는강광과장일, 그리고야간의온도는지나치게떨어지지않는것이좋은것으로나타났다 (Lee 등, 2003b). 그러나, 계절에따른주야간의변화에따른선인장의야간 CO 2 흡수량에대한보고는없었다. 또한, CAM 식물의 CO 2 흡수형태는주간의일장 (Brulfert 등, 1982) 과계절 - 150 -
(Guralnick 등, 1984) 등에의해서조절되어질뿐만아니라, 수분상태, 주 야간온도등의환경조건과엽령, 질소영양조건등도 CAM 형광합성에영향을미치는것으로보고되고있다 (Ota, 1987). 따라서, 본연구는주 야간의환경조건이 full-cam형이며, 상품성이뛰어난마그니휘크스선인장 (Notocactus magnificus Ritt.) 의야간 CO 2 흡수량에미치는광도, 광주기, 주야간온도의영향을밝혀, 선인장을이용한실내야간 CO 2 농도감소를위한최적조건을구명하고자실시하였다. 재료및방법 실험재료실험에사용한식물은선행연구에서 full-cam 형광합성을수행하는것으로밝혀진마그니휘커스 (Notocactus magnificus Ritt.) 를이용하였다 (Lee 등, 2003a). 식물재료는왕사와완숙돈분을 1:1의비율로섞어 11cm 토분에재식하였고, 200 μmol m -2 s -1 광도, 23-25 온도, 40-60% 습도, 16/8hrs (day/night) 광주기로유지되는환경제어실에서 1개월이상순화하였다. 식물재료는 2주마다 300mL씩상면관수하였다. 환경변화에따른일중 CO 2 교환속도의변화를알아보기위하여, Lee 등 (2003) 에의해개발된식물체 CO 2 교환측정장치를이용하여측정하였다. 측정시식물없이같은종류의용토만담긴분을챔버에넣어대조구로하고, 측정후표면적당 CO 2 흡수율을산출할때대조구의 CO 2 흡수량을차감하였다. 각처리는 3개체를측정하였으며, 평균값을이용하여그래프로작성하였다. 측정후광합성속도의산출은 Katou 등 (1981) 과 Oomasa 등 (1992) 이제시한엽면적을이용한광합성속도산출식 (1) 을이용하였다. p = Cr- Cs 10 F 60 273 6 273+ T 44 22.4 100 L ----------------- (1) p: 광합성속도 (mg CO 2 dm -2 h -1 ), C r : 입구의 CO 2 농도 (ppm), C s : 출구의 CO 2 농도 (ppm), - 151 -
F: 유량 (ml/min), T: 측정시의온도 ( ), L: 엽면적 (cm 2 ) 1 mg CO 2 dm -2 h -1 = 0.63 μmol CO 2 m -2 s -1 환경변화에따른일중 CO 2 교환속도측정방법주간의광도변화에따른 CAM 식물의일중 CO 2 교환속도변화를알아보고자주간의광도를 300, 100, 50μmol m -2 s -1 (Metal halide lamp 400W) 으로달리하여 CAM 식물의일중 CO 2 교환속도의변화를측정하였다. 이때각광도처리에대하여광주기를 16/8, 8/16hrs (D/N) 로달리하여 CAM 식물의일중 CO 2 교환속도의변화를알아보았다. 또한각처리마다주 야간의온도를각각 30/25, 25/20 (D/N) 로달리하여 CAM 식물의일중 CO 2 교환속도의변화를알아보았다. 결과및고찰 이전실험의경우, 변경주 (Carnegia gigantea) 와비화옥 (Gymnocalycium baldianum) 두종모두주간의광강도가 300μmol m -2 s -1 이상일때야간 CO 2 흡수량이최대를나타내었다 (Lee 등, 2003b). 또한, 주간동안저광 50μmol m - 2 s -1 로조사시 5시간정도고광 600μmol m -2 s -1 로광도를높여주면저광그대로유지하는것보다야간의최대 CO 2 흡수치가각각 10배 ( 변경주 ) 및 1.5배 ( 비화옥 ) 정도증가하였다. 그리고광주기의경우 16/8hrs (D/N) 가 12/12hrs (D/N) 보다최대야간 CO 2 흡수속도는더높았으나, 총흡수량으로볼때는 12/12hrs (D/N) 이더효율적이었다. 또주 야의온도는 30/10 (D/N) 일때보다 30/20 (D/N) 일때야간 CO 2 흡수속도가증가되었다. 따라서, 선인장의야간 CO 2 흡수량을증대시키기위한환경은주간에는강광과장일, 그리고야간의온도는지나치게떨어지지않는것이좋은것으로나타났다. 그러나, 이실험은각각의처리에대한두선인장의반응을조사하였을뿐복합적인환경하에서의선인장의 CO 2 교환율을조사한것은아니었다. 본실험에서는마그니휘커스를선정하여광도, 광주기, 온도변화를복합적으로처리하였을때선인장의반응을살펴본바그결과는다음과같았다. 광도가높 - 152 -
을수록, 광주기가길수록, 그리고주야간온도는 25/20 일때야간의최대 CO 2 흡수치가높은것으로나타났다. 즉, 광도가낮아질수록야간의최대 CO 2 흡수치가감소되며, 특히 50μmol m -2 s -1 의경우는 300μmol m -2 s -1 광조사시보다최대 CO 2 흡수치가확연히감소된것으로나타났다. 이러한현상은광주기가 8/16일때보다 16/8일때더뚜렷하였다. 이러한결과로보아, 야간의 CO 2 흡수율은고광도 (300μmol m -2 s -1 ) 하에서는주간의광주기에결정적인영향을받지만, 저광도로갈수록주간의광주기가큰영향을미치지못하는것으로판단된다. 특히, 50μmol m -2 s -1 와같은저광도하에서는주간의광주기가짧을경우야간의 CO 2 흡수가거의일어나지않는것으로나타났다. 그러나광도가 600μ mol m -2 s -1 경우에는광주기에따른야간의총광합성량의차이가없는것으로보아 (Lee 등, 2003b), 야간최대이산화탄소흡수를위한주간의광도 X 광주기의어떤기준치가식물종에따라존재하는것으로판단된다. 한편광도의감소에따라 CO 2 흡수패턴이약간변화하였는데광도가낮아질수록야간의 CO 2 흡수시기가늦어지는경향을나타내었다. 광주기는길수록야간의최대 CO 2 흡수치가높은것으로나타났다. 그러나광도가 50μmol m -2 s -1 경우 16/8의광주기보다광도가 100μmol m -2 s -1 이면서광주기가 8/16일때가야간의최대 CO 2 흡수치가더높았다. 온도의경우모든처리에서 30/25 보다 25/20 일경우에야간의최대 CO 2 흡수치가더높았다. 한편전체적으로볼때, 처리된각광도별로비교해보면모든광도처리에서주야간 30/25 보다는 25/20에서야간의총 CO 2 흡수량이많은것으로나타났다. 결과적으로볼때, 마그니휘크스를이용해야간 CO 2 흡수율을최대로하기위해서는주간의광도를높이고, 광주기를늘이는것이중요하며, 실내온도는큰영향을미치지않은것으로나타났다. - 153 -
초 록 본연구는선인장의야간 CO 2 흡수량을최대로하기위한주 야간의최적환경조건을구명하고자, full-cam형선인장인마그니휘크스 (Notocactus magnificus Ritt.) 를선정하여광도, 일장, 주야온도변화에따른선인장의 CO 2 교환속도를측정하였다. 주간의광강도가 300μmol m -2 s -1 일때주간의광주기 (16/8h, 8/16h) 가야간 CO 2 흡수량에결정적인영향을미치는반면, 주야간의온도는큰영향을미치지못하는것으로나타났다. 즉, 주간의광주기가길수록야간의 CO2 흡수율이증가되었다. 그러나, 광도가감소될수록주간의광주기에따른야간의 CO2흡수율차이는점점더없는것으로나타났다. 추가주요어 : CAM, 광합성, CO 2 흡수율, 실내공기질, 실내환경 인용문헌 Brulfert, J., M. Muller, M. Kluge, and O. Queiroz. 1982. Photoperiodism and crassulacean acid metabolism. Planta 154:326-331. Guralink, L.J., P.A. Rorabaugh, and Z. Hanscom. 1984. Seasonal shifts of photosynthesis in Portulacatia afra (L.) Jacq. Plant Physiol. 76:643-646. Lee, S.D., S.I. Jung, S.H. Kim, M.J. Kim, Y.J. Kim, K. Namkung, and K.C. Son. 2003a. Comparison of diurnal CO 2 exchange patterns in various cacti by using CO 2 exchange analysis system of the whole plant. J. Kor. Soc. Hort. Sci. 44:767-773. Lee, S.D., S.I. Jung, S.H. Kim, M.J. Kim, S.H. Kim, P.G. Kim, S.J. Kim, K.C. Son. 2003b. Effects of light intensity, photoperiod, and night temperature on diurnal CO 2 exchange rate in cacti. 44:774-779. Katou, S., S.T. Miyachi, and Y.O. Murata. 1981. The method of photosynthesis study. Kyouritsu publishing corporation. Tokyo. Oomasa, K.J., N.A. Kondou, and Y.N. Ieue. 1992. The measurement and - 154 -
diagnosis of plants. Chyousou corporation. Tokyo. Ota, K. 1987. What is CAM-type photosynthesis? Biological Sci. 39:192-199. Shiotsu, Mika and Ikeda, Koichi Yoshizawa. 1998. Survey on human activity patterns according to time and place: Basic research on the exposure dose to indoor air pollutants Part 1. Transactions of AIJ. 511:45-52. Son, K.C., S.K. Park, H.O. Boo, K.Y. Paek, K.Y. Bae, S.H. Lee, and B.G. Huh. 1997. Horticultural therapy, p. 63-95. Sewon press, Seoul. - 155 -
CO 2 uptake rate (µmol CO. 2 m -2. s -1 ) 5 4 3 2 1 300 µmol. m -2. s -1 16/8h (day/night) 30/25 o C (day/night) 300 µmol. m -2. s -1 16/8h (day/night) 25/20 o C (day/night) 300 µmol. m -2. s -1 8/16h (day/night) 30/25 o C (day/night) 300 µmol. m -2. s -1 8/16h (day/night) 25/20 o C (day/night) 0-1 CO 2 uptake rate (µmol CO. 2 m -2. s -1 ) 5 4 3 2 1 100 µmol. m -2. s -1 16/8h (day/night) 30/25 o C (day/night) 100 µmol. m -2. s -1 16/8h (day/night) 25/20 o C (day/night) 100 µmol. m -2. s -1 8/16h (day/night) 30/25 o C (day/night) 100 µmol. m -2. s -1 8/16h (day/night) 25/20 o C (day/night) 0-1 CO 2 uptake rate (µmol CO. 2 m -2. s -1 ) 5 4 3 2 1 50 µmol. m -2. s -1 16/8h (day/night) 30/25 o C (day/night) 50 µmol. m -2. s -1 16/8h (day/night) 25/20 o C (day/night) 50 µmol. m -2. s -1 8/16h (day/night) 30/25 o C (day/night) 50 µmol. m -2. s -1 8/16h (day/night) 25/20 o C (day/night) 0-1 0 4 8 12 16 20 24 4 0 4 8 12 16 20 24 4 0 4 8 12 16 20 24 4 0 4 8 12 16 20 24 4 Time (h) Time (h) Time (h) Time (h) Fig. 1. Effects of light intensity, photoperiod, and day/night temperature on the rate of diurnal CO2 exchange in Notocactus magnificus. Bar (-) indicates night period. 35 300 µmol. m -2. s -1 8/16h (day/night) Temperature ( o C) 30 25 20 300 µmol. m -2. s -1 16/8h (day/night) 30/25 o C (day/night) 300 µmol. m -2. s -1 16/8h (day/night) 25/20 o C (day/night) 300 µmol. m -2. s -1 8/16h (day/night) 30/25 o C (day/night) 25/20 o C (day/night) 15 35 100 µmol. m -2. s -1 8/16h (day/night) Temperature ( o C) 30 25 20 100 µmol. m -2. s -1 16/8h (day/night) 30/25 o C (day/night) 100 µmol. m -2. s -1 16/8h (day/night) 25/20 o C (day/night) 100 µmol. m -2. s -1 8/16h (day/night) 30/25 o C (day/night) 25/20 o C (day/night) Temperature ( o C) 15 35 30 25 20 15 50 µmol. m -2. s -1 16/8h (day/night) 30/25 o C (day/night) 0 4 8 12 16 20 24 4 Time (h) 50 µmol. m -2. s -1 16/8h (day/night) 25/20 o C (day/night) 0 4 8 12 16 20 24 4 50 µmol. m -2. s -1 8/16h (day/night) 30/25 o C (day/night) 0 4 8 12 16 20 24 4 50 µmol. m -2. s -1 8/16h (day/night) 25/20 o C (day/night) 0 4 8 12 16 20 24 4 Time (h) Time (h) Time (h) Fig. 2. Effects of light intensity, photoperiod, and day/night temperature on temperature changes in the closed chamber in Notocactus magnificus. Bar (-) indicates night period. - 156 -
Relative humidity (%) 60 50 40 30 20 300 µmol. m -2. s -1 16/8h (day/night) 30/25 o C (day/night) 300 µmol. m -2. s -1 16/8h (day/night) 25/20 o C (day/night) 300 µmol. m -2. s -1 8/16h (day/night) 30/25 o C (day/night) 300 µmol. m -2. s -1 8/16h (day/night) 25/20 o C (day/night) 10 Relative humidity (%) 60 50 40 30 20 100 µmol. m -2. s -1 16/8h (day/night) 30/25 o C (day/night) 100 µmol. m -2. s -1 16/8h (day/night) 25/20 o C (day/night) 100 µmol. m -2. s -1 8/16h (day/night) 30/25 o C (day/night) 100 µmol. m -2. s -1 8/16h (day/night) 25/20 o C (day/night) 10 Relative humidity (%) 60 50 40 30 20 50 µmol. m -2. s -1 16/8h (day/night) 30/25 o C (day/night) 50 µmol. m -2. s -1 16/8h (day/night) 25/20 o C (day/night) 50 µmol. m -2. s -1 8/16h (day/night) 30/25 o C (day/night) 50 µmol. m -2. s -1 8/16h (day/night) 25/20 o C (day/night) 10 0 4 8 12 16 20 24 4 Time (h) 0 4 8 12 16 20 24 4 0 4 8 12 16 20 24 4 0 4 8 12 16 20 24 4 Time (h) Time (h) Time (h) Fig. 3. Effects of light intensity, photoperiod, and day/night temperature on diurnal relative humidity change in Notocactus magnificus. Bar (-) indicates night period. - 157 -
3 절. 오존지표식물의선정과오존정화능조사 1. 오존처리시간에따른실내식물의감수성과생리적반응 정승일 1 김민지 1 손기철 1* 김판기 2 이재천 3 1 건국대원예과학과, 2 서울대학교기초과학연구원, 3 임업연구원임목육종부 1)Effects of Ozone Exposure Time on Physiological Responses and Sensitivity of Indoor Plants Seung-Il Jung 1 Min-Ji Kim 1 Ki-Cheol Son 1* Pan-Gi Kim 2 Jae-Cheon Lee 3 1 Dept. of Horticultural Science, Konkuk Univ., Seoul 143-701, Korea 2 Research Institute of Basic Science, Seoul National Univ., Seoul 151-742, Korea 3 Dept. of Tree Breeding, Korea Forest Research Institute, Suwon 441-350, Korea (*Corresponding author) Abstract. This study was conducted to investigate the physiological responses and sensitivity of indoor plants exposed to ozone. For experiment, Cissus rhombifolia Vahl, Hedera helix L., Spathiphyllum wallisii Regel, Syngonium podophyllum Schott ꡐAlbo-Virensꡑ, Dieffenbachia sp.ꡐmarrianneꡑ, Ficus benjamina L.ꡐHawaiiꡑ, Pachira aquatica Aubl., and Scindapsus aureus Engler were selected and placed in walk-in-type growth chamber. They were exposed to 120ppb ozone for 2, 4, 8 hrs/day for 25 days. Only Cissus rhombifolia among 8 foliage plants, showed visible foliar injuries in few days after experimentation, in which the more ozone exposure time was prolonged, This subject is supported by Ministry of Environment as "The Eco-technopia 21 project". - 158 -
the more destruction and distortion of mesophyll tissue and closure of stomata were severe. Unexpectedly, chlorophyll contents and chlorophyll fluorescence (Fv/Fm) were higher in some foliage plants ozone exposed, instead of control group. In general, it was found that apparent quantum yield was high in control and 2 hrs/day ozone exposed group and low in 8 hrs/day ozone exposed group, and CO 2 fixation efficiency was high in 2 hrs/day ozone exposed group and low in 8 hrs/day exposed group, regardless of species. Especially Cissus rhombifolia, Dieffenbachia sp.ꡐmarrianneꡑ, Pachira aquatica, and Scindapsus aureus among foliage plants exposed by ozone showed a significant reduction in photosynthetic rate as compared to control group. These data indicated that 2 hrs/day ozone exposure rather stimulated physiological activities of plants than inhibited in some species, but, generally speaking, activities of photochemistry system and CO 2 fixation system of photosynthesis decreased in all plants with the increase of exposure time per day. According to these results, it was considered that Cissus rhombifolia, Dieffenbachia sp. ꡐMarrianneꡑ, Scindapsus aureus belonged to ozone sensitive species because of visible foliar injuries and significant reduction of physiological activities by 4 or 8 hrs/day ozone exposure, but Spathiphyllum wallisii, Hedera helix, Ficus benjamina belonged to ozone tolerant species because of physiological activities similar to those of control, despite of ozone exposure. Additional key words: visible foliar injuries, apparent quantum yield, CO 2 fixation efficiency, chlorophyll contents, chlorophyll fluorescence (Fv/Fm), ozone sensitive species, ozone tolerant species. - 159 -
서 언 인구가집중된도시지역에는산업활동과자동차사용의급격한증가, 에너지이용형태의변화등으로질소산화물, 탄화수소류, 휘발성유기화합물및분진등과같은도시형대기오염물질이증가하여인체에나쁜영향을미치고있다. 이중오존 (ozone, O 3 ) 은연소과정에서대기중으로배출된질소산화물과휘발성유기화합물질이공존하거나, 또는질소산화물만존재시햇빛에의한광화학반응으로생성되는 2차오염물질이다 (Park 등, 2003). 한편, 실내에서의오존은사무실에서보편적으로사용하는복사기, 팩시밀리, 레이저프린터등고전압의전류를사용하는사무용기구와공기청정기등에서발생된다 (Allen 등, 1978). 오존은강한산화력으로플라스틱, 금속, 섬유, 고무제품을부식시키고 (Boubel 등, 1994), 저농도에서도인체에유해한영향을줄수있으며, 농작물의생산량을감소시키고, 수목의활력에피해를준다고알려져있다 (Skelly, 1980). 오존에대한식물의생리적반응에대한연구를살펴보면, 덩굴식물에 100ppb 의오존을하루 8시간씩 2주간처리한결과엽록소 a의함량이민감하게변화하였고, superoxide dismutase (SOD) 활성이증가하였으며 (Park 등, 2002), 동양란에 300ppb의오존을하루 8시간씩 7일간처리하였을때광합성, 기공전도도, 증산량이감소되어수분이용효율이감소하고, 에틸렌발생으로막투과성이변화되었다 (Han과 Lee, 2002). 또 100ppb의오존을하루 8시간씩 5주간처리할경우자작나무류의생장을감소시키며 (Lee 등, 2002), 강낭콩 14품종에 150ppb의오존을 3.5시간처리한결과대부분의품종에서엽록소함량과 chlorophyll fluorescence(fv/fm) 가감소하였다 (Guidi 등, 2000). 최근식물이광합성, 호흡, 증산등의가스교환시잎의기공을통해오염물질을흡수하여대기환경을정화시키는효과가보고됨에따라 (Sehemel, 1980), 실내에서발생하는다양한오염물질을제거하기위해식물을이용하는방법에대한연구가진행되고있다 (Han과 Lee, 2002; Hong, 2000; Park 등, 1998; Son 등, 2000; Woleverton, 1989). 그중실내오존에의한식물의피해반응과정화효과에대한연구도극소수이루어졌다 (Han과 Lee, 2002; Park 등, 1998). 그러나실내 - 160 -
식물의오존정화효과에대한연구의실용화를위해서는실내식물의오존에대한감수성과생리적반응에대한연구가선행되어야하며, 이에따른연구는매우미진한실정이다. 따라서, 본연구는실내에서많이이용하는실내식물을대상으로저농도의오존을일중처리시간을달리하여장기간처리함으로서, 오존에대한식물의생리적반응과, 동시에오존감수성을구명하고자실시하였다. 재료및방법 식물재료실내식물은 호텔, 고층빌딩, 가정에서 많이 이용하는 식물 (Kang 등, 1990; Park과 Shim, 1989) 중에서선정하였다. 일반적으로실내에서많이사용하고있 는 시서스 (Cissus rhombifolia Vahl), 헤데라 (Hedera helix L.), 스파티필름 (Spathiphyllum wallisii Regel), 싱고니움 (Syngonium podophyllum Schott ꡐ Albo-Virensꡑ), 디펜바키아 마리안느 (Dieffenbachia sp. ꡐMarrianneꡑ), 벤자민 고무나무 (Ficus benjamina L.ꡐHawaiiꡑ), 파키라 (Pachira aquatica Aubl.), 스킨답 서스 (Scindapsus aureus Engler) 로하였다. 식물들은경기도에위치한농가에서일괄구입하여분갈이한후, 건국대학교 농과대학 유리온실에서 순화과정을 거쳤다. 이 때 사용된 용토는 Sunshine mixed #1 (SunGro Inc., USA) 이었으며, 화분은직경 12 혹은 18cm(3치혹은 6 치 ) 것을이용하였다. 4주마다 200ppm의액비 (Technigro 24:7:15, SunGro Inc., USA) 로시비하였고, 관수는 5일에한번씩상면관수하였다. 오존처리임업연구원임목육종부환경제어실의 walk-in type인인공광챔버내에서실시하였다. 오존은대기중공기의산소를이용하여 ozone generator (Model H450, Harim Engineering, Inc., Korea) 에서 corona discharge 방식에의하여발생시킨후, 활성탄과 Furafil R 이혼합된 zero air system (Model 701, API, Inc., USA) 을통과한공기와혼합하여, gas exposing system (Model H800, Harim - 161 -
Engineering, Inc., Korea) 에의하여챔버에보내게된다. 설정된농도가유지될수있도록 Pulse Width Modulated (PWM) 방식을이용하여컴퓨터로자동제어되었으며, 챔버내의오존농도는 photometric O 3 analyzer (Model 400, API, Inc., USA) 에의하여측정되었다 (Lee 등, 2001). 오존처리는대기중오존을제거한대조구와우리나라오존주의보발령기준이며 1시간평균실내기준치인 120ppb 처리구 (Botkin 과 Keller, 2001) 로나누어하루 2시간 ( 오후 1시부터 3시까지 ), 4시간 ( 오전12시부터오후4시까지 ), 8시간 ( 오전 10시부터오후6시까지 ) 씩 25일동안연속적으로처리하였다. 각처리구마다 3 반복하였고, 처리기간동안챔버내환경은 300μmol m -2 s -1 광도와 13/11hrs (day/night) 광주기, 60±10% 습도, 25±3 온도로유지되었다. 생리적반응측정가시피해현상및해부학적엽단면관찰 : 오존처리기간동안정해진잎의피해상황을연속적으로사진촬영 (C-4000 ZOOM, Olympus, USA) 하였다. 또한, 해부학적엽단면관찰은 10 10 mm 이하의크기로자른엽조직을 FAA용액으로 24시간이상고정시킨후, N-Butanol을이용하여 8시간간격으로 8차례의탈수과정을통해탈수시킨후 58-60 오븐에서 xylene과 paraffin으로포매하였다. 포매한조직은 microtome으로 8μm 두께로자르고, xylene으로 paraffin을제거한후, safranin과 fastgreen으로이원염색하여광학현미경 (CH-2, Olympus, USA) 으로관찰하였다. 엽록소함량측정 : 엽록소함량을측정하기위하여가시피해가나타나지않은잎의엽맥이포함되지않은부분에서 1 cm 2 의크기로샘플을채취하였다. 채취한샘플을 100% 의 DMSO(dimethyl sulfoxide) 10 ml에담아 65 의항온오븐에 3시간동안두어색소를추출하였다 (Hiscox와 Israelstam, 1979). 추출용액의흡광도는 663 nm와 645 nm의파장에서분광광도계 (UV-spectrophotometer, Shimadzu-1600, Japan) 로측정하였으며, Arnon(1949) 의방법으로엽면적당엽록소 a, b의함량을산출하였다. 측정된값은추출시사용한용액의양과엽면적으로보정하여계산하였다. - 162 -
Chlorophyll fluorescence측정 : 시서스, 헤데라, 스파티필름, 싱고니움의대조구와 2, 4, 8시간처리구의 chlorophyll fluorescence를측정하였다. Chlorophyll fluorescence 측정은 25일간오존처리후암기가지난다음명기동안실시하였으며, 측정잎을약 20분간암상태로유지한다음 chlorophyll fluorometer(os5-fl Modulated Fluorometer, Opti-Sciences, USA) 를이용하여측정하였다. 이때최대변이형광 (Fv) 은최대형광 (Fm) 에서초기형광 (Fo) 을뺀값이며, Fv/Fm은광화학반응의최대양자수율을의미한다. 광합성측정 : 휴대용광합성측정기 (Li-6400, LiCor, USA) 를이용하여오존처리후광도및엽육내 CO 2 농도에따른광합성반응 (light response curve, A-Ci curve) 을조사하였다. 광도변화에따른광합성반응은광합성측정기의 leaf chamber에유입되는공기의유량을 250μmol s -1, CO 2 농도 400μmolCO 2 mol -1, 온도 25 조건에서측정되었고, 이때광도는 PPFD 0, 25, 50, 75, 100, 150, 300, 600μmol m -2 s -1 의수준으로조절하였다. 광도별광합성을측정하여광-광합성곡선 (light response curve) 을작성하였고, 이것을이용하여광보상점, 광포화점, 순양자수율 (apparent quantum yield), 호흡률, 광합성률을산출하였다 (Kim 등, 2001; Kim과 Lee, 2001). 엽육내 CO 2 농도에따른광합성반응은광도 PPFD 700μmol m -2 s -1 에서측정되었으며, 다른조건은광도변화에따른광합성반응조사와동일하게하였다. Leaf chamber에유입되는공기의 CO 2 농도는 0, 50, 100, 200, 400, 700, 1000μmolCO 2 mol -1 의수준으로하였다. 측정된결과를이용하여엽육내 CO 2 농도에따른광합성반응 (A-Ci curve) 을작성하고, CO 2 보상점, 광호흡, 최대광합성률, 탄소고정효율 (carboxylation efficiency) 을산출하였다 (Kim 등, 2001; Kim 과 Lee, 2001). 분석방법 측정결과는오존처리에따른종별, 처리시간별유의성을알아보기위하여 ANOVA(SAS Institude, Cary, N.C.) 를이용하여통계처리하였다. - 163 -
결과및고찰 가시피해현상과해부학적엽단면관찰오존에의한가시피해로잎표면의괴사, 황백화현상등이보고되고있으며 (Davis와 Coppolono, 1976; Keen과 Taylor, 1975), 잎의가시피해율은오존의농도가증가할수록점차증가하며, 잎피해증상은종에따라다르다 (Lee 등, 2002). 이러한현상은오존에대한각종의민감성차이때문이다 (Adams 등, 1988). 따라서가시피해율은오존에대한종별감수성의차이를확인하는데유용하게이용할수있다 (Lee 등, 2002). 8 종의실내식물중에서시서스에서만갈색의반점이나타났으며오존 8시간처리구의경우오존처리 4일후부터갈색의반점이나타났으며, 오존처리 14일후부터반점의색이점점더진해지면서, 오존처리 20일후부터반점의피해면적이넓어져엽면전체에나타나면서괴사하기시작했다. 오존 4시간처리구와오존 2시간처리구는각각오존처리 6일후와 9일후부터갈색반점나타났다 (Fig. 1). 따라서본실험에서조사된 8종의실내식물중시서스는오존에매우민감한종이라고생각되며, 오존 8시간처리구의가시피해가가장심한것으로보아오존에노출된시간이길수록가시피해율이증가하는것으로판단된다. 또한, Hur 등 (1995) 은오존지표식물인시금치 (Spinacia oleracea), 나팔꽃 (Ipomoea purpurea), 담배 (Nicotina tabacum) 등에 150ppb 오존을연속처리할경우각각 192시간, 48시간, 24에서 48시간후에가시피해가나타났다고보고하였고, 아왜나무 (Viburnum awabuki) 의경우 0.5, 1.0, 2.0ppm 오존에노출되었을때각각 10, 8, 4시간후에가시피해가발생했다는보고가있다 (Her 등, 1999). 그러나시서스의경우오존처리 32시간후가시피해가나타났으며, 특히 120ppb 농도로하루중 8시간씩간헐적으로처리한것을감안한다면, 선행된연구보다오존에대해더민감하게가시피해가나타난것으로생각된다. 따라서시서스는실내오존지표식물로써이용이가능할것으로생각된다. 가시피해가나타난시서스의엽단면을관찰한결과대체적으로오존처리시간이길수록조직내엽육세포의형태가수축 변형되었으며, 기공이닫힌모습을관찰할수있었다 (Fig. 2). 특히, 오존 8시간처리구를살펴보면, 잎뒷면의표피 - 164 -
조직과엽육조직의피해가두드러지게나타났다 (Fig. 3). 이는엽육조직의파괴 가잎의가시피해와직결되며엽내오존축척과밀접한상관이있다는보고와 일치하였다 (Evans 등, 1996). 엽록소함량변화오존처리후엽록소함량 (a, b, a+b) 과엽록소 a/b의변화는종별차이는있었으나, 오존처리시간별차이는없었다 (Table 1). 그러나엽록소 a 함량은스파티필름, 벤자민고무나무, 스킨답서스의경우대조구보다오존 8시간처리구에서더많거나같았으며, 오존 2시간처리구에서가장낮았다. 디펜바키아마리안느의엽록소 a 함량은대조구보다오존 2시간처리구에서많았고, 나머지종들은대조구보다오존처리구에서더낮았다. 엽록소 b 함량은벤자민고무나무와스킨답서스에서대조구에비해오존 8시간처리구에서많았고, 오존 2시간처리구에서가장낮았다. 디펜바키아마리안느의경우는오존 2시간처리구에서가장많았고나머지종들은엽록소 a와마찬가지로대조구보다오존처리구에서더낮았다. 따라서대부분의종에서엽록소 a+b는대조구에서가장높았고, 오존 8시간처리구에서가장낮았다. 그러나특이하게도헤데라의경우는오존 8시간처리구에서가장높았고, 오존 4시간처리구에서가장낮았다. 대부분의종에서엽록소 a/b는대조구에서가장높았고오존 8시간처리구에서가장낮았으며, 벤자민고무나무와스킨답서스는오존 8시간처리구에서가장높았다. 이는 Park 등 (2002) 이덩굴식물에 100ppb의오존을처리하였을때, 몇종에서엽록소의함량이증가하였다는보고와유사하다. 그러나 Han과 Lee(2002) 는동양란에 300ppb 오존을하루 8시간씩 7일간처리하였을때, 엽록소함량이감소하였고, Her 등 (1999) 은실내에서이용하는자생식물에 0.5, 1.0, 2.0ppm의오존을처리했을때, 엽록소함량이감소하였다고보고하였다. 이처럼선행연구들의결과와차이가있는것은본실험이저농도의오존을간헐적으로 25일간장기처리하였기때문으로생각된다. 또한, 오존에대한가시피해의지표로잎의엽록소함량조사가유효한방법이 - 165 -
라는보고가있다 (Davis와 Coppolono, 1976). 그러나본연구에서는대부분의종에서가시피해가나타나지않아, 저농도의일중간헐적처리와고농도의연속처리는식물체의오존피해복구기작이다른것으로판단된다. 이러한가정을증명하기위해서는처리기간중의계속적인생리적반응의변화를조사해볼필요성이있다고판단된다. Chlorophyll fluorescence Chlorophyll fluorescence(fv/fm) 의감소는엽록체의광수확복합체 (light harvesting complex) 가오존에의해피해받았음을의미하며, 특히가시피해로인한광수확복합체의기능저하는광합성을위한광의이용능력을감소시킨다고하였다 (Guidi 등, 2000). Chlorophyll fluorescence (Fv/Fm) 의측정결과, 종별, 시간별모두유의한차이는없었다 (Table 1). 스파티필름과싱고니움의경우하루중 2시간씩오존을장기간처리할경우 chlorophyll fluorescence(fv/fm) 가증가하여엽록체의광수확복합체의활성이증가되고, 헤데라에서는오존처리시간이길수록 chlorophyll fluorescence(fv/fm) 가감소하였다. 이는 Triticum aestivum에 200nmol mol -1 농도의오존을 16시간동안처리하였을때대조구보다 chlorophyll fluorescence(fv/fm) 가약간증가하였고, 400nmol mol -1 로 8시간, 16 시간처리하였을때대조구보다감소하였다는보고와유사하다 (Farage 등, 1991). 따라서오존에의한엽록체의광수확복합체의피해는종별, 오존처리시간별, 오존처리농도별로다르게나타난다고생각된다. 광-광합성곡선 (light response curve) 오존처리시간에따른광합성광화학계의변화를알아보고자광도에따른광- 광합성곡선 (light response curve) 을작성하였다 (Fig. 4). 광-광합성곡선의낮은광도영역에서는광도에비례하여광합성이직선적으로증가하는데, 이단계즉순양자수율은약광에서의광합성능력을나타내는지표가되고, 빛에너지를화학에너지로전환시키는광화학계의활성을나타낸다 (Evans, 1987; Kim 등, 2001). 이영역의광합성은스파티필름과스킨답서스의경우는대조구에서, 대부분의종에서는오존 2시간처리구에서가장높았고, 오존 8시간처리구에서가 - 166 -
장낮았다. 또광도가증가하여도더이상광합성이증가하지않는영역에서광합성을결정하는요인은광도가아니라빛에너지를이용하여 CO 2 를고정하는암반응과관련된효소의활성이다. 이영역에서는대부분의종에서대조구의광합성이가장높았으며, 시서스와싱고니움의경우는오존 2시간처리구에서가장높았다. 광-광합성곡선을이용하여광보상점, 광포화점, 순양자수율 (apparent quantum yield), 호흡률, 광합성률을산출하였다 (Table 2). 광보상점과광포화점은종별차이는있었으나오존처리시간별유의차는없었다. 특히광보상점은대부분의종에서오존 8시간처리구에서높았고, 오존 2시간처리구에서가장낮았다. 그러나광포화점은대조구에서가장높았으며오존 8시간처리구가가장낮았다. 광합성률과순양자수율의경우는종별, 오존처리시간별유의차가있었다. 광합성률은시서스와싱고니움의경우오존 2시간처리구에서가장높았고, 나머지종들은대조구에서가장높았다. 특히, 시서스, 디펜바키아마리안느, 파키라, 스킨답서스는대조구에비해오존처리구의광합성감소가유의하게나타났다. 순양자수율은대조구와오존 2시간처리구에서높은값을나타냈고, 오존 8시간처리구에서가장낮은경향을보였다. 호흡의경우는대부분오존 8시간처리구에서가장높았고, 오존 2시간처리구와대조구에서낮은경향을나타내었다. 즉순양자수율은대조구와오존 2시간처리구에서값이높고, 오존 8시간처리구에서값이낮아 120ppb의오존을하루중 2시간처리할경우광화학계의활성에큰피해를주지못하고, 하루중 8시간처리할경우큰피해를준다 (Table 2, Fig. 4). 그리고광합성은시서스와싱고니움의경우 2시간처리구에서가장높아하루중 2시간의오존처리는종에따라생리적활성을증가시키는것으로생각된다. 특히시서스, 디펜바키아마리안느, 파키라, 스킨답서스는대조구에비해오존처리구에서오존처리시간이길수록광합성감소가유의하게나타났다. 엽육내 CO 2 농도에따른광합성곡선 (A-Ci curve) 오존처리시간이광합성계의암반응에속하는탄소고정계의능력에미치는영 - 167 -
향을알아보고자 leaf chamber에유입되는공기의 CO 2 농도를조절하여, 엽육내 CO 2 농도에따른광합성곡선 (A-Ci curve) 을작성하였다 (Fig. 5). 이것을이용하여 CO 2 보상점, 광호흡, 최대광합성률, 탄소고정효율 (carboxylation efficiency) 을산출하였다 (Table 3). Enyedi 등 (1992) 은오존피해반응으로 CO 2 를고정하는효소인 rubisco가감소될수있다고하였다. 실제로세포내 CO 2 농도에따른광합성곡선에서엽육내 CO 2 농도가낮은영역에서는 CO 2 농도가부족한상태이므로촉매역할을하는 rubisco의함량에의해광합성이결정된다. 또한이구간의직선회귀식의기울기는탄소고정효율로서광합성에서 CO 2 를고정하는효소인 rubisco의활성및함량을반영한다 (Farquhar 등, 1980). CO 2 보상점은종별, 처리시간별유의한차를보였으며, 시서스, 파키라, 스킨답서스의경우오존 8시간처리구에서가장높았고대조구에서가장낮았다. 그리고헤데라, 싱고니움, 벤자민고무나무, 디펜바키아마리안느에서는오존 8시간처리구에서가장높았고, 오존 2시간처리구에서가장낮았다. 광호흡의경우는종별유의차는있었으나오존처리시간별유의차는없었고, 대부분의종에서오존 8시간처리구에서가장높았고, 오존 2시간처리구에서낮은경향을나타내었다. 최대광합성률과탄소고정효율은종별, 처리시간별유의차가있었으며, 대조구와오존 2시간처리구에서가장높은값을나타내었고, 오존8시간처리구에서가장낮았다. 즉 120ppb 오존을하루 2시간처리할경우탄소고정효율은피해를받지않았으며, 8시간처리시에는피해를받았다. 오존민감종과저항종의선별 8종모두오존처리시간이길어질수록광합성의탄소고정계의피해가증가하였으며, 그중시서스, 디펜바키아마리안느, 파키라, 스킨답서스는오존처리시간이길어질수록광합성의광화학계의피해도두드러지게나타났다. 이는오존에대한식물의반응이식물의종에따라다르게나타나기때문으로생각된다 (Krupa 등, 2001). 오존에대한민감성은노출된오존의농도와노출기간에따라다르게나타나는데아직까지이에대한정확한메커니즘은밝혀지지않았다 (Lee 등, 2002). 또 - 168 -
Oksanen 등 (2001) 은 100ppb 이하의오존은수목의생장을오히려자극하는경향이있고, 100-120ppb의고농도에서는생장이감소하나오존에내성을보이는식물은고농도에서도별로영향을받지않는다고하였다. 즉 120ppb의오존을하루중 2, 4, 8시간으로처리한후, 가시피해및엽단면관찰, 엽록소함량, chlorophyll fluorescence(fv/fm), 광화학계및탄소고정계의활성을조사한결과, 시서스는가시피해와엽육조직의심한파괴가관찰되었으며 (Fig. 1, 2, 3), 엽록소함량이감소하였고 (Table 1), 광합성, 순양자수율, 탄소고정효율이감소한것으로보아광화학계, 탄소고정계의피해를받은것으로생각된다 (Table 2, 3). 디펜바키아마리안느의경우가시피해는나타나지않았으나, 광합성이유의하게감소하여광화학계의피해가큰것으로생각된다 (Table 2). 스킨답서스도마찬가지로가시피해는나타나지않았으나광합성, 순양자수율, 탄소고정효율이현저히감소하여광화학계, 탄소고정계의피해를받은것으로생각된다 (Table 2, 3). 따라서시서스, 디펜바키아마리안느, 스킨답서스는오존민감종으로판단되며, 스파티필름, 헤데라, 벤자민고무나무는오존처리시간이증가하여도생리적활성이감소되지않아오존저항종으로생각된다 (Table 2, 3). 초 록 실내식물의오존에대한감수성과생리적반응을알아보고자실내식물중시서스 (Cissus rhombifolia Vahl), 헤데라 (Hedera helix L.), 스파티필름 (Spathiphyllum wallisii Regel), 싱고니움 (Syngonium podophyllum Schott 'Albo-Virens'), 디펜바키아마리안느 (Dieffenbachia sp. 'Marrianne'), 벤자민고무나무 (Ficus benjamina L. 'Hawaii'), 파키라 (Pachira aquatica Aubl.), 스킨답서스 (Scindapsus aureus Engler) 를대상으로 120ppb의오존을하루중 2, 4, 8시간씩 25일동안처리하였다. 이중시서스에서만가시피해가나타났고, 엽육조직의파괴와변형, 기공닫힘현상이오존처리시간이길수록심각하였다. 몇몇종의엽록소함량과 chlorophyll fluorescence(fv/fm) 는대조구보다오존처리구에서높게나타나는났다. 또대부분의종에서순양자수율은대조구와오존 2시간처리구에서값이 - 169 -
높았고, 오존 8시간처리구에서낮았다. 시서스, 디펜바키아마리안느, 파키라, 스킨답서스에서는대조구에비해오존처리구의광합성이유의하게감소하였다. 한편대부분의종에서탄소고정효율은오존 2시간처리구에서높았고오존 8시간처리구에서낮았다. 즉, 하루중 2시간오존처리는종에따라식물의생리적활성을증가시켰지만, 대체로오존처리시간이길어질수록광합성의광화학계와탄소고정계의활성이감소되었다. 따라서, 가시피해가두드러지게나타난시서스와오존처리시간에따라광화학계의피해가심했던디펜바키아마리안느, 스킨답서스는오존민감종으로생각되며, 스파티필름, 헤데라, 벤자민고무나무는오존처리시간이길어져도생리적활성의감소가나타나지않아오존저항종으로생각된다. 추가주요어 : 가시피해, 엽록소함량, chlorophyll fluorescence (Fv/Fm), 순양자 수율, 탄소고정효율, 오존민감종, 오존저항종 인용문헌 Adams, M.B., J.M. Kelly, and N.T. Edwards. 1988. Growth of Pinus taeda L. seedings varies with family and ozone exposure level. Water, Air and soil Pollution 38:137-150. Allen, R.J., R.A. Wadden, and E.D. Ross 1978. Characterization of potential indoor sources of ozone. Am. Ind. Associ. J. 39:466-471. Arnon D. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24:1-15. Boubel, R.W., D.L. Fox, D.B. Turner, A.C. Stern. 1994. The air pollution. Academic press. USA. Davis D.D. and J.B. Coppolono. 1976. Ozone susceptibility of selected woody shrubs and vines. Plnsu dis, reptr. 60:876-878. Enyedi, A.J., N.A. Eckardt, and E.J. Pell. 1992. Activity of ribulose bisphosphate carboxylase/oxygenase from potato cultivars with differential - 170 -
response to ozone stress. New Phytol. 122:493-500. Evans, J.R. 1987. The dependence of quantum yield on wavelength and growth irradiance. Australian Journal of Plant Physiology 14:69-79. Evans, L.S., J.H. Adamski, and J.R. Renfro. 1996. Relationship between cellular injury, visible injury of leaves, and ozone exposure levels for several dicotyledonous plant species a great smoky mountains national park. Environmental and Experimental Botany. 36:229-237. Farage, P.K., S.P. Long, E.G. Lechner, and N.R. Baker. 1991. The sequence of change within the photosynthetic apparatus of wheat following short-term exposure to ozone. Plant Physiol. 95:529-535. Farquhar, G.D., S. von Caemmerer, and J.A. Berry. 1980. A biochemical model of photosynthetic CO 2 assimilation in leaves of C3 species. Planta 149:78-90. Guidi, L., R. Di Cagno, and G.F. Soldatini. 2000. Screening of bean cultivars for their response to ozone as evaluated by visible symptoms and leaf chlorophyll fluorescence. Environmental Pollution 107:349-355. Han, S.W. and J.S. Lee. 2002. Purification efficiency of O 3 and SO 2 by some oriental orchids. J. Kor. Soc. Hort. Sci. 43(4):487-491. Her, J.H., K.J. Bang, and J.H. Surl. 1999. The study on ozone response of indoor landscape plants. Interior Landscape 1(1):105-112. Hiscox, J.D. and G.F. Istaelastam. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57: 1332-1334. Hong, J. 2000. Benzene and formaldehyde removal by indoor foliage plants. PhD Diss., Korea Univ., Seoul. Hur, J.S., Y.K. Hur, and C.I. Lee. 1995. Evaluation of SO 2 or O 3 exposure durations requiring foliar damage development by using bioindicating plants. Korean J. Plant Pathol. 11(2):107-115. Kang, H., B.H. Kwack, and W.K. Sim. 1990. Assessing Studies on the recent - 171 -
use and change of indoor landscaping plants at apartment houses in Seoul. Journal of the Korean Institute of Landscape Architecture 18(1):1-8. Keen, N.T. and O.C. Taylor. 1975. Ozone injury in soybeans isoflavonoid accumulation is related to necrosis. Plant physiology 55:731-733. Kim, P.G. and E.J. Lee. 2001. Ecophysiology of photosynthesis 1: effects of light intensity and intercellular CO 2 pressure on photosynthesis. Korean Journal of Agricultural and Forest Meteorology 3(2):126-133. Kim, P.G., Y.S. Yi, D.J. Chung, and S.Y. Woo. 2001. Effects of light intensity on photosynthetic activity of shade tolerant and intolerant tree species. Jour, Korean For. Soc. 90(4):476-487. Krupa, S., M.T. McGrath, F.L. Booker, K.O. Bukey, A.H. Chappelka, B.I. Chevone, E.J. Pell, and B.A. Zilinsks. 2001. Ambient ozone and plant health. Plant Disease. 85(1):4-12. Lee, J.C., I.S. Kim, J.K. Yeo, and Y.B. Koo. 2001. Comparing of clonal sensitivity of Populus deltoides to atmospheric ozone with use of visible foliar injury. Jour, Korean For. Soc. 90(1):10-18. Lee, J.C., S.H. Han, C.S. Kim, and S.S. Jang. 2002. Visible foliar injuries and growth responses of four Betula sp. esposed to ozone. Korean Journal of Agricultural and Forest Meteorology 4(1):29-37. Oksanen, E., G. Amores, H. Kokko, J.M. Santamaria, and L. Karenlampi. 2001. Genotypic variation in growth and physiological responses of Finish hybrid aspen to elevated tropodoheric ozone concentration. Tree Physiology 21:1171-1181. Pääkkönen, E., J. Vahala, T. Holopaninen, R. Karjalainen, and L. Karenlampi. 1996. Growth responses and related biochemical and ultrastructural changes of the photosynthetic apparatus in birch saplings exposed to low concentrations of ozone. Tree Physiology 16:597-605. Park, E.H., J.K. Kim, J.C. Lee, and S.H. Han. 2002. Photosynthetic pigment concentrations and changes of SOD activites on Liana, Equisetum Arvense - 172 -
and Artemisia Princeps Exposured to Ozone. Korean Journal of Agricultural and Forest Meteorology 4(3):159-163. Park, J.H., J.M. Seo, and K.C. Choi. 2003. Introduction to air pollution. GS Tech. Seoul. Park, S.H. and K.K. Shim. 1989. A study on the utillzation status of the interior landscape plants in large buildings in Seoul. Journal of the Korean Institute of Landscape Architecture 17(1):43-54. Park, S.H., Y.Y. Lee, G.Y. Bae, and Y.B. Lee. 1998. Comparison of absorption ability by difference of physiological in three foliage plants exposed to O 3 and SO 2 singly and in combination. J. KAPRK. 14(1):35-42. Reich, P.B. and R.G. Amundson. 1985. Ambient levels of ozone reduce net photosynthesis in tree and crop species. Science 230:566-570. Sehemel, G.A. 1980. Particle and gas deposition, Atmos. Environ. 14:983-1011. Skärby, L., E. Troeng, and C.A. Bosrtrom. 1987. Ozone uptake and effects on transpiration, net photosynthesis, and dark respiration in Scotch pine. Forest Science 33:801-808. Skelly, J.M. 1980. Photochemical oxidant impact in mediterranean and temperate forest ecosystem: real and potentisl effects. In: Proceedings of the symposium on effects of air pollutants in mediterranean and temperate forest ecosystems. June 22-27. Riverside, CA, 38-50. Son, K.C., S.H. Lee, S.G. Seo, and J.E. Song. 2000. Effects of foliage plants and potting soil in the absorption and adsorption of indoor air pollutants. J. Kor. Soc. Hort. Sci. 41(3):305-310. Wolverton, B.C., A. Johnson, and K. Bounds. 1989. Interior landscape plants for indoor air pollution abatement. NASA. USA. - 173 -
Fig. 1. Visible foliar injury of Cissus rhombifolia exposed to 120ppb ozone for 25 days. A, control; B, 2 hrs/day ozone exposed group; C, 4 hrs/day ozone exposed group; D, 8 hrs/day ozone exposed group. Fig. 2. Vertical sections of Cissus rhombifolia exposed to 120ppb ozone for 25 days. A, control; B, 2 hrs/day ozone exposed group; C, 4 hrs/day ozone exposed group; D, 8 hrs /day ozone exposed group (Photographs were taken by 400 light microscope). - 174 -
Fig. 3. Vertical sections of Cissus rhombifolia exposed to 120ppb ozone for 25 days. A, non visible foliar injury; B, visible foliar injuries in 8 hrs/day ozone exposed group (Photographs were taken by 100 light microscope). - 175 -
Table 1. Effects of ozone exposure time (2, 4, and 8hrs/day) on chlorophyll content and chlorophyll fluorescence of indoor plants exposed to 120ppb ozone for 25 days. Species Cissus rhombifolia Exposure time(h/day) Chlorophyll content(g cm -2 ) a b a+b Chlorophyll a/b Chlorophyll fluorescence (Fv/Fm relative unit) 0 0.0285 a y 0.0087 a 0.0372 a 3.45 a 0.729 a 2 0.0279 a 0.0080 a 0.0360 a 3.42 a 0.717 a 4 0.0271 a 0.0079 a 0.0350 a 3.39 a 0.726 a 8 0.0277 a 0.0077 a 0.0353 a 3.35 a 0.696 a Hedera helix 0 0.0338 a 0.0072 a 0.0408 a 4.94 a 0.722 a 2 0.0325 a 0.0068 a 0.0372 a 4.83 a 0.717 a 4 0.0328 a 0.0070 a 0.0353 a 4.83 a 0.711 a 8 0.0331 a 0.0070 a 0.0428 a 4.54 a 0.706 a Spathiphyllum wallisii Syngonium podophyllum Dieffenbachia sp. ꡐMarrianneꡑ Ficus benjamina Pachira aquatica 0 0.0449 a 0.0077 a 0.0526 a 6.01 a 0.754 a 2 0.0444 a 0.0077 a 0.0524 a 5.86 a 0.764 a 4 0.0446 a 0.0075 a 0.0521 a 5.85 a 0.752 a 8 0.0449 a 0.0072 a 0.0521 a 5.84 a 0.705 a 0 0.0366 a 0.0064 a 0.0432 a 5.94 a 0.746 a 2 0.0360 a 0.0062 a 0.0405 a 5.78 a 0.753 a 4 0.0358 a 0.0056 a 0.0404 a 5.52 a 0.739 a 8 0.0350 a 0.0057 a 0.0406 a 5.70 a 0.722 a 0 0.0341 a 0.0072 a 0.0413 a 4.93 a 2 0.0385 a 0.0076 a 0.0461 a 4.79 a 4 0.0324 a 0.0074 a 0.0397 a 4.52 a 8 0.0307 a 0.0069 a 0.0377 a 4.49 a 0 0.0430 a 0.0065 a 0.0494 a 7.12 a 2 0.0358 a 0.0051 a 0.0407 a 7.31 a 4 0.0409 a 0.0064 a 0.0472 a 6.84 a 8 0.0437 a 0.0065 a 0.0505 a 6.74 a 0 0.0227 a 0.0042 a 0.0272 a 4.96 a 2 0.0221 a 0.0046 a 0.0269 a 4.73 a 4 0.0202 a 0.0037 a 0.0227 a 5.02 a 8 0.0216 a 0.0043 a 0.0259 a 5.07 a Scindapsus aureus 0 0.0246 ab 0.0044 a 0.0236 a 5.27 a 2 0.0200 b 0.0036 a 0.0226 a 5.39 a 4 0.0231 ab 0.0043 a 0.0256 a 5.03 a 8 0.0288 a 0.0045 a 0.0350 a 5.31 a Species (A) *** *** *** *** NS Exposure time (B) NS NS NS NS NS A B NS NS * NS NS y Mean separation within columns by Duncan's multiple range test at P = 0.05 or 0.01 NS,*,**,*** Notsignificant or significant at P = 0.05, 0.01, or 0.001, respectively - 176 -
4 Cissus rhombifolia 3 Dieffenbachia sp. 'Marrianne' 3 2 2 1 0 0hrs 2hrs 4hrs 8hrs 1 0 Photosynthetic rate(µmolco 2. m -2 s -1 ) -1 3 2 1 0-1 3 Hedera helix Spathiphyllum wallisii -1 4 3 2 1 0-1 3 Ficus benjamina Pachira aquatica 2 2 1 1 0 0-1 -1 3 Syngonium podophyllum 4 Scindapsus aureus 2 3 2 1 1 0 0-1 0 100 200 300 400 500 600-1 0 100 200 300 400 500 600 PPFD(µmol. m - 2 s -1 ) PPFD(µmol. m - 2 s -1 ) Fig. 4. Light response curves to photosynthesis of indoor plants exposed to 120ppb ozone for 25 days. - 177 -
Table 2. Effects of ozone exposure time (2, 4, and 8hrs/day) on light compensation point, light saturation point, respiration rate, photosynthetic rate, and apparent quantum yield of indoor plants exposed to 120ppb ozone for 25 days. Species Cissus rhombifolia Exposure time (h/day) Light compensation point (μmol m -2 s -1 ) Light saturation point (μmol m -2 s -1 ) Respiration rate (μmolco 2 m -2 s -1 ) Photosynthetic rate (μmolco 2 m -2 s -1 ) Apparent quantum yield (μmolco 2 mol -1 ) 0 10.32 a y 73.42 a -0.592 c 2.04 ab 0.033 a 2 8.40 a 71.24 a -0.318 a 2.70 a 0.034 a 4 10.76 a 70.27 a -0.420 ab 1.74 bc 0.031 a 8 10.90 a 71.57 a -0.537 bc 1.20 c 0.026 a Hedera helix 0 5.26 a 94.16 a -0.285 a 3.33 a 0.042 a 2 4.17 a 93.83 a -0.244 a 3.26 a 0.040 a 4 6.94 a 87.98 a -0.276 a 3.15 a 0.040 a 8 7.78 a 87.04 a -0.316 a 2.60 a 0.032 a Spathiphyllu m wallisii Syngonium podophyllum Dieffenbachia sp. ꡐMarrianne ꡑ 0 7.56 a 87.02 a -0.225 a 2.90 a 0.040 a 2 7.06 a 90.31 a -0.174 a 2.81 a 0.041 a 4 8.01 a 92.76 a -0.430 b 2.90 a 0.039 a 8 11.40 a 93.39 a -0.536 b 2.05 a 0.037 a 0 2.19 b 61.92 a -0.214 a 2.52 a 0.040 b 2 1.92 b 61.47 a -0.135 a 2.62 a 0.053 a 4 1.58 b 56.54 a -0.153 a 2.05 a 0.040 b 8 5.72 a 63.22 a -0.395 b 1.98 a 0.040 b 0 10.82 a 66.20 a -0.341 a 2.00 a 0.031 a 2 10.54 a 64.07 a -0.336 a 1.53 b 0.031 a 4 10.66 a 56.16 a -0.350 a 1.42 b 0.033 a 8 11.63 a 51.89 a -0.348 a 1.23 b 0.031 a Ficus benjamina Pachira aquatica 0 10.29 a 86.98 a -0.611 a 3.57 a 0.050 a 2 10.11 a 84.66 a -0.418 a 3.37 a 0.044 a 4 10.31 a 84.22 a -0.569 a 3.48 a 0.045 a 8 10.72 a 83.38 a -0.576 a 3.26 a 0.044 a 0 8.66 a 92.63 a -0.506 a 2.84 a 0.040 a 2 21.48 a 67.32 a -0.432 a 2.17 b 0.033 a 4 22.57 a 80.25 a -0.390 a 2.47 b 0.035 a 8 13.37 a 61.77 a -0.558 a 2.27 b 0.036 a Scindapsus aureus 0 4.67 a 72.53 a -0.220 a 2.90 a 0.052 a 2 4.81 a 70.17 a -0.240 a 2.27 ab 0.049 a 4 4.69 a 70.58 a -0.262 a 1.77 b 0.051 a 8 4.33 a 68.52 a -0.307 a 1.64 b 0.033 b Species (A) ** *** *** *** *** Exposure time (B) NS NS *** *** *** A B NS NS *** NS NS y Mean separation within columns by Duncan's multiple range test at P = 0.05 or 0.01 NS,*,**,*** Notsignificant or significant at P = 0.05, 0.01, or 0.001, respectively - 178 -
8 8 6 Cissus rhombifolia 6 Dieffenbachia sp. 'Marrianne' 4 4 2 2 0 0hrs 2hrs 4hrs 8hrs 0-2 -2 Photosynthetic rate(µmolco 2. m -2 s -1 ) 6 4 2 0-2 10 Hedera helix Spathiphyllum wallisii 6 4 2 0-2 6 Ficus benjamina Pachira aquatica 8 6 4 4 2 2 0 0-2 -2 6 Syngonium podophyllum 8 Scindapsus aureus 4 6 4 2 2 0 0-2 -2 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 Intercellular CO 2 concentration(µmolco. 2 mol -1 ) Intercellular CO 2 concentration(µmolco. 2 mol -1 ) Fig. 5. A-Ci curves of indoor plants exposed to 120ppb ozone for 25 days. - 179 -
Table 3. Effects of ozone exposure time (2, 4, and 8hrs/day) on CO 2 compensation point, photo-respiration rate, maximum photosynthetic rate, and carboxylation efficiency of indoor plants exposed to 120ppb ozone for 25 days. Species Cissus rhombifolia Exposure time (h/day) CO 2 compensation point (μmolco 2 mol -1 ) Photo-respiration rate (μmolco 2 m -2 s -1 ) Maximum photosynthetic rate (μmolco 2 m -2 s -1 ) Carboxylation efficiency (μmolco 2 mol -1 ) 0 82.22 b y 1.49 a 6.34 a 0.021 a 2 86.45 b 1.38 a 5.81 a 0.017 a 4 88.16 b 1.31 a 5.44 a 0.011 a 8 169.22 a 1.34 a 4.57 a 0.008 a Hedera helix 0 69.73 a 1.19 a 6.20 ab 0.017 a 2 65.62 a 1.07 a 7.20 a 0.020 a 4 67.15 a 1.21 a 6.96 a 0.020 a 8 77.47 a 1.29 a 4.89 b 0.015 a Spathiphyllum wallisii Syngonium podophyllum Dieffenbachia sp. ꡐMarrianneꡑ Ficus benjamina Pachira aquatica 0 112.28 a 1.85 a 7.65 b 0.026 a 2 76.69 a 1.46 a 10.2 a 0.030 a 4 76.77 a 1.97 a 7.59 b 0.021 a 8 89.75 a 2.68 a 6.10 c 0.019 a 0 64.19 a 1.04 a 5.71 a 0.016 a 2 62.54 a 1.01 a 6.68 a 0.018 a 4 66.08 a 1.03 a 5.60 a 0.015 a 8 71.42 a 1.06 a 5.23 a 0.012 a 0 83.39 a 1.21 a 5.85 a 0.013 a 2 80.76 a 1.35 a 6.46 a 0.016 a 4 83.32 a 1.31 a 5.11 a 0.013 a 8 84.69 a 1.42 a 5.07 a 0.012 a 0 73.79 a 1.67 a 7.62 a 0.027 a 2 69.34 a 1.54 a 7.52 a 0.028 a 4 73.25 a 1.56 a 7.43 a 0.026 a 8 74.19 a 1.65 a 7.30 a 0.024 a 0 63.27 b 1.48 a 5.82 a 0.021 a 2 80.28 ab 1.67 a 5.74 a 0.023 a 4 70.01 ab 1.30 a 5.88 a 0.022 a 8 106.33 a 0.97 a 4.11 a 0.011 b Scindapsus aureus 0 66.38 a 1.24 a 8.23 a 0.022 a 2 73.53 a 1.24 a 7.11 a 0.021 a 4 68.80 a 1.19 a 5.46 a 0.019 a 8 75.52 a 1.27 a 5.45 a 0.014 a Species (A) ** ** *** *** Exposure time (B) * NS *** *** A B NS NS NS NS y Mean separation within columns by Duncan's multiple range test at P = 0.05 or 0.01 NS,*,**,*** Notsignificant or significant at P = 0.05, 0.01, or 0.001, respectively - 180 -
2. 오존처리기간에따른실내식물의정화능과생리적반응 정승일 1 김민지 1 손기철 1* 김판기 2 이재천 3 1 건국대원예과학과, 2 서울대학교기초과학연구원, 3 임업연구원임목육종부 Effects of Ozone Exposure Duration on Purification Efficiency and Physiological Responses of Indoor Plants Seung-Il Jung 1 Min-Ji Kim 1 Ki-Cheol Son 1* Pan-Gi Kim 2 Jae-Cheon Lee 3 1 Dept. of Horticultural Science, Konkuk Univ., Seoul 143-701, Korea 2 Research Institute of Basic Science, Seoul National Univ., Seoul 151-742, Korea 3 Dept. of Tree Breeding, Korea Forest Research Institute, Suwon 441-350, Korea (*Corresponding author) Abstract. This study was conducted to investigate the physiological responses and ozone purification efficiency of indoor foliage plants exposed to ozone. Cissus rhombifolia Vahl, Hedera helix L., Spathiphyllum wallisii Regel, Syngonium podophyllum Schott ꡐAlbo-Virensꡑ, Dieffenbachia sp. ꡐMarrianneꡑ, Ficus benjamina L. ꡐHawaiiꡑ, Pachira aquatica Aubl., and Scindapsus aureus Engler were exposed to 120ppb ozone for 2, 4, 8hrs/day for 25 days in walk-in-type growth chamber. Changes of physiological activities and ozone absorption rate during exposure period were evaluated. In Cissus rhombifolia and Spathiphyllum wallisii exposed by 8 hrs/day ozone, photosynthetic rate, stomatal conductance, and ozone uptake rate were continuously reduced until the termination of experiment as exposed days increased. However, in case of Hedera helix and Syngonium podophyllum, photosynthetic rate, stomatal conductance, and ozone uptake rate were - 181 -
reduced in the early days of experiment and then gradually increased. Cumulative ozone uptake rate was found to be the highest in Spathiphyllum wallisii. Ozone uptake rate of foliage plants that was measured at 25 days after experiment decreased as exposure time per day increased. Especially, ozone uptake rate of Cissus rhombifolia and Scindapsus aureus was significantly reduced in 8 hrs/day ozone exposed group as compared to that of 2 hrs/day ozone exposed group. On the other hand, ozone uptake rate of Ficus benjamina was higher than other foliage plants, regardless of exposure times per day. In conclusion, it was found that recovery efficiency or mechanism varied with species and ozone uptake rate also varied with the sensitivity of foliage plant against ozone, where the more ozone tolerant species, the more uptake rate increased. Additional key words: photosynthetic rate, stomatal conductance, and ozone uptake rate 서 언 최근식물이광합성, 호흡, 증산등의가스교환시잎의기공을통해오염물질을흡수하여대기환경을정화시키는효과가보고됨에따라 (Sehemel, 1980), 실내에서발생하는다양한오염물질을제거하는방법으로식물을이용하는연구가진행되고있다 (Han과 Lee, 2002; Hong, 2000; Park 등, 1998; Son 등, 2000; Woleverton 등, 1989). 그중실내오존에대한식물의정화효과에대한연구도일부이루어지고있다. 자작나무류중거제수나무 (Betula costata) 가오존흡수량이높았고 (Lee 등, 2002), 관엽식물중스파티필름 (Spathiphyllum patinii) 과벤자민고무나무 (Ficus benjamina) 의흡수량이높다고하였다 (Park 등, 1998). 또동양란의경우사계란 (Cymbidium rubrigemmum) 과보세란 (Cymbidium sinense) - 182 -
이높은오존제거효율을나타내었다는보고가있다 (Han과 Lee, 2002). 그러나선행연구들은수목을주로하였거나실내식물인경우고농도의오존으로단기간실시하였기때문에실내의오존정화에대한식물의효과를구명하기에는무리가있다고판단된다 (Han과 Lee, 2002; Lee 등, 2002; Park 등, 1998). 특히, Jung(2003) 은 120ppb 농도의간헐적인오존처리가 25일간지속될경우종에따라생리적활성의변화가다르게나타나며, 몇몇종에서는하루 2시간씩 25일간오존처리할경우생리적활성이증가하기도한다고하였다. 그러나대부분의종에서하루중오존처리시간이길어질수록생리적활성이감소하였으며, 하루중오존처리시간이길수록생리적활성이뚜렷하게감소한시서스, 디펜바키아마리안느, 스킨답서스는오존민감종으로구분하였고, 하루중오존처리시간과상관없이생리적활성의감소가나타나지않은스파티필름, 헤데라, 벤자민고무나무은오존저항종으로구분하였다. 즉저농도의간헐적인오존처리가장기간지속될경우대부분의종에서오존에대한피해가나타나지않았다. 이러한반응을보다구체적으로구명하기위해서는처리기간동안생리적활성의연속모니터링을통한오존에대한식물의피해와회복기작을밝힐필요가있다. 따라서본연구는실내에서많이이용하는실내식물을대상으로일중처리시간을달리하여장기간오존처리를실시하고, 처리기간동안의생리적활성을조사하여오존에대한식물의생리적반응의변화뿐만아니라오존흡입량을산출하고자실시하였다. 재료및방법 식물재료실내식물은 호텔, 고층빌딩, 가정에서 많이 이용하는 식물 (Kang 등, 1990; Park과 Shim, 1989) 중에서선정하였다. 일반적으로실내에서많이사용하고있 는 시서스 (Cissus rhombifolia Vahl), 헤데라 (Hedera helix L.), 스파티필름 (Spathiphyllum wallisii Regel), 싱고니움 (Syngonium podophyllum Schott ꡐ Albo-Virensꡑ), 디펜바키아 마리안느 (Dieffenbachia sp. ꡐMarrianneꡑ), 벤자민 - 183 -
고무나무 (Ficus benjamina L.ꡐHawaiiꡑ), 파키라 (Pachira aquatica Aubl.), 스킨답서스 (Scindapsus aureus Engler) 로하였다. 식물들은경기도에위치한농가에서일괄구입하여분갈이한후, 건국대학교농과대학유리온실에서순화과정을거쳤다. 이때사용된용토는 Sunshine mixed #1 (SunGro Inc., USA) 이었으며, 화분은직경 12 혹은 18cm(3치혹은 6 치 ) 것을이용하였다. 4주마다 200ppm의액비 (Technigro 24:7:15, SunGro Inc., USA) 로시비하였고, 관수는 5일에한번씩상면관수하였다. 오존처리임업연구원임목육종부환경제어실의 walk-in type인인공광챔버내에서실시하였다. 오존은대기중공기의산소를이용하여 ozone generator (Model H450, Harim Engineering, Inc., Korea) 에서 corona discharge 방식에의하여발생시킨후, 활성탄과 Furafil R 이혼합된 zero air system (Model 701, API, Inc., USA) 을통과한공기와혼합하여, gas exposing system (Model H800, Harim Engineering, Inc., Korea) 에의하여챔버에보내게된다. 설정된농도가유지될수있도록 Pulse Width Modulated (PWM) 방식을이용하여컴퓨터로자동제어되었으며, 챔버내의오존농도는 photometric O 3 analyzer (Model 400, API, Inc., USA) 에의하여측정되었다 (Lee 등, 2001). 오존처리는대기중오존을제거한대조구와우리나라오존주의보발령기준이며 1시간평균실내기준치인 120ppb 처리구 (Botkin 과 Keller, 2001) 로나누어하루 2시간 ( 오후 1시부터 3시까지 ), 4시간 ( 오전12시부터오후4시까지 ), 8시간 ( 오전 10시부터오후6시까지 ) 씩 25일동안연속적으로처리하였다. 각처리구마다 3 반복하였고, 처리기간동안챔버내환경은 300μmol m -2 s -1 광도와 13/11hrs (day/night) 광주기, 60±10% 습도, 25±3 온도로유지되었다. 생리적반응측정광합성과기공전도도측정 : 휴대용광합성측정기 (Li-6400, LiCor, USA) 4대를이용하여오존처리 25일후광합성과기공전도도를동시에측정하였다. 광합성측정기의 leaf chamber에유입되는공기의유량은 250μmol s -1, 온도 25, - 184 -
CO 2 농도 400μmolCO 2 mol -1 s -1 의수준으로조절하였다. 조건에서측정하였고, 광도는 PPFD 300μmol m -2 오존처리중광합성의연속모니터링 : 사전에광합성측정을통하여얻은기공전도도를기준으로기공전도도가낮았던시서스, 싱고니움과기공전도도가높았던스파티필름, 헤데라의오존 8시간처리구의광합성및호흡일변화를연속적으로모니터링하였다. 이때환경은광합성측정기의 leaf chamber에유입되는공기의유량은 250μmol s -1, 온도 25, CO 2 농도 400μmolCO 2 mol -1 조건에서측정하였고, 광도는 PPFD 500μmol m -2 s -1 였다. 오존흡입량산출 : 오존흡입량은 Laisk 등 (1989) 이산출한계산식을이용하여 계산하였다. Q = Z a g gw / 1.68 여기서 Q 는오존흡입량, Z a 는노출된오존농도, g gw 는기공전도도, 1.68은대기중의수증기와오존에대한확산계수의비이다. 기공전도도는오존처리기간중시기별광합성측정시얻은값을이용하여계산하였다 (Laisk 등, 1989; Lee 등, 2002). 오존처리기간중의총누적흡입량은시기별로계산된오존흡입량에노출된시간을곱해서산출하였고, 처리시간에따른오존흡입량은오존처리 25일후측정된기공전도도를사용하여계산하였다. 결과및고찰 오존처리기간중생리적변화오존이식물체에흡수되면기공이폐쇄되고엽육세포를손상시켜광합성능력이감소되고 (Pääkkönen 등, 1996), 광합성, 수분이용효율, 노화, 개화등에불리한영향을준다 (Krupa, 1997). 그러나오존을단시간 (2시간) 으로장기간처리할경우종에따라생리적활성이촉진되기도하였다 (Jung, 2003). - 185 -
오존 8시간처리구의생리적활성을연속적으로모니터링한결과, 주간의광합성률, 기공전도도, 증산량이감소하였다가다시증가하는종과꾸준히감소하는종으로구별되었다 (Fig. 1). 헤데라의경우오존처리 6일까지광합성률, 기공전도도, 증산량에서높은값을나타내다가 7일째에급격히감소한후다시증가하였고, 엽육내 CO 2 농도는 7일부터증가하여오존처리종료시까지다른종에비해높은값을유지하였다. 싱고니움의경우오존처리 4일째부터광합성률, 기공전도도, 증산량이서서히감소하여 7일째최저를나타낸후다시증가하였다. 한편, 시서스의경우오존처리 6일후부터서서히감소하여처리종료시까지감소추세를나타냈고, 스파티필름의경우오존처리 4일째에급격히감소하여 6일째에최저를나타내고그이후다시증가하였다가처리종료시까지서서히감소하였다. 이때엽육내 CO 2 농도는 3종모두증가와감소를반복하면서일정하게유지되었다. 야간의경우전체적으로주간의광합성률이감소하는시점에호흡량이증가한후다시감소하는경향을나타내었다 (Fig. 2). 이처럼장기간오존처리시광합성이감소하다가다시증가하는것은식물체가오존피해에대해회복하고있음을의미한다. Heath(1980) 는오존의유입에대응하는식물의반응으로오존유입을차단하기위한기공닫힘과유입된오존으로부터발생된활성산소를제거하는해독작용을언급했다. 특히활성산소해독작용에관여하는항산화효소로는 ascorbate peroxidase(apx) 와 glutathione reductase(gr) 등이있으며, 이효소들의활성은식물종, 오존처리시간과농도에따라다르며, 오염물질에대한식물의고유한특성으로식물의민감성및저항성을평가하는데유용하다 (Oksanen 등, 2001). 오존처리기간중오존흡입량의변화오존처리기간중기공전도도의변화를이용하여오존흡입량을산출한결과시서스와스파티필름의경우오존처리 7일까지오존흡입량이급격히감소하였으며, 그후처리종료시까지서서히감소하였다 (Fig. 3). 그러나헤데라와싱고니움의경우초기에오존흡입량이급격히감소하여오존처리 7일후에최저를나타낸후처리종료까지서서히증가하는경향을나타내었다. 즉싱고니움과헤데라의경우오존처리기간초기에광합성이감소하였다가점차증가하였으며 - 186 -
(Fig. 1), 오존흡입량도계속증가하는것으로보아오존피해에대한회복기작으로기공닫힘보다는활성산소해독작용에의한회복력으로생각된다. 특히 25일처리기간동안의누적오존흡입량을살펴보면, 스파티필름이 25일오존처리동안오존흡입량이다른품종들에비해월등히많다는것을알수있었다 (Fig. 3). 이는오존처리 25일동안스파티필름의기공전도도가다른종에비해서꾸준히높은값을유지하였고 (Fig. 1), 오존처리 25일후의오존흡입량이오존처리시간에따라큰차이가없기때문으로생각된다 (Fig. 4). 오존처리후처리시간별오존흡입량의비교오존 25일처리후측정한기공전도도를이용하여오존처리시간별오존흡입량을산출한결과모든품종에서오존처리시간이길수록오존흡입량이감소하였다 (Fig. 4). 특히시서스와스킨답서스는오존 2시간처리구에비해오존 8 시간처리구의오존흡입량이두드러지게감소하였다. 따라서시서스와스킨답서스는 Jung(2003) 이언급한것처럼오존에민감한종으로생각된다. 그리고벤자민고무나무는오존처리시간과관계없이오존 2, 4, 8시간처리구모두높은오존흡입량을나타내어계속적인측정은하지못하였지만 8 종중에서오존흡수를가장많이하는것으로생각된다. 또오존처리시간이길어져도오존흡수량의차이가없어 Jung(2003) 의결과와마찬가지로오존에대한저항종으로판단된다. 이러한결과는 Park 등 (1998) 이 133ng/l 농도의오존을처리하였을때스파티필름 (Spathiphyllum patinii) 과벤자민고무나무 (Ficus benjamina) 의오존흡입량이높았다는보고와일치한다. 한편시서스, 헤데라, 스파티필름, 벤자민고무나무의 2시간처리구는다른종과비교할때높은오존흡입량을나타내어단시간동안오존에장기간노출되어도오존정화능이높을것으로생각된다. 초 록 실내식물의오존에대한정화능과생리적반응을알아보고자실내식물중시 서스 (Cissus rhombifolia Vahl), 헤데라 (Hedera helix L.), 스파티필름 (Spathiphyllum wallisii Regel), 싱고니움 (Syngonium podophyllum Schott ꡐ - 187 -
Albo-Virensꡑ), 디펜바키아마리안느 (Dieffenbachia sp. ꡐMarrianneꡑ), 벤자민고무나무 (Ficus benjamina L.ꡐHawaiiꡑ), 파키라 (Pachira aquatica Aubl.), 스킨답서스 (Scindapsus aureus Engler) 를대상으로 120ppb의오존을하루중 2, 4, 8시간씩 25일동안처리한후처리기간동안의생리적활성의변화를조사하고, 오존흡입량을산출하였다. 오존처리기간동안시서스와스파티필름의오존 8시간처리구의생리적활성을관찰한결과, 오존처리기간이길어질수록광합성, 기공전도도, 오존흡입량이점차감소하였다. 그러나싱고니움과헤데라의경우는오존처리기간이길수록광합성, 기공전도도, 오존흡수량이감소하였다가증가하였다. 특히스파티필름은오존처리기간동안의누적오존흡입량이다른종에비해월등히높았다. 오존처리 25일후, 오존흡입량은오존처리시간이길수록감소하였으며, 특히시서스, 스킨답서스의경우오존 2시간처리구에비해오존 8시간처리구에서두드러지게감소하였고, 벤자민고무나무의경우오존 2, 4, 8시간처리구의오존흡입량이모두높았다. 즉장기간오존처리시오존피해에대한식물의회복력이종에따라다르게나타난다고생각된다. 또한오존흡입량도오존에대한식물의감수성에따라달라질수있고, 오존에대한저항종일수록높게나타난다. 추가주요어 : 광합성, 기공전도도, 오존흡입량 인용문헌 Han, S.W. and J.S. Lee. 2002. Purification efficiency of O 3 and SO 2 by some oriental orchids. J. Kor. Soc. Hort. Sci. 43(4):487-491. Health, R.L. 1980. Initial events in injury to plants by air pollunts. Annual Review of Plant Physiology 31:395-431. Hong, J. 2000. Benzene and formaldehyde removal by indoor foliage plants. PhD Diss., Korea Univ., Seoul. Jung, S.I. 2003. Purification efficiency and physiological responses of indoor - 188 -
plants exposed to ozone. MS Diss., Konkuk univ., Seoul. Kang, H., B.H. Kwack, and W.K. Sim. 1990. Assessing Studies on the recent use and change of indoor landscaping plants at apartment houses in Seoul. Journal of the Korean Institute of Landscape Architecture 18(1):1-8. Krupa, S.V. 1997. Air pollution, people and plants. American Phytopathological Society. Laisk, A., O. Kull, and H. Moldau. 1989. Ozone concentration in leaf intercellular air species is close to zero. Plant Physiology 90:1163-1167. Lee, H.C., S.H. Han, S.S. Jang. K.J. Cho, and Y.Y. Kim. 2002. Effects of ozone uptake rate on photosynthesis and antioxidant activity in the leaves of Betula species. Korean Journal of Agricultural and Forest Meteorology 4(2):72-79. Lee, J.C., I.S. Kim, J.K. Yeo, and Y.B. Koo. 2001. Comparing of clonal sensitivity of Populus deltoides to atmospheric ozone with use of visible foliar injury. Jour, Korean For. Soc. 90(1):10-18. Oksanen, E., G. Amores, H. Kokko, J.M. Santamaria, and L. Karenlampi. 2001. Genotypic variation in growth and physiological responses of Finish hybrid aspen to elevated tropodoheric ozone concentration. Tree Physiology 21:1171-1181. Pääkkönen, E., J. Vahala, T. Holopaninen, R. Karjalainen, and L. Karenlampi. 1996. Growth responses and related biochemical and ultrastructural changes of the photosynthetic apparatus in birch saplings exposed to low concentrations of ozone. Tree Physiology 16:597-605. Park, S.H. and K.K. Shim. 1989. A study on the utillzation status of the interior landscape plants in large buildings in Seoul. Journal of the Korean Institute of Landscape Architecture 17(1):43-54. Park, S.H., Y.Y. Lee, G.Y. Bae, and Y.B. Lee. 1998. Comparison of absorption ability by difference of physiological in three foliage plants exposed to O 3 and SO 2 singly and in combination. J. KAPRK. 14(1):35-42. - 189 -
Sehemel, G.A. 1980. Particle and gas deposition, Atmos. Environ. 14:983-1011. Son, K.C., S.H. Lee, S.G. Seo, and J.E. Song. 2000. Effects of foliage plants and potting soil in the absorption and adsorption of indoor air pollutants. J. Kor. Soc. Hort. Sci. 41(3):305-310. Wolverton, B.C., A. Johnson, and K. Bounds. 1989. Interior landscape plants for indoor air pollution abatement. NASA. USA. - 190 -
Photosynthetic rate (umolco 2 m -2 s -1 ) 8 7 6 5 4 3 2 1 Cissus rhombifolia Hedera helix Spathiphyllum wallisii Syngonium podophyllum 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 0.09 0.08 0.07 Stomatal conductance (molh2o m -2 s -1 ) 0.06 0.05 0.04 0.03 0.02 0.01 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 1.2 1 Transpiration rate (molh2o m -2 s -1 ) 0.8 0.6 0.4 0.2 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 600 Intercellular CO 2 conc. (umolco 2 mol -1 ) 500 400 300 200 100 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Exposure time(day ) Fig. 1. Effects of ozone exposure (8 hrs/day) on photosynthetic rate, stomatal conductance, transpiration rate, and intercellular CO 2 concentration during day period of Cissus rhombifolia( ), Hedera helix( ), Spathiphyllum wallisii( ), Syngonium podophyllum( ) exposed to 120ppb ozone for 25 days. - 191 -
Respiration rate (umolco2 m -2 s -1 ) -0.7-0.6-0.5-0.4-0.3-0.2-0.1 0 Cissus rhombifolia Hedera helix Spathiphyllum wallisii Syngonium podophyllum 0.1 0 2 4 6 8 10 12 14 16 18 20 22 24 26 0.012 0.01 Stomatal conductance (molh2o m -2 s -1 ) 0.008 0.006 0.004 0.002 0-0.002 0 2 4 6 8 10 12 14 16 18 20 22 24 26 0.16 0.14 Transpiration rate (molh2o m -2 s -1 ) 0.12 0.1 0.08 0.06 0.04 0.02 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 600 550 Intercellular CO 2 conc. (umolco2 mol -1 ) 500 450 400 350 300 250 200 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Exposure time(day ) Fig. 2. Effects of ozone exposure (8 hrs/day) on respiration rate, stomatal conductance, transpiration rate, and intercellular CO 2 concentration during night period of Cissus rhombifolia ( ), Hedera helix ( ), Spathiphyllum wallisii ( ), Syngonium podophyllum ( ) exposed to 120ppb ozone for 25 days. - 192 -
6 Instantaneous O 3 uptake rate(nmol. m -2 s -1 ) 5 4 3 2 1 0 Cissus rhombifolia Hedera helix Spathiphyllum wallisii Syngonium podaphyllum Cumulative O 3 uptake rate(mmol. m -2 s -1 ) 1.5 1.0 0.5 0.0 0 5 10 15 20 25 Exporse time(day) 0 5 10 15 20 25 Exporse time(day) Fig. 3. Instantaneous and cumulative ozone uptake rate of Cissus rhombifolia ( ), Hedera helix ( ), Spathiphyllum wallisii ( ), Syngonium podophyllum ( ) exposed to 120ppb ozone for 8 hrs/day for 25 days. - 193 -
3 Cissus rhombifolia Dieffenbachia sp. 'Marrianne' 2 1 0 Hedera helix Ficus benjamina Instantaneous O 3 uptake rate(nmol. m -2 s -1 ) 2 1 0 2 1 Spathiphyllum wallisii Pachira aquatica 0 Syngonium podophyllum Scindapsus aureus 2 1 0 2 4 8 Exposure time(hrs/day) 2 4 8 Fig. 4. Effect of ozone exposure duration (2, 4, and 8 hrs/day) on instantaneous ozone uptake rate of indoor plants (This data for O 3 uptake rate were determined by using the value of stomatal conductance of plant exposed to 120ppb ozone for 25 days). - 194 -
3. 오존처리가시피해현상및처리기간별생리적변화 정승일 1 김민지 1 손기철 1* 김판기 2 이재천 3 1 건국대원예과학과, 2 서울대학교기초과학연구원, 3 임업연구원임목육종부 Visual injury phenomena of foliage plants by ozone exposure and their physiological changes according to ozone exposure time Seung-Il Jung 1 Min-Ji Kim 1 Ki-Cheol Son 1* Pan-Gi Kim 2 Jae-Cheon Lee 3 1 Dept. of Horticultural Science, Konkuk Univ., Seoul 143-701, Korea 2 Research Institute of Basic Science, Seoul National Univ., Seoul 151-742, Korea 3 Dept. of Tree Breeding, Korea Forest Research Institute, Suwon 441-350, Korea (*Corresponding author) 실험재료및순화과정본실험은호텔, 고층빌딩, 가정에서많이이용하는식물 (Kang 등, 1990; Park 과 Shim, 1989) 중에서선정하였다. 일반적으로실내에서많이사용하고있는시서스 (Cissus rhombifolia Vahl), 헤데라 (Hedera helix L.), 스파티필름 (Spathiphyllum wallisii Regel), 싱고니움 (Syngonium podophyllum Schott ꡐ Albo-Virensꡑ), 디펜바키아마리안느 (Dieffenbachia sp. ꡐMarrianneꡑ), 벤자민고무나무 (Ficus benjamina L. ꡐHawaiiꡑ), 파키라 (Pachira aquatica Aubl.), 스킨답서스 (Scindapsus aureus Engler) 를이용하여실시하였다 (Fig. 1). 식물재료들은경기도의농가에서일괄구입하여건국대학교농과대학유리온실에서순화과정을거쳤다 (Fig. 2). 사용된용토는 Sunshine mixed #1 (SunGro Inc., USA) 이었으며, 분갈이후직경 12 혹은 18cm(3치혹은 6치 ) 화분에심고, 4주마다 200ppm의액비 (Technigro 24:7:15, SunGro Inc., USA) 로시비하였고, 관수는 5일에한번씩상면관수하였다. - 195 -
Dieffenbachia sp. 'Marrianne' Ficus benjamina Scindopsus aureus Engl var. marble queen Hort. Spathiphyllum wallisii Cissus rhombifolia VAHL Syngonium podophyiium Schott Albo-Virens Pachira aquatica AUBL. Hedera helix L. Fig. 1. 실험재료에사용한관엽식물 8 종 Fig. 2. 유리온실에서차광을통한광순화. - 196 -
가시피해현상시서스는오존 8시간처리구의경우오존처리 4일후부터갈색의깨알같은반점이나타났으며오존처리 14일후부터피멍이드는것같은모습이었고폭로 20일후부터피멍이드는모습이전체적으로나타났다. 오존 4시간처리구와오존 2시간처리구는각각오존처리 6일째와 9일째부터갈색반점나타났다 (Fig. 3). 스파티필름은반점이나타나지는않았으나전체적으로식물이처지고잎이황화되었으며, 아이비는흰색의반점이나타났으나폭로가계속되어도더이상반점이많아지지않아오존에의한피해현상이라고보기는어려웠다. 나머지 5 종은가시피해가나타나지않았다 (Table 1). 대조구의 1일째 ( 좌 ) 와 25일째 ( 우 ) 의모습 2시간오존처리구의 9일째 ( 좌 ) 와 25 일째 ( 우 ) 의모습 8시간오존처리구의 4일째 ( 좌 ) 와 25 일째 ( 우 ) 의모습 4 시간오존처리구의 6 일째 ( 좌 ) 와 25 일째 ( 우 ) 의모습 Fig. 3. 시서스의오존처리시간에따른가시피해초기발현모습과처리종료시의모습 - 197 -
Table 1. 종별오존처리전과후의모습 종처리전처리 25 일후종처리전처리 25 일후 Dieffenbach ia sp. 'Marrianne' Ficus benjamina Hedera helix Pachira aquatica Scindopsus aureus var. marble queen Syngonium podophyiium 'Albo-Virens' Spathiphyll um wallisii - 198 -
오존처리기간별생리적활성의일변화비교 ( 광합성연속모니터링 ) 임업연구원임목육종부환경제어실의 walk-in type인인공광챔버내오존의농도를 120ppb로유지시킨후시서스, 싱고니움, 헤데라, 스파티필름의오존 8시간처리구의광합성및호흡일변화를연속적으로모니터링하였다. 광합성측정은 4대의휴대용광합성측정기 (Li-6400, LiCor, USA) 를이용하여실시하였으며, 이때환경은광합성측정기의 leaf chamber에유입되는공기의유량은 250 μmol s -1, 온도 25, CO 2 농도 400μmolCO 2 mol -1 조건에서측정하였고, 광도는 PPFD 500μmol m -2 s -1 였다 (Fig. 4). Fig. 4. 시서스의광합성측정모습 ( 좌 ) 과챔버내광합성측정모습 ( 우 ). 오존처리기간중처리초기 (1일째) 와생리적활성이감소하였던중기 (7일째 ), 처리말기 (18일째) 의오존처리구의생리적활성의일변화를비교한결과시서스와스파티필름은광합성, 기공전도도, 증산량이 1일째, 7일째, 18일째순으로감소하였고 (Fig. 5), 싱고니움과헤데라는 7일째에감소하였다가 18일째다시증가하는경향을나타내었다 (Fig. 6). 그리고엽육내 CO 2 농도는대체로 7일째에감소하였고 18일째의경우매우불안정한패턴을나타내었다. - 199 -
Fig. 5. 시서스 ( 좌 ) 와스파티필름 ( 우 ) 8시간오존처리구의오존처리기간별일중광합성, 기공전도도, 증산량및엽육내 CO 2 농도의변화 - 200 -
Fig. 6. 싱고니움 ( 좌 ) 와헤데라 ( 우 ) 8시간오존처리구의오존처리기간별일중광합성, 기공전도도, 증산량및엽육내 CO 2 농도의변화 - 201 -
4 절. 실내식물의분진제거및흡착유무 1. 관엽식물이실내분진제거에미치는영향 김여정ㆍ이은숙ㆍ손기철 * 건국대학교원예과학과 Effect of Foliage Plants on the Removal of Indoor Particulate Kim Yeo-Jung Lee Eun Sook Son Ki-Cheol* Dept. of Hort. Sci., Kon-kuk university, Seoul 143-701, Korea (* corresponding author) Abstract. This study was conducted to investigate the effect of foliage plants on the removal of indoor particulate, where experiments were taken in the room or closed chamber. About 20% foliage plants of the room volume could reduce indoor TSP, which was calculated as initial removal rate, about 3 times more rapidly than that of 10% foliage plants. All 5 foliage plants placed in closed chamber showed more reduction rates in indoor TSP, 1.0μm, and 0.5μm particle during day period than night period. In removal efficiency of foliage plants according to measurement positions, there were no difference in TSP, but there were quite a difference in 1.0μm and 0.5μm particles. Specially, Ficus elastica which had large leaf area per plant and low photosynthesis rate showed a profound removal efficiency of particulate in P1 (above plant canopy) than other positions such as P2 (between leaves) and P3 (10cm far from P2), whereas Syngonium podophyllum which had a small leaf area, but high photosynthesis and stomatal conductance showed a great removal efficiency of particulate in P2 and P3 than P1. It was shown that TSP removal efficiency of foliage plants during day and - 202 -
night period increased as their leaf area increased. On the other hand, Pachira aquatica which had a high photosynthetic rate was most effective during day period, but Ficus elastica which had a large leaf area was extremely effective during night period, as the removal rate of particulate was caclulated as per unit area of plant. Additional key words: TSP, particle count, foliage plant, particle removal. 서언 인간의하루중 80% 이상의활동이이뤄지는실내공간은쾌적한환경과건강문제에대한기본적인욕구를충족시켜주는매우중요한장소이다 (Chapin, 1974). 그러나최근에환경오염과더불어기밀성능향상에따른고단열건물의실내공기오염으로인한건강피해가사회문제로부각되고있다. 그중, 분진과같은도시형대기오염물질은환기에의해실내로의유입이증가될뿐만아니라주택및사무실의실내냉난방연료기구의사용, 흡연, 그리고사무용기기나건축자재의마모와열화에의한부유분진방출, 재실자의활동에의해발생되어계속적으로증가되고있다 ( 박, 1990; 최, 1990). 이중, 우리가가장잘인식할수있는오염인자는아마도흡연에의한담배연기일것이다. 일반적으로총부유분진의농도는실외보다실내가높게나타난다 ( 김, 1993). 최근연구결과에따르면, 호흡기관을통한분진의흡입은만성기관지염, 폐기능손상, 면역기능약화등을불러일으켜, 대부분천식과같은호흡기질환등인체에악영향을미친다고보고되고있다 (Erasmus, 1957; Rodgan 등, 1967; Roggli, 1990; Wright, 1968). 식물은광합성을위해서공기중의 CO 2 가스를기공을통해흡수할때공기중의오염물질을흡수함으로오염물질을정화하는것으로밝혀졌다 (Darrall, 1989; 박등, 1997). 식물의실내가스상오염물질제거능은국내에서도이미몇차례보고된바있지만 ( 박, 1998; 손등, 2000; 한, 2001; 홍, 2000), 입자상오염물질에대한식물의제거능에대한보고는미비한실정이다. 한편, 국외의보고중 - 203 -
외부식생지역에서분진이약 78% 감소되었다고보고된바있으며 (Rotschke, 1937), Lohr와 Pearson(1996) 은실내에서식물이존재하는경우, 없는곳에비해 20% 정도의분진감소율을보였다고하였다. 또한, 실내로의식물도입은정화효과뿐만아니라심리적안정 ( 정과심, 1992) 과온 습도조절 ( 손등, 1998; 정과박, 1999), 다량의음이온이존재로인한쾌적성 (green amenity) 의효과 ( 박, 1998) 까지도가져올수있다. 따라서, 본연구에서는실내식물로많이이용되는관엽식물 5종을선정하여식물종, 측정위치, 그리고주야간에따른 TSP(total suspended particulate) 와입경별 (0,5μm와 1.0μm) 분진제거율을비교함으로, 식물의분진제거능에대한구체적자료를얻고자하였다. 재료및방법 식물의유무에따른분진제거사용된식물은직경 18cm 포트에혼합상토 (Sunshine mixed No.1, SunGro Inc., USA) 를사용하여식재한인도고무나무 (Ficus elastica) 와서양담쟁이 (Hedera helix) 를실험전 2주동안평균광량이 200μmol m -2 s -1 와온도 23, 습도 60% 조건의생육상챔버에서순화시켜사용하였다. 이때, 광주기는 16/8 hrs(dt/nt) 로하였다. 식물의위치는전체부피 38.04m 3 (653cm 240cm 243cm) 인방에지상으로부터 80cm 높이의창가에일렬배치하였다. 실외에기기를설치하고, 튜브를통해배출된분진을측정하기위해실내에분진흡착이적은 Teflon 튜브를이용하여공간내에 4 지점을설정하였다. 배출된공기는외부의분진측정기기에연결되어경시적으로측정되었다. 각지점은사람이앉아서작업할때호흡기관의높이인 120cm를기준으로하여, 식물쪽에는식물의수관부윗쪽 (P1) 과잎과잎사이 (P2) 에 2개의지점을설정하고, 식물체로부터 1m지점 (P3), 3m지점 (P4) 에총 4개의지점을설정하였다. 튜브의길이는측정오차를최소로하기위해 4m로일정하게하였다. 분진은인간활동과담배연기로발생시켰으며, TSP(total suspended particulate) 측정은산란광식디지털분진계 (Microdust pro, cacella cel, USA) 를 - 204 -
이용하여미니펌프를통해 5L/min의유량으로배출되는분진을측정하였다. 실내공간의환경은외부의자연광유입을막기위해서창문을커텐으로차단하고, 창가의천정에인공광 (metal halide lamp 400W) 을설치하였다. 이때, 광량은식물정단부위치에서 200μmol m -2 s -1 가되게하였으며, 일장은오전 6시부터오후 10시까지로하였다. 식물종과측정위치에따른분진제거관엽식물가운데실내조경용으로많이이용되고있는서양담쟁이 (Hedera helix), 인도고무나무 (Ficus elastica), 싱고늄 (Syngonium podophyllum), 벤자민고무나무 (Ficus benjamina), 파키라 (Pachira aquatica) 5종을대상으로실험을실시하였다 ( 이, 1991). 사용된재료는 2003년 1월말재배농가에서일괄구입하여 18cm의화분에혼합상토 (Sunshine mixed No.1, SunGro Inc., USA) 를사용하여이식하고, 자연광을 40% 차광하여 200±50μmol m -2 s -1 의광과온도 25±5, 습도 40±10% 를유지시킨유리온실에서순화시켰다. 관수는 5일에 1번정도로하였고, 시비는액비 Technigro(N:P:K =24:7:5, SunGro Inc., USA) 20ppm을 1주일에한번씩엽면시비하였다. 측정을위해서스테인레스와유리로제작한크기 60cm 60cm 90cm의작은밀폐형챔버를제작하여온습도를제어할수있는환경조절생육상 ( 두리과학, DF- 95G -1485) 내에배치하고, 유리온실에서 2달간광순화시킨식물 1개체의지하부 ( 분 ) 를 sealing하여밀폐챔버안에배치하였다. 생육상의온도는실내온도라는가정하에 23/23 (DT/NT) 로하고, 습도는 60% 를유지하였으며, 광주기는 16/8hr(DT/NT) 로설정하였다. 측정위치에따른분진제거를조사하고자 TSP 상대농도와 1.0μm와 0.5μm 크기의입경을가진분진의개수농도는밀폐챔버내 3곳을선정하여측정하였다. 챔버외부에서측정이이루어지도록하기위해서 teflon 튜브를각각식물의수관부 P1, 잎과잎사이에 P2, P2( 식물체 ) 로부터 10cm떨어진 P3에고정하고, 이때튜브의길이는측정오차를최소화하기위해 2m로일정하게하였다. TSP의측정은앞실험과동일하게이루어졌다. 한편, 입경별분진개수농도는 particle counter (GT-521, SIBATA, Japan) 를사용하여 3L/min의유량으로튜브를통해 - 205 -
배출되는크기별 (1.0μm와 0.5μm) 분진수를측정하였다. 분진발생은실내오염의원인중가장접하기쉬운담배연기를이용해주류연을주사기로 100cc를넣어초기농도가고농도인 800μg/m 3 가되도록하여주간과야간에각각 6시간동안 30분간격으로모니터링하였다. 밀폐형챔버내의온 습도는실내종합환경측정기 (BABUC, Italy) 로모니터링하면서, 온도 23 와습도 60% 가되도록환경을제어하였다. 측정후분진제거율을동일농도에서비교하기위해측정된값은 curve fitting function의 ape함수 (y= 분진농도, x= 측정시간 ) 를이용해유리다항식 (SigmaPlot 2000, USA) 으로만든다음, 초기분진농도를동일하게맞추었다. 결과및고찰 식물의유무에따른분진제거밀폐된실내공간에식물이일정부피로채워져있는경우, 분진감소는식물이존재하지않을때에비해확연히빠르게나타났다 (Fig 1). 실내공간의 20% 가식물인경우, 초기분진제거량은 10% 인경우보다약 3배정도나많았고, 전체적으로도 20% 식물이존재한경우의분진이빠르게감소되어진것을볼수있다 (Fig 1). 이러한결과는관엽식물이실내환경의공기중미세분진을감소시키는데기여할수있다는사실을뒷받침한다. 또한, 실내에서식물이존재하는경우, 없는곳에비해 20% 정도의분진감소율을보였다고한 Lohr와 Pearson(1996) 의결과와도일치하였다. 본실험결과, 공간내식물의존재가분진제거에큰영향을주는것으로나타나, 외부식생지역에서의분진감소 (Rotschke, 1937) 와같이, 실내에서도식물의존재가분진감소에효과가있는것으로보여진다. 식물종과측정위치에따른분진제거먼저, TSP 농도로 5종간분진제거율을비교하였다 (Fig. 2). 전체적인주간과야간을비교해보면, 야간의감소율보다는주간의감소율이많은것으로나타났다. 또한, 주간에서종별분진제거율은식물체의엽면적이클수록총분진제거율 - 206 -
이높게나타났다 (Fig. 1, Table 1). 엽면적이 2990cm 2 로가장큰 Ficus elastica 의분진제거가가장빨랐고, 엽면적이 1231cm 2 로가장작은 Pachira aquatica의분진제거가가장늦었다 (Fig. 2). 그리고야간에서의분진제거율은 Ficus elastica, Ficus benjamina의분진제거가가장빨랐고, 나머지는대조구와비슷한수준으로나타났다. 그러나, TSP에서는측정위치간차이가없었다. 한편, 1.0μm와 0.5μm의입경별개수농도를비교한실험에서는주간과야간모두에서대조군이식물군과뚜렷한차이를보였다 (Fig. 3, 4). 전체적으로는 TSP 와마찬가지로주간보다는야간의감소율이작았다. 주간의 1.0μm입경의개수농도는엽면적이크고광합성율이낮은 Ficus elastica의감소율이 P1에서가장컸으나, P2, P3에서는다른종과비슷한수준으로낮아졌다. 또한, 엽면적은작지만광합성율과기공전도도가높은 Syngonium podophyllum은 P1에서적은폭으로감소하지만, P2, P3에서는그보다더큰폭으로감소하였다 (Fig. 3). 0.5μm입경을가진분진의개수농도에서는 Ficus elastica의주간일때분진이 P1지점에서는독단적으로가장우세한감소율을보이지만, P2와 P3 지점에서는다른식물종과비슷한감소율을보임으로써, P1 지점보다분진감소율이저하되었다 (Fig. 4). 그러나, Hedera helix, Ficus benjamina, 그리고 Pachira aquatica는측정위치간에그차이는적었다. 이와같이, 0.5μm 입경에서의결과는 1.0μm 입경에서의결과와같은경향을보였으나, 0.5μm 크기의입경이대조구와더큰폭으로차이를보이는것으로볼때, 1.0μ m에서보다 0.5μm에서더많은감소가있었다는것을알수있다. 이러한결과는잘가라앉지도않고대기중에부유하는성질을지닌 1.0μm 이하의미세분진일수록호흡으로인해폐포에침착되는등기관지에침착율이높아져인체에악영향을미친다는것을생각해볼때, 식물의실내존재는매우유익하다고생각된다. 또한, TSP농도를측정한데이터로초기농도로부터 1시간후의분진감소율을종별로비교한결과, 주간과야간의총분진감소율은엽면적이클수록많은경향을나타냈다 (Table 1-1). 그러나단위면적당의분진감소율은주간에는엽면적은적으나가장광합성율이좋은 Pachira aquatica가 0.1186 μg/m 3 /cm 2 hr로가장많았고, 야간에는반대로엽면적은많으나광합성율이가장좋지않은 Ficus - 207 -
elastica의감소율이 0.1169 μg/m 3 /cm 2 hr로가장많았다. 대조구에서주 야간의차이가없는것으로보아, 분진자체의광에대한반응은없다고생각된다. 한편, 식물군에서는주간과야간의감소폭이차이가있었고, 주간의감소율이더많았다는것은입자의축적, 즉, 중력에의한축적, 브라운운동에의한응집, 습기에의한축적 (smith, 1990) 과같은결과이외에다른요인이있다는것을의미한다. 결국, 식물의총분진제거율은주간과야간모두엽면적이클수록증가하였다. 그러나, 단위면적당분진감소율에있어서, 주간에는광합성율이좋을수록높은경향을보이고, 야간에는광합성과는상관없이엽면적이클수록높은경향을보였다. 따라서, 식물에의한분진제거는단순한흡착뿐만아니라, 주간의광합성및증산작용시기공열림에의한흡수도관련되어있다고판단되며, 이에대한추가적인연구가필요하다고판단된다. 초 록 밀폐된실내공간에식물이없는경우와식물이각각 10% 와 20% 로채워져있는경우의 TSP에미치는영향을구명하고, 환경이제어된밀폐챔버에서는관엽식물 5종의주 야간 TSP와 1.0μm와 0.5μm 입경의분진제거율을비교하고자하였다. 실내공간에서식물이없는경우에비해식물이있는경우의분진감소율이많았다. 또한, 초기의분진제거량을비교할때, 식물이 10% 보다는 20% 의부피를차지하는경우에약 3배정도의급격한분진감소를보였다. 밀폐챔버의식물종별주 야간분진제거율에있어서, 대조구에서는 TSP, 1.0 μm, 그리고 0.5μm 모두주 야간차이가없었으나, 식물군에는야간보다는주간의분진감소율이많은것으로나타났다. 특히, 0.5μm의식물군에서는대조구와비교했을때, 분진감소폭의차이가크게나타났다. 측정위치별에따른분진제거에있어서, TSP에서는모든식물이측정위치간차이가없었으나, 1.0μm와 0.5μ m 크기의입경에서는측정위치간차이가나타났다. 특히, 엽면적이크고광합성율이낮은 Ficus elastica의 P1( 식물체의수관부 ) 에서는분진감소가가장컸으나, - 208 -
엽면적은작지만광합성율과기공전도도가높은 Syngonium podophyllum은 P1 보다는 P2( 잎과잎사이 ), P3(P2에서 10cm 떨어진곳 ) 에서분진감소율이가장크게나타났다. 초기농도에서 1시간후의 TSP 분진감소량을종별로비교한결과, 주간과야간의총분진감소율은엽면적이클수록많은경향을나타냈다. 그러나단위면적당의분진감소율에있어서, 주간에는광합성율이좋은 Pachira aquatica가가장많았고, 야간에는반대로엽면적이많은 Ficus elastica의감소율이가장많았다. 인용문헌 Chapin, R.A. 1974. Human activity patterns in the city. Wiley-interscience, New York. Choi, J.H. 1990. A study on the indoor air contamination of apartment - a case of Koduck apartment complex. Master Diss., Konkuk univ., Seoul. Darrall, N.M. 1989. The effect of air pollutants on physiological processes in plants. Plant. Cell and Environmen. 12:1-30. Erasmus, L.D. 1957. Scleroderma on gold-miners on the witwatersrand with particular reference to pulmonary manifestations. S. Afr. J. Lab. Clin. Med. 3:209. Han, S.W. 2001. Removal efficiency of indoor air pollutant gases using Oriental Orchids. Ph. D. Diss., Seoul Women's univ., Seoul. Hong, J. 2000. Benzene and formaldehyde removal by indoor foliage plants. Ph. D. Diss., Korea univ., Seoul. Jung, S.H. and W.K. Sim. 1992. A basic study on the effect of plants - with special reference to the mental health. Journal of the Korean Institute of Landscape Architecture. 20:69-79. Jung, Y.S. and I.H. Park. 1999. The effect of plants and waterscape facilities on the thermal indoor environment. Journal of the Korean Institute of Landscape Architecture. 27:19-28. - 209 -
Kim, Y.S. 1993. A perspective on indoor air pollution. Journal of Korea Air Pollution Research Association. 9:33-43. Lee, J.S. 1991. Studies on the utility of foliage plant.journal of the Korean Institute of Garden. 9(2):37-46. Lohr, V.I. and C.H Pearson-mims. 1996. Particulate matter accumulation on horizontal surfaces in interiors: influence of foliage plants. Atmospheric Environment. 30:2565-2568. Park, S.H. 1998. Mechanism of purification of air pollutants and evolution of anion by plants. Master Diss., Univ. of Seoul., Seoul. Park, S.H. and Y.B. Lee. 1997. Indoor CO 2 and NO2 fixation in light-acclimatized foliage plants. J. Kor. Soc. Hort. Sci. 38(5):551-555. Park, S.I. 1990. A study on indoor air pollution in office building. Master Diss., Kon-kuk univ., Seoul. Rodgan, G.P., T.G. Benedek, T.A. Medsger, and R.J. Cammarata. 1967. The association of progressive systemic sclerosis(scleroderma) with coal miners pneumoconiosis and other forms of silicosis. Ann. Inter. Med. 66:323. Roggli, V.L. 1990. Human disease consequences of fiber exposures: A review of human lung pathology and fiber burden data. Environ. Health. persp. 88:295-303. Rotschke, M. 1937. Untersuchungen uber die meteorologie der staubatmosphare. Veroff. Geoph. I. Leipzig 11:1-78. Reported in Geiger R. (1965) The Climate Near the Ground. p. 367. Harvard University Press, Cambridge, Massachusetts. Son, K.C., M.K. Kim, S.H. Park, and M.K. Chang. 1998. Effect of foliage plant Pachira aquatica on the change of indoor temperature and humidity. Korean Journal of Horticultural & Technology. 16:377-380. Son, K.C., S.H. Lee, S.G. Seo, and J.E. Song. 2000. Effects of foliage plants and potting soil on the absorption and adsorption of indoor air pollutants. J. Kor. Soc. Hort. Sci. 41:305-310. - 210 -
Wright, G.W. 1968. Airborne fibrous glass particles. Chest roentgenograms of persons with prolonged exposure. Arch. Environ. Health. 88:295-303. - 211 -
TSP concentration (µg/m 3 ) 200 160 120 80 40 CON P-10 P-20 0 0 30 60 90 120 150 180 Time (min) Fig. 1. Effect of foliage plants on the removal of particulate in the room (P-10: 10% of the room volume was filled with foliage plants, P-20: 20% of the room volume was filled with foliage plants). - 212 -
800 700 600 500 400 300 200 100 DP1 NP1 TSP concentration (µg/m 3 ) 800 700 600 500 400 300 200 100 DP2 NP2 800 700 600 500 400 300 200 100 DP3 NP3 0 30 60 90 120 150 180 0 30 60 90 120 150 180 Time(min) Time(min) Fig. 2. Comparison of TSP removal efficiency by foliage plant according to species and measurement positions. Symbols indicate control( ), Hedera helix( ), Ficus elastica( ), Syngonium podophyllum( ), Ficus benjamina( ), and Pachira aquatica( ). For the position of P1, P2, and P3, see materials and methods (D: Day, N: Night). - 213 -
5000 4000 3000 2000 Particle count (CPM) 1000 0 5000 4000 3000 2000 1000 0 5000 DP1 P2 DP2 B NP1 NP2 4000 3000 2000 1000 0 DP3 C 0 30 60 90 120 150 Time(min) NP3 0 30 60 90 120 150 Time(min) Fig. 3. Comparison of removal efficiency of 1.0μm particle by foliage plants according to species and measurement positions. Symbols indicate control( ), Hedera helix( ), Ficus elastica( ), Syngonium podophyllum( ), Ficus benjamina( ), and Pachira aquatica( ). For the position of P1, P2, and P3, see materials and methods (D: Day, N: Night). - 214 -
100 80 60 40 20 DP1 NP1 0 Particle count (10 3 CPM) 100 80 60 40 20 0 DP2 NP2 100 80 60 40 20 0 DP3 0 30 60 90 120 150 NP3 0 30 60 90 120 150 Time(min) Time(min) Fig. 4. Comparison of removal efficiency of 0.5μm particle by foliage plants according to species and measurement positions. Symbols indicate control( ), Hedera helix( ), Ficus elastica( ), Syngonium podophyllum( ), Ficus benjamina( ), and Pachira aquatica( ). For the position of P1, P2, and P3, see materials and methods (D: Day, N: Night). - 215 -
Table 1-1. Comparison of removal efficiency of TSP as affected by species, leaf area, and photosynthesis. Data were collected at 1 hr after 800 μg/m 3 TSP treatment. Species Leaf area(cm 2 ) Photosynthetic rate (μmol/m 2 s) Rate of total particulate (μg/m 3 hr) Day Removal of particulate Rate of particulate per area (μg/m 3 /cm 2 hr) Rate of total particulate (μg/m 3 hr) Night Rate of particulate per area (μg/m 3 /cm 2 hr) Pachira aquatica 1231 4.282 146.03 0.1186 143.87 0.0783 Syngonium podophyllum 1405 3.757 153.52 0.1093 152.05 0.0581 Hedera helix 1912 2,791 159.03 0.0832 149.66 0.1082 Ficus benjamina 2475 3.454 159.26 0.0643 156.36 0.0632 Ficus elastica 2990 1.155 165.03 0.0552 173.68 0.1169 Table 1-2. Leaf area and removal of 1.0μm size on plant species in day and night period. Species Leaf area(cm 2 ) Photosynthetic rate (μmol/m 2 s) 총분진제거량 (count/m 3 hr ) 주간 단위면적당제거량 (count/m 3 /cm 2 hr ) 분진제거 총분진제거량 (count/m 3 hr ) 야간 단위면적당제거량 (count/m 3 /cm 2 hr ) Pachira aquatica 1231 4.282 896.18 0.7280 856.05 0.6954 Syngonium podophyllum 1405 3.757 932.14 0.6634 985.09 0.7011 Hedera helix 1912 2,791 1002.48 0.5243 1013.61 0.5301 Ficus benjamina 2475 3.454 968.68 0.3914 989.49 0.3998 Ficus elastica 2990 1.155 1076.13 0.3600 894.69 0.2992-216 -
Table 1-3. Leaf area and removal of 0.5μm size on plant species in day and night period. Species Leaf Photosyntheti area(cm 2 c rate ) (μmol/m 2 s) 총분진제거량 (count/m 3 hr ) 주간 단위면적당제거량 (count/m 3 /cm 2 hr ) 분진제거 총분진제거량 (count/m 3 hr ) 야간 단위면적당제거량 (count/m 3 /cm 2 hr ) Pachira aquatica 1231 4.282 17623.96 14.317 16586.18 13.747 Syngonium podophyllum 1405 3.757 18005.94 12.816 18959.22 13.494 Hedera helix 1912 2,791 19329.98 10.110 18757.38 9.81 Ficus benjamina 2475 3.454 18703.93 7.557 18684.55 7.549 Ficus elastica 2990 1.155 20503.83 6.857 17782.92 5.947-217 -
2. 관엽식물이미세분진의흡수및흡착에미치는영향 김여정ㆍ이은숙ㆍ손기철 * 건국대학교원예과학과 Effect of Foliage Plants on the adsorption and/or absorption of Indoor Fine Particulate Kim Yeo-Jung Lee Eun Sook Son Ki-Cheol* Dept. of Hort., Konkuk university, Seoul 143-701, Korea (* corresponding author) Abstract. This study was conducted to investigate the effect of indoor temperate, relative humidity, light intensity, and day/night period on the removal rate of particulate as affected by foliage plants, and to evaluate correlation between physiological factors and particulate removal efficiency of foliage plants. In Ficus elastica, there was no difference in the removal efficiency of particulate according to the change of temperature, but showed rapid removal rate of particulate as relative humidity (RH) increased, despite of considering that the removal efficiency of particulate by foliage plant would be reduced by low stomatal conductance at higher RH. Light was also found to influence significantly the removal rate of particulate by foliage plants. In removal efficiency of particulate during day and night period, there was no difference in the removal efficiency of TSP(total suspended particulate), regardless of plant species, but the removal rate of 1.0μm and 0.5μm particle was highest during day period. Furthermore, the more particle size was small, the more the removal efficiency of particle by foliage plants increased. In both Ficus elastica and Ficus benjamina, photosynthetic rate and transpiration among several physiological factors were highly correlated with - 218 -
the removal rate of particulate by foliage plants with significance at 0.01 level. In conclusion, it was suggested that the presence of plant was very effective in removal of particulate at indoor space, because foliage plants absorbed easily the fine particulate which was harmful to human health. 서언 분진입자의크기는공기중에부유하는입자의유해성을결정하는인자로서입자의부유시간, 호흡기계통상에서의침착위치및제거속도, 입자성분과수및표면적과관련이되어있으며, 분진의특성규명에가장중요한물리적요소이다 (Chow, 1995; 김등, 1998; 신등, 1996). 대기에존재하는입자상오염물질의크기는일반적으로 0.001~500μm이며대부분부유분진으로분류되는크기인 0.1~10μm의크기를갖는다 ( 김, 1991). 대기에서부유하고있는입자를통틀어 TSP( 총부유분진, Total Suspended Particulate) 라고하고, 직경이 10μm이하인입자를 PM 10, 또는 RSP( 호흡성분진, Respirable Suspended Particulate) 이라고한다. 또한, 2.5μm이하인입자는 PM 2.5, 또는미세먼지라고한다 ( 김등, 1998). 오염된도심지역에서분진의 90~95% 가미세분진이라고알려져있다. 0.1~ 1.0μm 크기의입자는폐속으로의침투가가장많고 (Battarbee 등, 1997; 김등, 1998), 빛의산란이최대로나타나가시도를감소시킨다 (Cass 등, 1992; 정등, 1992; 김등, 1986; Sloane 등, 1991). 그리고입자의크기가감소함에따라입자의표면적이급증하게되어, 입자가유해성가스및중금속에쉽게흡착하고인체에전달하는매체가되기도한다 ( 김, 1991; 김등, 1993). 또한, 0.1μm이하의입자들은분자와비슷한현상을보이고, 기체분자와충돌하여브라운운동 (Brown 運動 ) 을일으킨다. 더욱이, 미세분진은호흡기관을통한흡입으로인체에유해한영향을미치며, 분진피해로연간약 6만여명의사망자가발생된다고보고되고있다 (Walsh 등, 1984). Lohr와 Pearson(1996) 의보고에따르면분진은상대습도의영향을많이받지 - 219 -
만, 온도의영향은적고, 실내에서식물이있는곳은없는곳에비해 20% 정도분진이감소되었다고보고하였다. 그러나이러한보고는환경적인면과분진감소율간의관련성에대해비교하였을뿐, 분진의크기에따른감소율이나식물체자체의분진흡입에대해서는언급하지않았다. 따라서, 본연구에서는인도고무나무를이용하여온도, 습도, 그리고광에따른식물의생리적변화가분진제거에미치는영향을알아보고, 식물종에따라주 야간의분진제거율비교하여식물체내잎표면이분진에대한흡수능력을지니고있는지알아보고, 또한식물의생리적요인과분진제거율과의상관관계를구명하여실내식물이이러한미세분진의제거에미치는영향을알아보고자하였다. 재료및방법 환경조건에따른식물의분진제거율온도에따른식물의분진제거율비교 : 사용된식물은인도고무나무 (Ficus elastica) 로서, 평균광량이 200μmol m -2 s -1 이고 16/8(DT/NT)hr의광주기와온도 23, 습도 60% 조건의생육상챔버 ( 두리과학, DF-95G-1485) 에서순화시켰다. 측정시온도의조건은 20 와 30 로하였으며, 야간에 Ficus elastica 1개체를크기 60 60 90cm의작은밀폐형챔버에넣고, 챔버외부에서측정이이루어지도록하기위해서 Teflon 튜브를챔버내에각각식물의수관부 P1, 잎과잎사이의 P2, P2( 식물체 ) 로부터 10cm떨어진 P3에고정하였다. 이때튜브의길이는측정오차를최대한줄이기위해서 2m로일정하게하여이뤄졌다. 측정은 6시간동안 30분마다실시하였으며, TSP농도와입경별개수농도 (number concentration) 는각각디지털분진계 (Microdust pro, CASELLA CEL, USA) 와 particle counter (GT-521, SIBATA, Japan) 를사용하여미니펌프를통해일정유량으로배출되는분진을측정하였다. 측정후분진제거율을동일농도에서비교하기위해측정된값은 curve fitting - 220 -
function 의 ape 함수 (y= 분진농도, x= 측정시간 ) 를이용해유리다항식 (SigmaPlot 2000, USA) 으로만든다음, 초기분진농도를동일하게맞추었다. 습도에따른식물의분진제거율비교 : 습도에따른분진제거율비교는 60% 와 80% 로주간과야간을처리하여 TSP농도와 1.0μm와 0.5μm 입경의개수농도를조사하였다. 식물재료와측정방법은온도에따른식물의분진제거율비교실험에서와동일하게실시하였다. 또한, 습도의변화에따른식물의생리적인변화를알아보기위해광합성측정기 (LI-6400, Li-cor, USA) 를이용하여, 각각 60% 와 80% 의습도조건에서각각광합성율 (Pn) 과기공전도도 (CS), 증산량 (TR) 을측정하여비교하였다. 광의유무에따른분진제거율비교 : 식물은인도고무나무를사용하여 10개체 ( 전체부피의약 8%) 를전체부피 38.04m 3 인공간의창가에일렬배치하였다. 외부의일정하지않은자연광의영향을막기위해창문은커텐으로막고, 창가배치한식물의천정에인공광 (400W metal halide lamp) 을달아 200μmol m -2 s -1 의광량을설정하고일장은 4/4/4/4hrs (DT/NT/DT/NT) 로하였다. 한편, 측정기간동안공간내의평균온도와습도는각각 23±5, 70±10% 로유지하였다. 튜브를통해배출된분진을측정하기위해실내에분진흡착이적은 teflon 튜브를이용하여공간내에 4지점을설정하였다. 배출된공기는외부의분진측정기기에연결되어경시적으로측정되었다. 각지점은사람이앉아서작업할때호흡기관의높이인 120cm를기준으로하여, 식물쪽에는식물의수관부윗쪽 (P1) 과잎과잎사이 (P2) 에 2개의지점을설정하고, 식물체로부터 1m지점 (P3), 3m지점 (P4) 에총 4개의지점을설정하였다. 튜브의길이는측정오차를최소로하기위해 4m로일정하게하였다. 측정은 16시간동안 1시간마다실시하였으며, TSP농도는디지털분진계 (Microdust pro, CASELLA CEL, USA) 를사용하여미니펌프를통해챔버에서외부로 5L/min의유량으로배출되는분진을측정하였다. - 221 -
식물종별주 야간분진제거율비교관엽식물가운데실내식물로많이이용되고있는서양담쟁이 (Hedera helix), 인도고무나무 (Ficus elastica), 싱고늄 (Syngonium podophyllum), 벤자민고무나무 (Ficus benjamina), 파키라 (Pachira aquatica) 를대상으로실험을실시하였다 ( 이, 1991). 사용된재료는 2003년 1월말재배농가에서일괄구입하여 18cm의화분에혼합상토 (Sunshine mixed No.1, SunGro Inc., USA) 를사용하여이식하고자연광을 40% 차광하여 200±50μmol m -2 s -1 의광과온도 25±5, 습도 40±10% 를유지시켰다. 관수는 5일에 1번정도로하였고, 시비는액비 Technigro (N:P:K=24:7:5, SunGro Inc., USA) 20ppm을 1주일에한번씩엽면시비하였다. 크기 60cm 60cm 90cm의작은밀폐형챔버를생육상 ( 두리과학, DF-95G- 1485) 내에배치하여광도 180±20μmol m -2 s -1 와온 습도를제어하였다. 밀폐챔버안에지하부 ( 분토양 ) 를 sealing한식물을 1개체넣어 teflon 튜브를각각식물의수관부에 P1과잎과잎사이에 P2, P2( 식물체 ) 로부터 10cm떨어진 P3에고정하고, 이때튜브의길이는측정오차를줄이기위해 2m로일정하게하여외부에서측정하도록하였다. TSP(Total Suspended Particulate) 는산란광식디지털분진계 (Microdust pro, CASELLA CEL, USA) 를이용하여미니펌프를통해 5L/min의유량으로챔버에서배출되는분진을측정하였다. 입경별입자수는 particle counter(gt-521, SIBATA, Japan) 를사용하여 3L/min의유량으로배출되는분진을측정하였다. 분진발생은실내오염의원인중가장많은부분을차지하는 ETS를이용하여초기농도가 800μg/m 3 이되도록하였으며, 주간과야간에각각 6시간동안 30분간격으로측정하였다. 밀폐형챔버내의온 습도는실내종합환경측정기 (BABUC, Italy) 로모니터링하였고, 온도 23 와습도 60% 가되도록제어하였다. 분진제거율은 TSP농도와입경별개수농도 (number concentration) 를 6시간동안 30분마다측정하였으며, 동일농도에서비교하기위해측정된값은 curve fitting function의 ape함수 (y= 분진농도, x= 측정시간 ) 를이용해유리다항식 (SigmaPlot 2000, USA) 으로만든다음, 초기분진농도를동일하게맞추었다. - 222 -
식물의생리적요인과분진제거율간의상관관계식물은인공광의평균광량이 180±20μmol m -2 s -1 되고 16/8hr(DT/NT) 의광주기로온도 23, 습도 60% 가되도록제어하는환경조절생육상 ( 두리과학, DF-95G-1485) 에서순화시킨인도고무나무와벤자민고무나무를사용하였다. 광에따른광합성반응은광합성측정기 (LI-6400, Li-cor, USA) 를이용하여광을 0, 50, 100, 150, 200, 250μmol m -2 s -1 로달리하면서광합성율을측정하였다. 이때온도는 23, 습도 60%, CO 2 농도는 400μmol/mol으로하였으며, 각식물당 2개의잎을반복측정하였다. 요인분석은분진제거율에관여하는요인을구명하기위하여실시하였으며, 광도 (LI), 광합성율 (Photo), 기공전도도 (CS), 엽육내 CO 2 농도 (CI), 증산량 (TR) 을분진측정직후에측정하였다. 결과및고찰 환경조건에따른식물의분진제거율온도에따른식물의분진제거율비교 : 야간온도를달리주었을때, 인도고무나무는 TSP농도뿐만아니라분진의개수농도 (1.0μm와 0.5μm) 에서도변화가거의없었다 (Fig. 1). 이것은온도가분진감소율에영향을미치지않는다는 Lohr와 Pearson(1996) 의연구결과와동일하다. 결국, 야간의주위온도나식물체자체의호흡은식물의분진제거능과직접적인관련이없는것으로판단된다. 분진의흡착은두가지형태로나뉜다. 부착된입자가온도상승으로다시떨어져나가는물리적흡착과일단부착된후에는떨어져나가지않는화학적흡착이있다. 화학적흡착이일어나지않은이상, 온도가상승한다면물리적흡착에의해부착되어있던입자가다시떨어져나가게되어대기중의분진은증가할것이다. 그러나본실험에서처리간차이가없는것으로볼때, 온도가분진에미치는영향은극미하다고볼수있겠다. 습도에따른식물의분진제거율비교 : TSP 농도는상대습도 80% 의주간에서 특이적으로빠른감소율을보였다 (Fig. 2). 60% 의습도에서도야간보다주간에 - 223 -
서빠른분진제거가나타났으며, 80% 에서는더욱큰차이가나타났다. 또한, 야간에도 60% 의습도에서보다는 80% 의습도에서빠르게분진이제거되었다. TSP농도비교에서는 80% 의주간에서특이적인제거가일어난반면에 (Fig. 2A), 개수농도의비교에서는 1.0μm의입경의주간에초기농도가습도60% 에비해 80% 에서 2배정도많은분진이감소되었다. 그러나시간이갈수록 80% 주간의그감소폭이줄어들었다 (Fig. 2B). 한편, 0.5μm 입경의주간초기에습도 80% 가습도 60% 보다 10% 정도많은분진감소를꾸준히보이다가점점그차이는더많아졌다 (Fig. 2C). 야간의경우, 습도 80% 와 60% 모두에서시간이지남에따라꾸준히분진감소율이증가하였다. 한편, 습도가 60% 와 80% 일때동일한개체로각각의생리적반응을살펴보면, 80% 의높은습도에서식물은기공이닫히게되면서기공전도도가떨어지게되고광합성율도낮아져오히려증산량이감소된다 (Table 1). 위의결과로보아습도의증가로식물의기공전도도가떨어져분진을제거할수있는능력이저하됨에도불구하고 80% 의습도에서급격한감소가일어나는것은식물에의한제거뿐만아니라, 외부공중습도에따른분진자체의특성인것으로판단된다. 이는, 습도가증가할때, 공기중에부유하는입자들의무게가증가되고, 따라서습도가낮을때에비해더높은비율로축적될것이라는 Green(1984) 의보고와도일치한다. 또한, 주간에 1.0μm 크기입자의제거율은시간이경과됨에따라점점완만해지지만, 0.5μm 크기입자의제거율이점점높아진것은식물이분진의입자가작을수록쉽게제거할수있을것이라판단된다. 그러므로, 차후의실험에서식물의순제거율을보기위해서는습도제어가필수적이라할수있다. 광의유무에따른분진제거율 : Jordan(1975) 은식물이주간에기공의흡수에의해분진을제거할것이며, 식물로흡수되어지는입자는직경 1μm이하의분진일것이라고주장하였다. 약 38.04m 3 정도되는밀폐된공간에식물을두었을때, 시간에따른분진의농도변화를살펴본결과, 광의유무에따른감소폭에큰차이가나타났다 (Fig. 3). 논리적으로생각할때는, 미세부유분진은주간에광에너지의영향을받아분 - 224 -
자운동이커져, 결과적으로 P1에서 P4까지의모든측정위치에서분진제거율은야간에비해낮아져야한다. 그러나, 실험결과에따르면, 정반대의결과가나타났다. 그림에서 a와 c는광존재시분진의감소폭이고, b와 d는암기에서의감소폭이다. 암기에서의감소기울기가완만한데비해, 광존재시감소기울기가상대적으로급격하게나타나는것으로보아식물이주간에더빠르게분진을제거할수있을것이라고판단된다. 이러한사실은식물에의한분진제거가단순한흡착뿐만이아니라 Jordan의보고대로기공을통한분진흡수가진행되고있음을어느정도단정지을수있다. 한편, P1에서 P4까지의측정위치간의차이는나타나지않았다. 식물종별주 야간분진제거율비교식물종에따른주 야간분진제거율을비교하기위하여서양담쟁이, 인도고무나무, 싱고늄, 벤자민고무나무, 그리고파키라의분진제거율을측정한결과, TSP에서대조군과식물군간의뚜렷한차이가있는것은확인할수있었으나, 종별주 야간의차이는확인할수없었다 (Fig. 4). 특히, 대조군과식물군사이의폭을비교해볼때, 인도고무나무에서분진제거가가장많고벤자민고무나무, 서양담쟁이, 싱고늄, 그리고파키라의순으로분진이제거됨을알수있다. 이러한현상은실험1에서언급했듯이, 총분진제거율은엽면적이많을수록증가된다는사실을나타낸다. 한편, 종별 1.0μm의입경별개수농도를비교해보면서양담쟁이와싱고늄에서는대조군과식물군의차이가미미하게나타났지만, 대부분식물처리구의주간제거율은크게나타났다 (Fig. 5). 0.5μm의입경별개수농도비교에서도마찬가지로식물처리구의주간제거율이가장크게나타났다 (Fig. 6). 이렇듯, 주간의제거율이야간에비해뚜렷한것은식물이광에의한반응으로기공을열고 CO 2 를흡수하는과정에서대기중에부유하고있던미세분진이흡수된것이라고판단된다. 또한, 1.0μm입경을흡수한농도보다는 0.5μm입경을흡수한농도의폭이크고입경이작은입자일수록처리구간의차이가더크게나타났다. 즉, 입경이작은입자를식물이쉽게더많이흡수한다는것을알수있다. 이는 Jordan(1976) - 225 -
이제시한 1.0μm이하입경의분진을식물이흡수하기쉬울것이라는보고와일치한다. 대부분의종은야간에도분진제거가나타났는데 TSP로보았을때에야간제거율은인도고무나무가가장크고벤자민고무나무그리고싱고늄의순으로나타났다. 1.0μm와 0.5μm의입경별개수농도경우에는서양담쟁이와싱고늄, 인도고무나무순으로제거되었다. 이러한사실은결과적으로, 식물의종마다분진제거능이다르며, 이는이미밝혀진바와같이광합성에따른기공전도도와그외식물표피의특성이관여할것이라고판단된다. 또한, 야간에도주간보다는적지만식물종에따라제거량이다르며, 이는식물엽표면의특성뿐만아니라, 현재까지밝혀지지않은다른요인의개연성도시사하고있다. 식물의생리적요인과분진제거율간의상관관계분진제거량이비교적높은인도고무나무와벤자민고무나무를선발하여, 분진제거율과관련된생리적요인 ( 광합성율, 기공전도도, 엽육내 CO 2 농도, 증산량 ) 을조사한결과치로요인분석한결과, 인도고무나무의경우 TSP농도와 1.0μm, 0.5μ m의입경별개수농도 (particle count) 의분진제거량 (Y) 은모든생리적요인과 0.01% 의유의수준에서상관이있음을알수있었다.(Table 2, 3, 4). 특히, 그중에서도증산량과기공전도도에서고도의상관을보이고있어, 식물종에따른분진제거능의평가요인으로증산량과기공전도도가유효할것으로생각된다. 한편, 분진제거량에독립변수로관여하는증산량이나기공전도도는광에의해영향을받은것으로나타났다. 한편, 외부의상대습도는식물체의분진제거율에큰영향을미치지않는것으로나타났다. 벤자민고무나무의경우도인도고무나무와마찬가지로분진제거량은증산량과광합성율에서고도의상관을보였다 (Table 2, 3, 4). 뿐만아니라, 기공전도도에있어서도유의성은있으나인도고무나무에비해적은상관계수를보였다. 따라서, 두식물종은광합성율과증산량이분진제거율과상관이있는것으로보아두종모두흡착뿐만아니라분진의흡수도분명하다고생각된다. 또한, 식물종에따른흡수능에대한평가는광합성율이타당할것으로생각되어진다. - 226 -
초록본실험은식물이온도, 습도, 광, 그리고주 야간에따라분진제거에미치는영향을알아보고, 식물의생리적요인과분진제거율과의상관관계를구명하고자수행하였다. Ficus elastica는온도변화에따른분진제거에차이가없었다. 반면에, 습도가높을수록식물의기공전도도가낮아져분진을제거할수있는능력이저하됨에도불구하고빠른분진감소율을보였다. 또한, 광은식물의분진제거에상당한영향을미치는것으로나타났다. 식물종에따른주 야간분진제거를살펴보면, TSP에서는차이가없었으나, 입경별 (1.0μm와 0.5μm) 개수농도비교에서는대부분주간에분진제거율이가장크게나타났으며, 1.0μm 입경보다는 0.5μm 입경에서입자가작을수록더많이제거되었다. 또한입경별개수농도비교에서는작지만야간에서도분진제거가나타났다. 식물의생리적요인과분진제거율간의상관관계에있어서는인도고무나무와벤자민고무나무모두광합성율과증산량이분진제거율과상관이높은것으로나타났다. 인용문헌 Battarbee, J.L., N.L. Rose, and X. Long, 1997. A continuous, high resolution record of urban airborne particulates suitable for retrospective microscopical analysis. Atmos. environ. 31:171-181. Cass, G.R. and K.C. Moon. 1992. Visibility modeling using continuous aerosol size distribution monitors. Southern California air quality study data analysis. Proceedings of international speciality conference. AWMA. 187-192. Chow, J.C. 1995. Measurement methods to determine compliance with ambient air quality standards for suspended particles. A & WMA. 45:320-382. Chung, Y.S., T.K. Kim, and J.S. Chung. 1992. On Relationship of low - 227 -
visibility to air pollution in cities. J. KAPRA. 8:1-6. Green, G.H. 1984. The health implications of the level of indoor air humidity. Proc. 3rd Int. Conf. on Indoor Air Quality and Climate 1:71-78. Swedish Councill for Builing Research. Stockholm. Sweden. Jordan, M.J. 1975. Effects of zinc smelter emissions and fire on a chestnut-oak woodland. Ecology. 56:78-91. Kim, H.K., D.S. Kim, S.K. Kim, Y.S. Kim, J.K. Na, J.B. Lee, I.L. Jung, and M.S. Hong. 1993. Air pollution survey. DongHwa Books. P67-89. Kim, M.K., Y.R. Jung, and Y.S. Lim. 1998. Personal exposure to PM 10 and its concentration in public facilities. J. of the Korean Environmental Sciences Society. 7:185-190. Kim, P.S., Y.J. Kim, Y.H. Lee, S.H. Cho, and S.T. Ahn. 1986. A study on the characteristics of urban aerosol concentration in the size range of 0.01~1.0μ m. J. KAPRA. 2:41-50. Kim, Y.S. 1991. Development of standards and risk assessment of indoor and outdoor air pollutants. KOSEF 89-0705-03 KOSEF. Lee, J.S. 1991. Studies on the utility of foliage plant.journal of the Korean Institute of Garden. 9(2):37-46. Lohr, V.I. and C.H. Pearson-mims. 1996. Particulate matter accumulation on horizontal surfaces in interiors: influence of foliage plants. Atmospheric Environment. 30:2565-2568. Owen, M.K. and K.S Ensor. 1992. Airborne particle sizes and sources found in indoor air. Atmospheric Environment 26:2149-2162. Sin, H.J., T.J. Lee, and D.S. Kim. 1996. A study on the size distribution of trace metals concentration in the ambient aerosols. J. KAPRA. 12:67-77. Sloane C.S. 1991. Size-segregated fine particle measurements by chemical species and their impact on visibility impairment in Cenver. Atm. Env. 25A:1013-1024. Walsh, P.J., C.S. Dudney, and E.D. Copenhaver. 1984. Indoor Air Quality. CRS Press. - 228 -
TSP concentration (µg/m 3 ) 800 600 400 200 A 30 o C 20 o C 5000 Particle count (CPM) 4000 3000 2000 1000 B Particle count (10 3 CPM) 100 80 60 40 20 C 0 30 60 90 120 150 Time(min) Fig. 1. Change in removal rate of particulate as affected by night temperature. Symbols indicate 30 ( ) and 2 0 ( ) (A: TSP concentration, B: 1.0μm size particle, C: 0.5μm size particle). - 229 -
TSP concentration (µg/m 3 ) 800 60(D) 60(N) 80(D) 600 80(N) 400 200 A Particle count (CPM) 5000 4000 3000 2000 1000 B Particle count (CPM) 50000 40000 30000 20000 C 0 30 60 90 Time(min) Fig. 2. Change in removal rate of particulate as affected by relative humidity. Symbols indicate the day period of 60% humidity( ), the night period of 60% humidity( ), the day period of 80% humidity ( ), the night period of 80% humidity( ) (A: TSP concentration, B: 1.0μm size particle, C: 0.5μm size particle). - 230 -
TSP concentration (µg/m 3 ) 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 a b c d P1 P2 P3 P4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time(hr) Fig. 3. Difference in the removal rate of particulate between day and night period (a and c: Light condition; 200±10μmol m -2 s -1, b and d: dark condition). For the positions of P1, P2, P3, and P4, see materials and methods. - 231 -
800 600 400 CON (D) CON (N) Hedera helix (D) Hedera helix (N) 200 800 CON (D) CON (N) 600 Ficus elastica (D) Ficus elastica (N) 400 TSP concentration (µg/m 3 ) 200 800 CON (D) CON (N) 600 Syngonium podophyllum (D) Syngonium podophyllum (N) 400 200 800 CON (D) CON (N) 600 Ficus benjamina (D) Ficus benjamina (N) 400 200 1000 800 600 400 CON (D) CON (N) Pachira aquatica (D) Pachira aquatica (N) 200 0 30 60 90 120 150 180 Time(min) Fig. 4. Changes in TSP removal efficiency by foliage plants during day and night period. - 232 -
5000 4000 3000 CON (D) CON (N) Hedera helix (D) Hedera helix (N) 2000 1000 5000 CON (D) 4000 CON (N) Ficus elastica (D) 3000 Ficus elastica (N) 2000 1000 Particle count (CPM) 5000 CON(D) 4000 CON(N) Syngonium podophyllum(d) 3000 Syngonium podophyllum(n) 2000 1000 5000 CON (D) 4000 CON (N) Ficus benjamina (D) 3000 Ficus benjamina (N) 2000 1000 5000 CON (D) CON (N) 4000 Pachira aquatica (D) Pachira aquatica (N) 3000 2000 1000 0 30 60 90 120 150 Time (min) Fig. 5. Changes in 1.0μm particle removal efficiency by foliage plants during day and night period. - 233 -
100 CON (D) CON (N) 80 Hedera helix (D) Hedera helix (N) 60 40 20 100 CON (D) CON (N) 80 Ficus elastica (D) Ficus elastica (N) 60 40 20 Particle count (10 3 CPM) 100 CON (D) CON (N) 80 Syngonium podophyllum (D) Syngonium poophyllum (N) 60 40 20 100 CON (D) CON (N) 80 Ficus benjamina (D) Ficus benjamina (N) 60 40 20 100 CON (D) CON (N) 80 Pachira aquatica (D) Pachira aquatica (N) 60 40 20 0 30 60 90 120 150 Time (min) Fig. 6. Changes in 0.5μm particle removal efficiency by foliage plants during day and night period. - 234 -
Table 1. Effects of relative humidity on the changes of photosynthetic rate, stomatal conductance, and transpiration rate in Ficus elastica. Humidity(%) Pn z CS y TR x 60 5.387 0.06584 1.078 80 4.471 0.04837 0.551 z Pn; photosynthetic rate(μmol CO 2 m -2 s -1 ), y CS; stomatal conductance (cm -3 s -1 ), x TR; transpiration rate (μg cm -2 s -1) Table 2. Analysis of correlation coefficients (r) between removal rate of TSP, light intensity, photosynthetic rate, stomatal conductance, intercellular CO 2 concentration, and transpiration in Ficus elastica and Ficus benjamina. Species Variables Y z LI y PHOTO x COND w CI v TR u Y 1.000 0.938** 0.935** 0.948** 0.869** 0.953** LI 1.000 0.988** 0.929** 0.845** 0.901** Ficus PHOTO 1.000 0.954** 0.872** 0.927** elastica COND 1.000 0.951** 0.989** CI 1.000 0.929** TR 1.000 Y 1.000 0.928** 0.942** 0.741** 0.311 0.963** LI 1.000 0.908** 0.615** -0.027 0.830** Ficus PHOTO 1.000 0.676** 0.108 0.929** benjamina COND 1.000 0.526** 0.825** CI 1.000 0.436* TR 1.000 * Correlation is significant at the 0.05 level. **Correlation is significant at the 0.01 level. z Y; particulate removal rate of TSP(μg m -3 hr -1 ), y LI; light intensity (μmol m -2 s -1 ), x PHOTO; photosynthetic rate (μmol CO 2 m -2 s -1 ), w COND; stomatal conductance (cm -3 s -1 ), v CI; intercellular CO 2 concentration (μg L -1 ), u TR; transpiration (μg cm -2 s -1 ), - 235 -
Table 3. Analysis of correlation coefficients (r) between removal rate of particle diameter 1.0μm, light intensity, photosynthetic rate, stomatal conductance, intercellular CO 2 concentration, and transpiration in Ficus elastica and Ficus benjamina. Species Variables z Y LI PHOTO COND CI TR Ficus ealstica Y 1.000 0.932** 0.947** 0.910** 0.796** 0.904** LI 1.000 0.988** 0.929** 0.845** 0.901** PHOTO 1.000 0.954** 0.872** 0.927** COND 1.000 0.951** 0.989** CI 1.000 0.929** TR 1.000 Y 1.000 0.938** 0.959** 0.740** 0.214 0.958** LI 1.000 0.908** 0.615** -0.027 0.830** PHOTO 1.000 0.676** 0.108 0.929** Ficus COND 1.000 0.526** 0.825** benjamina CI 1.000 0.436* TR 1.000 * Correlation is significant at the 0.05 level. **Correlation is significant at the 0.01 level. z Variables; see the footnote of table 2. - 236 -
Table 4. Analysis of correlation coefficients (r) between removal rate of particle diameter 0.5μm, light intensity, photosynthetic rate, stomatal conductance, intercellular CO 2 concentration, and transpiration in Ficus elastica and Ficus benjamina. Species Variables z Y LI PHOTO COND CI TR Ficus elastica Y 1.000 0.917** 0.934** 0.929** 0.826** 0.930** LI 1.000 0.988** 0.929** 0.845** 0.901** PHOTO 1.000 0.954** 0.872** 0.927** COND 1.000 0.951** 0.989** CI 1.000 0.929** TR 1.000 Ficus benjamina Y 1.000 0.947** 0.949** 0.694** 0.179 0.941** LI 1.000 0.908** 0.615** -0.027 0.830** PHOTO 1.000 0.676** 0.108 0.929** COND 1.000 0.526** 0.825** CI 1.000 0.436* TR 1.000 * Correlation is significant at the 0.05 level. **Correlation is significant at the 0.01 level. z Variables; see the footnote of table 2. - 237 -
5 절. 실내식물의 TVOCs 제거효과 1. TVOCs 측정용실험기자재제작및분석기기가. TVOCs용 gas 챔버제작 (2대) 본실험을위해제작한가스챔버는 0.55m 0.58m 0.9m의크기로전체체적은 287.1L이다. VOCs gas의특성을고려하여재질은정면과윗면은투명유리로, 다른부분은 stainless steel로하였으며, 특히문이닿는부분과투명유리와 stainless steel과접하는부분은내화학성이높은 teflon 재질의 gasket으로처리하였으며, 가스누출방지를위해문바깥부분에는실리콘재질의 gasket으로이중처리하였다. 가스공급과배출을위해서챔버좌측상단면과하단면에 ball valve를장착하였고, gas-tighted syringe 로내부의공기를채취할수있도록챔버 5군데 ( 좌, 우, 상, 하 ) 에구멍을뚫고 connector로연결한후 septum을설치하였다. 챔버내부의공기를잘혼합시키기위해서 stainless steel 재질의 fan을좌측면두곳에설치하였으며, 자동조절기를통해서속도단계를조절할수있다. 또한, 챔버내부의습도조절을위하여, 이전에는눈으로식별가능한실리카겔을사용하였으나, 챔버내습도를지속적으로유지시키기에는다소어려움이있어다음과같은방법으로습도제어를하였다. 챔버내에지름 0.95cm의스탠파이프를장착하고, 자동온도조절이되는수조 ( 비전과학, VS-190C) 로부터펌프를통해서차가운물 (8-10 ) 이스탠파이프를순환함으로써챔버내습도를 50-60% 로유지시켰다. TVOCs sensor( 한국산업기기, TVOC Sniffer-D) 와습도센서는챔버내부에설치하기위해좌측하단부분에 51mm 21mm의구멍을뚫었으며, 센서를장착한후 teflon 판으로막은후, teflon tape로밀폐시켰다. 제작된챔버는환경조절생육상 ( 두리과학, DF-95G-1485) 내에두어광은 200μmol m -2 s -1 로, 온도는 23±1, 습도는 50~60% 로환경을조절하였다. - 238 -
정 면 590 550 900 900 좌측면 우측면 : 가스순화 stainless 재질의 fan : fan on/off 및속도자동조절기 : 챔버내 TVOCs 센서및습도센서장착을위한 teflon판 (51mm 21mm) 설치 : 가스공급및배출을위한 ball valve : 챔버내온 습도조절을위한물공급용 ball valve : 가스 sampling 채취하는곳 Fig. 1. VOCs 가스챔버모식도 - 239 -
Fig. 2. VOCs 가스챔버사진 나. TVOCs 측정기기최근, 실내에장기거주가증가함에따른실내공기질의중요성이인식되고있는시점에서실외보다실내에더많이존재하며인간의건강에해를끼치는물질중의하나인 VOCs 제거에대한식물의영향을조사하고자, TVOCs를실내에존재하는농도로측정할수있으며, 실시간으로간편하게측정할수있는 PID(photo ionization detector) 원리인 TVOCs Sniffer-D( 한국산업기기 ) 를구입하여본실험에사용하였으며, 기기에대한사양은 Table 1에나타내었다. Table 1. Technical specification (TVOC Sniffer-D) Measuring component Total aromatic VOC & BTEX PID lamp 10.6eV Smallest measuring range 0.010ppm(ambient, indoor monitoring application) Max measuring range 10ppm linear (Max 20ppm Non-linear) Resolution <10ppb(LMR) Accuracy +/-1% Repeatability +/-1% Output 0-1VDC in 20ppm Signal Control Case 220VAC/ 50/60 Hz TVOCs 측정하기 위한 장치 (TVOC Sniffer-D, 한국산업기기 ) 는 photo ionization detector(pid) head, signal control box, data acquisition unit and power adaptor, RS 232 cable로구성되어있다 (Fig. 3). - 240 -
Fig. 3. TVOCs 장치구성품 다. 실험진행상 TVOCs 기기로인한문제점 (1) 진도보고서에서이미언급한바, TVOCs 센서가가스공급후초기 (1~2 회정도 ) 에는실험데이터를얻을수있었으나, 3회이상실험을진행할경우는기기의감도가전혀나타나지않아서연속적으로실험을진행할수없었음. (2) 초기에이런문제점을전원접촉불량또는 VOCs 가스로인한 PID lamp에오염된물질이흡착이되었다고생각하여직접한국산업기기를방문하거나그곳으로장비를보내어 N2 gas로 lamp cleaning 또는 n-hexan으로 span zero를조정하였음 ( 총 6~8회 ). (3) 그러나, 이런문제가자주발생하였으며, 한국산업기기측에서직접 3~5 차례본실험실에방문하여기기를점검해주었으나, 문제점은해결되지 못했음. (4) 한국산업기기에서구입한 TVOCs 센서 (2 개 ) 를 5 월중순경미국으로보 냈으나, 본실험의문제점에대한뚜렷한이유는알수없었음. (5) TVOCs 측정기는대기중상태에서측정이잘되지만, 챔버내에측정장 비를넣고가스실험을하면점점감도가없어지는것이문제점임. - 241 -
(6) 따라서, TVOCs 측정장치로인하여실험이계획한시일보다상당히지 연되어 6 월초부터챔버내의정확한 VOCs 가스분석을위하여 gas chromatography (GC) 로 setting 을시작함. (7) TVOC 측정기는 2 년차실증실험에사용할예정임. 라. TVOCs(BTX) 표준가스제작및 GC 분석 (1) TVOCs(BTX) 표준가스제작 TVOCs(BTX) 의가스조성은 Table 2 에나타냈으며, 혼합표준가스 시료에대한 retention time 을확인하는데사용하였다. Table 2. 혼합 BTX 의 standard gas Components Concentration (mol/mol) Retention time (min) Area Benzene 2.10 ppm 2.516 11940 Toluene 1.04 ppm 3.709 6533 o-xylene 2.07 ppm 6.824 14145 m-xylene p-xylene Nitrogene 2.07 ppm 2.06 ppm Balance 5.930 28482 Fig. 4. Rigas 에서제작한 BTX Standard gas - 242 -
m,p-xylene Benzene o-xylene Toluene Fig. 5. BTX standard gas 의 chromatogram(gc 조건은아래의표 2 와동일함 ) 공시가스로사용된벤젠, 톨루엔, 크실렌의특성을 Table 3 과같다. Table 3. 벤젠, 톨루엔, 크실렌의화학특성 Gas Molecular Molecular Water Boiling point weight formular solubility Benzene 78.11 C 6 H 6 80.2 insoluble Toluene 92.14 C 7 H 8 110.6 insoluble m-xylene 106.16 C 6 H 4 (CH 3 ) 2 139.1 insoluble o-xylene 106.16 C 6 H 4 (CH 3 ) 2 144.4 insoluble p-xylene 106.16 C 6 H 4 (CH 3 ) 2 138.4 insoluble (2) TVOCs(BTX) 의 GC 분석챔버내 BTX 가스농도를측정하기위해서capillary column(vb-624,.32mm 1.8μm 30m) 이연결된 gas chromatography (Shimadzu G-14A, Japan) 를사용하였다. TVOCs 가스분석을위한 GC 분석조건은 Table 4. - 243 -
에나타내었다. Fig. 4. TVOCs(BTX) 가스분석을위한 GC 조건 Instrument Shimadzu Gas Chromatography G-14A Column VB-624, 0.32mm 1.8μm 30m Detector FID Carrier gas N 2 Column flow rate 1~2 ml/min Oven temp. 100 Inj. temp. 200 Det. temp. 270-244 -
2. 실내식물종류별에따른주 야간동안의 TVOCs(BTX) 제거효과 류명화ㆍ손기철 * 건국대학교원예과학과 Removal efficiency of TVOCs (BTX) by indoor plants during day period and night period Myung Hwa Yoo ㆍ Ki-Cheol Son* Dept. of Horticultural Science, Konkuk Univ., Seoul 143-701, Korea (* Corresponding author) Abstract. This study was conducted to investigate removal efficiency of indoor plants exposed to volatile organic compounds (TVOCs) containing benzene, toluene, and m, o-xylene (BTX) during day/night period. For experiment, Hedra helix L., Spathiphyllum Schott., Ficus benjamina L., Pachira aquatica, Dracaena deremensis ac. Warneckii Compacta, Syngonium podophyllum, Dieffenbachia amoena, and Ficus elastica were selected and placed in airtight chamber which had 0.2871m 3 (0.55 0.58 0.90m) volume. After 4ppm mixed gas was injected into an airtight chamber, removal efficiency by plants placed in the chamber was examined for 12 hours (light intensity:100μmol m -2 s -1 ) and night (light intensity:0μmol m -2 s -1 ). In this case, the pot was sealed with teflon film, only the above plant part was exposed to TVOCs in order to get rid of the influence of both soil and soil microorganisms. Among indoor plants, Syngonium podophyllum showed the most removal efficiency of TVOCs during day period than night period, and Ficus elastica showed the same tendency though the decreased range as time goes was less than Syngonium podophyllum. - 245 -
According to the results of BTX removal efficiency per unit area, Syngonium podophyllum, Hedra helix, Pachira aquatica, Spathiphyllum spp. were showed higher than others in benzene removal. In removing toluene, Syngonium podophyllum was most effective, and followed by Dieffenbachia amoena and Hedra helix. Syngonium podophyllum was most effective in removal of xylene, followed by Dieffenbachia amoena. In conclusion, it was found that Syngonium podophyllum was the most effective species in removing of BTX gas although removal efficiency according to each gas was not equal. 서 언 오늘날현대인들이 80% 이상의시간을보내고있는실내공간은밀폐적인구조와환기율감소및다양한오염물질의발생으로인하여실내공기질이저하되고있다 (Jenkins 등, 1992; Snyder, 1990). 따라서, 실내공기질이악화됨에따라빌딩증후군 (Sick Building Syndrome: SBS) 및복합화학물질과민증 (Multi-Chemical Sensitivity: MCS) 등이유발되어인간의건강에해로운영향을끼치며 (Ingrosso, 2002; Hayashi 등, 2004; Jones, 1999), 더나아가서는인간의삶의질 (Quality of Life: QOL) 을감소시키는데큰영향을미친다. 실내공기오염물질중에서도휘발성유기화합물질 (Volatile Organic Compounds: 이하 VOCs) 은건축자재, 카페트, 접착제, 청소용품, 방향제, 화장품, 흡연등다양한오염원에서방출되며 (Hansen, 1999; Godish, 1989; Kim 등, 1997; Shin 등, 1993; Sohn과 Yoon, 1995), 실내에서는복합적으로존재하고있다. 또한, VOCs 농도는실외보다실내가 2-100배이상높은것으로나타난다 (Godish, 1994). 한편, 실내공기질개선에대한일반인들의관심이증가됨에따라, 다양한공학적인방법들이제시되고있으나, 고가의장비가요구될뿐만아니라오히려새로운오염물질을방출시키는등여러가지문제점을지니고있다 (Sohn과 Yoon, 1995; Son 등, 2000; Wolverton, 1997). 따라서, 최근에는식물을이용하여 CO 2, - 246 -
O 3, 미세분진, 포름알데히드, 휘발성유기화학물질등실내오염물질을감소시키는연구가최근시도되고있다 (Darrall, 1989; Han, 2001; Hong, 2000; Lee와 Yoon, 2003; Lohr와 Pearson-Mims, 1996; Shemel, 1980; Wolverton, 1986; Wood 등, 2002). 식물은기공을통해수증기를대기중으로방출함과동시에대기중의이산화탄소를흡수하여광합성을하는데, 이러한과정에서가스상오염물질은기공을통해서함께흡수되므로대기중의오염물질농도는감소된다 (Han, 2001; Hong, 2000; Son등, 1998). 지금까지의연구들은대부분소형챔버를이용하여고농도또는저농도의단일 VOC 가스를처리하여식물의오염물질제거능력에대해서연구를해왔다 (Cornejo 등, 1999; Godish와 Guindon, 1989; Han, 2001; Hong, 2000; Wolverton, 1986; Wood 등, 2002). 그러나, 실제로 VOCs는복합적으로실내에존재하기때문에복합 VOCs 처리에대한식물의제거능력에대한연구가필요하다고생각된다. 따라서, 본연구는몇가지실내식물을이용하여 VOCs 특성에맞는챔버를제작하여실제실내에서발생하는휘발성유기화합물질 (VOCs) 인 benzene, toluene, xylene (BTX) 의제거효과와그에따른식물의생리적변화를구명하기위해서실시하였다. 재료및방법 식물재료본실험의공시재료는실내에서많이이용하고있는아이비 (Hedera helix), 스파티필름 (Spathiphyllum spp.), 벤자민고무나무 (Ficus benjamina), 파키라 (Pachira aquatica), 드라세나와네키 (Dracaena deremensis cv. Warneckii Compacta), 싱고니움 (Syngonium podophyllum), 디펜바키아 (Dieffenbachia amoena), 인도고무나무 (Ficus elastica) 로하였다. 모든식물들은경기도일대에서일괄구입하여, 직경 18cm포트에하이드로볼로분갈이한후, 자연광을 80% 차광하여 100±30μmol m -2 s -1 PAR, 온도 25±5 와습도 50±10% 를유지시킨유리온실에서 6개월이상순화시켰다. 관수는 1~2일에한번씩하였고, 2주마다액비 Technigro(N: - 247 -
P:K=24:7:5, SunGro Inc., USA) 를 200ppm 으로시비하였다. 식물의특징및표 면적은 Table 2-1 에나타내었다. 가스실험에사용하기위해식물들은 100μmol m -2 s -1 PAR, 온도 24 와습 도 50~60% 로환경이제어되는환경조절생육상 (DF-95G-1485, 두리과학 ) 에두 어한달동안순화시킨후, 측정하기하루전에충분히관수하여다음날사용 하였다. Table 2-1. Characteristics of foliage plants used for the experiment. Plant species Plant age Total leaf area (years) (cm 2 ) Hedera helix 2 1509±185 Dieffenbachia amoena 2 3267±155 Dracaena deremensis cv. Warneckii Compacta 2 2942±123 Ficus benjamina 2 3336±265 Ficus elastica 3 3950±49 Pachira aquatica 2 3771±108 Spathiphyllum spp. 2 3283±181 Syngonium podophyllum 2 1488±125 가스처리및측정가스처리는투명유리와 stainless 재질로구성된가스챔버내 (0.55m(W) 0.58m(L) 0.9m(H), 287.1L) 에복합 BTX 가스농도를 4.0±0.5ppm(benzene: toluene: m-xylene :o-xylene=0.5ppm:3ppm:0.25ppm:0.25ppm) 이되도록하였다. 가스주입전에분상태의식물을먼저넣었으며, 이때분, 배지, 그리고토양미생물이가스제거에미치는영향을제거하고자 teflon 비닐로화분부위를밀폐하여지상부만가스에노출되도록하였다. 주간과야간동안의가스제거효과를비교하고자주 야간각각 12시간동안 2시간간격으로챔버내가스농도를경시적으로측정하였다. 챔버내가스농도측정은챔버두지점에서 ( 상, 하 ) gas-tight syringe (Hamilton Co., USA) 로 0.5ml를취하여 GC로분석하였다. 매실험시가스처리전에는이전실험으로잔존해있는 VOCs를제거하기위해챔버를 90% 에탄올로닦았다. 실험에들어가기전에빈챔버의배경농도를 - 248 -
검사하였고, 이때벤젠, 톨루엔과크실렌은전혀검출되지않았다. 또한, 챔버내에식물을정치시키지않은상태에서가스를주입한후누기량을조사하였으며, 각식물당 3개체씩반복측정하였다. 데이터분석방법모든데이터는밀폐챔버내에식물을넣은상태의농도변화에서빈챔버의누기량을뺀값으로계산하였다. 실험동안사용된 ppm단위는 mg/m 3 으로환산하였으며, 24, 1기압을기준으로계산하였다 (Hines 등, 1993). 각각동일농도에서비교하기위해서초기농도를 0으로보정한후, 각측정시각까지의총감소량을 + 값으로나타내었다. 또한, 모든측정은 3회반복으로하였으며, 그데이터값은평균 ± 표준오차로나타내었다. 식물체의가스오염물질의제거량 (A) 과단위엽면적당오염가스제거효율 (B) 은아래의식에따라산정하였다. 식 1) 식 2) A (mg m -3 cm -2 leaf area) = (P F CV)/L B (mg m -3 hr -1 cm -2 leaf area) = (P F CV)/(L T) P = 근권부를제외한잎을통해감소된농도 (ppm) F = 부피농도에서중량농도로의환산계수 CV = 챔버부피 (0.55m 0.58m 0.90m) L = 전체엽면적 (cm 2 ) T = 오염가스노출시간 (hr) 결과및고찰 복합 BTX를밀폐된챔버내에총 4.0±0.5ppm(benzene:toluene:m-xylene:oxylene=0.5ppm:3ppm:0.25ppm:0.25ppm) 이되도록처리한후, 12시간동안 8종식물 [ 아이비 (Hedera helix), 스파티필름 (Spathiphyllum spp.), 벤자민고무나무 (Ficus benjamina), 파키라 (Pachira aquatica), 드라세나와네키 (Dracaena deremensis cv. Warneckii Compacta), 싱고니움 (Syngonium podophyllum), 디펜바키아 (Dieffenbachia amoena), 인도고무나무 (Ficus elastica)] 의가스제거능력을살펴보면, 초기에처리농도의대부분이흡수되어지는 O 3, SO 2, NOx 등의 - 249 -
오염물질과달리복합 BTX의경우에는시간경과에따라꾸준히제거되는경향을나타냈으며 (Hong, 2000), 각가스종류에따라주간이야간보다제거효과가많은식물, 또는주 야간의차이가없거나오히려야간이주간보다제거효과가큰식물도있었다 (Fig. 1~8). 그중에서도벤젠과톨루엔의제거에서는싱고니움과아이비가다른식물종에비해제거효과가크게나타났다 (Fig. 3, 4). 그러나, 싱고니움은야간에비해주간에제거효과가크게나타난반면, 아이비는이와상반된경향을나타내었다 (Fig. 3, 4). 또한, 싱고니움, 인도고무나무와아이비를제외한식물들은대부분주 야간의차이가나타나지않았다 (Fig. 1~8). 크실렌의제거에서는인도고무나무의 m-xylene을제외하고는대부분주 야간에차이가나타나지않았으며 (Fig 1~8), 아이비와벤자민고무나무에서는주간에비해야간에제거효과가크게나타났다 (Fig. 4, 6). 식물의단위엽면적당벤젠가스제거효율을살펴보면, 주간에는싱고니움과아이비가각각 29.3±3.1ng m -3 hr -1 cm -2 와 20.0±8.7ng m -3 hr -1 cm -2 로제거효율이높은반면, 드라세나는 9.5±6.5ng m -3 hr -1 cm -2 로제거효율이가장낮았다 (Table 1). 한편, 톨루엔의경우에서는싱고니움과아이비가 266.3±25.8ng m - 3 hr -1 cm -2 와 186.8±57.7ng m -3 hr -1 cm -2 로제거효율이높았으나, 인도고무나무는 92.0±12.1ng m -3 hr -1 cm -2 로제거효율이가장낮았다 (Table 2). 또한, m- 크실렌에서는디펜바키아와인도고무나무가높은제거효율을나타내었으며, o- 크실렌에서는싱고니움과디펜바키아가제거효율이높게나타났다 (Table 3, 4). 야간동안에는아이비, 디펜바키아와싱고니움이단위엽면적당벤젠가스제거효율이높게나타났으며 (Table 1), 톨루엔의경우에는아이비, 싱고니움과벤자민고무나무순으로제거효율이높았다 (Table 2). 또한, m-크실렌과 o-크실렌에서는모두디펜바키아와벤자민고무나무가제거효율이높게나타났다 (Table 3, 4). 그러나, 단위면적당제거효율이아닌전체식물주지상부의복합 BTX 제거능력을살펴보면, 디펜바키아가가스처리 12시간후에초기농도인 4.0±0.5ppm (15.07mg m -3 ) 에서 2.17ppm(8.38mg m -3, the surface area: 3267 ±185) 으로가장많이제거하였으며, 벤자민고무나무는 2.11ppm(8.15mg m -3, the surface area: 3336±265) 으로제거효과가높게나타났다 (data not shown). 반면, 단위엽면적당 - 250 -
제거효율이높았던아이비는 1.68ppm(6.50mg m -3, the surface area: 1509±185) 으로제거능력이가장낮게나타났다 (data not shown). 이러한결과는전체식물주의표면적의차이로나타난것이다. 따라서, 단위엽면적당제거효율이높은식물일지라도식물체의표면적이적으면최종적으로 VOCs 제거효과는적게나타난다 (data not shown). 그러나, 표면적이가장넓은인도고무나무와파키라는각각 1.95ppm(7.50mg m -3, the surface area: 3950±49) 과 1.86ppm(7.17mg m -3, the surface area: 3771±108) 으로중하위의제거효과를나타났다 (data not shown). 결론적으로, 식물체당 VOCs 제거에는단위엽면적당제거효율이높으나표면적이적은식물보다제거효율이다소적더라도표면적이넓은식물이효과적일것이다. 그러나, 표면적이넓은식물일지라도 VOCs의제거효율이적은식물이라면최대의 VOCs 제거효과는기대할수없을것이다. 따라서, 실내의 VOC의제거효과를최대한높이기위해서는표면적이넓을뿐만아니라 VOCs 제거효율이높은식물을선정하면더좋은효과를얻을것이라생각된다. 또한, 식물종에따른 VOCs 제거능력의차이는잎의특성에따라달라질수있다. Baldini 등 (1997) 에의하면, 식물마다잎의특성이다양하게나타나는데, Ficus carica의엽표면은원추형모양의 trichome이있으며, 앞과뒷면에기공의수가많고, 울퉁불퉁하게분포되어있는반면, Hedera helix는털이없이매끈하며, 잎뒷면에만기공이있는것으로나타났다. 따라서, 벤자민고무나무 (Ficus benjamina) 는잎의특성으로인하여 VOCs를잎표면과이면의표피세포를통한흡수또는흡착이많이이루어져서, 기공수가적은아이비에비해가스제거효과가높은것으로생각된다. 따라서, 잎의특성에따라 VOCs 제거능력이달라질수있다고생각되며, 차후에는식물의잎특성에따른 VOCs 제거능력에대한실험이필요하다고생각된다. 결과적으로, 식물의복합 BTX 제거능력은식물종, 가스종류와주 야간에따라다르게나타났다. 특히, 복합 BTX 제거에효과적인싱고니움과아이비는서로상반된제거양상을나타내었는데 (Table 1, 2, 3, 4), 싱고니움은야간보다주간에복합 BTX를높게제거한반면, 아이비는주간보다야간에 BTX제거효과가크게나타났다. 한편, 식물은기공을통해서가스교환시대기중의오염물질을흡수하고이를체내다른부분으로전류시키거나생물학적으로이를분해하 - 251 -
는능력을가지고있으며 (Son 등, 2000; Wolverton, 1986; Wood 등, 2002), 배지입자및토양미생물에의해서도오염물질을흡수및흡착되는것으로알려져있다 (Wolverton과 Wolverton, 1993). 그러나, 본실험에서는근권부의영향을배제한식물의지상부의제거능력을살펴본것으로, 주간동안에는식물이기공을통하여오염물질을흡수함과동시에식물의잎과줄기에흡착이되어져오염물질을제거하지만, 야간에는기공이닫히므로오염물질을대부분흡착하여제거되어질것으로생각된다. 따라서, 식물이야간에비해주간에오염물질의제거효과가큰것은흡착에의한것보다는기공을통한가스흡수능력이더크기때문이라고판단된다. 따라서, 싱고니움의 VOCs 제거는기공을통한가스흡수능력에따라영향을많이받기때문에, 야간보다는주간에오염물질제거가높게나타났으며 (Table 1, 2, 3, 4), 이와상반된경향을나타낸아이비는기공을통한흡수보다는흡착을통해서복합 BTX가제거된다고생각된다. 그러나, 아이비의가스제거능력은주간보다는야간에제거효과가비슷하거나더높은경우도있었으므로 (Table 1, 2, 3, 4), 흡수혹은흡착이외의또다른요인으로인하여 VOCs가제거될것이라생각된다. 지금까지의연구결과에따르면, 실내식물들중에서아이비, 벤자민고무나무, 산세베리아, 스파티필름, 관음죽, 칼랑코에와제라늄등이벤젠에대한정화능력이뛰어난식물로나타났으며 (Cornejo 등, 1999; Hong, 2000; Wolverton 등, 1989; Wood 등, 2002), 스파티필름의경우에는야간에비해주간에벤젠이크게제거된다고보고되었다 (Hong, 2000). 그러나본실험의결과에따르면, 스파티필름은다른식물종에비해벤젠제거능력이낮았으며, 주 야간의가스제거능력차이도없었다 (Table 1). 이러한결과는본실험이선행연구와달리복합가스처리시식물의벤젠제거효과를조사한것에기인된것으로, 동일한식물종이라도가스처리방법에따라제거효과가다르게나타날수있음을시사하는것이다. 따라서, 실내식물의실용화를위해서는차후복합가스처리에따른식물종별 VOCs 제거효과능에대한재조사가이루어져야한다고판단된다. 초 록 - 252 -
실내식물종류별과주야간에따른 BTX에대한제거효과를알아보고자, 실내식물중서양담쟁이 (Hedera helix L.), 스파티필름 (Spathiphyllum Schott.), 벤자민고무나무 (Ficus benjamina L.), 파키라 (Pachira aquatica), 드라세나와네키 (Dracaena deremensis cv. Warneckii Compacta), 싱고니움 (Syngonium podophyllum), 디펜바키아 (Dieffenbachia amoena), 인도고무나무 (Ficus elastica) 를이용하여, 4ppm의혼합된 BTX 가스를 287.1L의밀폐된챔버내에주입한후주간 ( 광도 :100μmol m -2 s -1 ) 과야간 ( 광도 : 0μmol m -2 s -1 ) 각각 12시간동안식물의 BTX의제거효과를조사하였다. 식물은토양과토양미생물의가스제거에대한영향을없고자화분을 teflon 필름으로밀폐하여지상부부위만노출시켰다. 주 야간에따른 BTX 제거에있어서는싱고니움이다른식물에비해서야간보다는주간에 BTX를많이감소시켰으며, 인도고무나무도싱고니움보다감소폭은적지만동일한경향을나타냈다. 또한, 단위엽면적당 BTX 제거효과에있어서는싱고니움, 아이비, 파키라, 스파티필름이벤젠제거에가장좋았으며, 톨루엔제거에는싱고니움, 아이비, 디펜바키아순으로, 크실렌에있어서는싱고니움과디펜바키아순으로제거효과가좋았다. 따라서, 식물종류에따른 BTX 제거효과에있어서는가스종류별에따라제거효과가다르게나타났지만, 싱고니움이 BTX 가스제거에가장효과적인식물로나타났다. 인용문헌 Baldini, E., O. Facini, F. Nerozzi, F. Rossi, and A. Rotondi. 1997. Leaf characteristics and optical properties of different woody species. Tress 12:73-81. Cornejo, J.J., F.G. Munoz, C.Y. MA, and A.J. Stewart. 1999. Studies on the decontamination of air by plants. Ecotoxicology 8:311-320. Darrall, N.M. 1989. The effect of air pollutants on physiological processes in plants. Plant Cell and Environ. 12:1-30. Godish, T. and C. Guindon, 1989. An assessment of botanical air purification as a formaldehyde mitigation measure under dynamic laboratory chamber conditions. Environmental pollution 61:13-20. - 253 -
Godish, T. 1994. Sick building: definition, diagnosis, and mitigation. Lewis Publishers, Boca Raton. Hansens, D.L. 1999. Indoor air quality issues. Taylor & Francis, NY. Han, S.W. 2001. Removal efficiency of indoor air pollutant gases using orientgal orchids. PhD thesis. Seoul University, Seoul Women's University, Seoul. Hayashi, H,. N. Kunugita, K. Arashidani, H. Fujimaki, and M. Ichikawa. 2004. Long-term exposure to low levels of formaldehyde increases the number of tyrosine hydroxylase-immunopositive periglomerular cells in mouse main olfactory bulb. Brain Research 1007: 192-197. Hong, J. 2000. Benzene and formaldehyde removal by indoor foliage plants. Ph D. thesis. Korea University, Seoul. Ingrosso G. 2002. Free radical chemistry and its concern with indoor air quality: and open problem. Microchemical Journal 73:221-236. Jenkins, P.L. Phillips, T.J., Mulberg, E.J. and Hui, S.P. 1992. Activity patterns of Californians: use of and proximity to indoor pollutant sources. Atmospheric Environment 26A:2141-2148. Jones, A.P. 1999. Indoor air quality and health. Atmospheric Environment 33:4535-4564. Kim, M.G., C.O. Park, Y.J. Kwon, Y.K. Lee, and D.W. Lee. 1997. Variations of Concentration levels of volatile organic compounds in the indoor air due to floor waxing. J. KAPPA 13(3):221-229. Lee, J.H. and P.S. Yoon. 2003. A study on efficiency and mechanism of removing indoor pollutants used anion generated by indoor plants. J. of Korean Society for Plant, People, and Environment 6:81-92. Lohr, V.I. and C.H. Pearson-Mims. 1996. Particulate matter accumulation on horizontal surfaces in interiors: influence of foliage plants. Atmospheric Environment 30:2565-2568. Shemel, G.A. 1980. Particle and gas deposition. Atmospheric Environment 14:983-1011. Shin, H.S., Y.S. Kim, and G.S. Heo. 1993. Measurements of indoor and - 254 -
outdoor volatile organic compounds(vocs) concentrations in ambient air. J. KAPPA 9(4):310-319. Snyder, S.D. 1995. Environmental interioscapes. Whitney, NY. Sohn, J.Y. and D.W. Yoon. 1995. Characteristics and control of volatile organic compounds in indoor air environment. J. of Air Conditioning and Refrigeration 24:44-55. Son, K.C. and M.K. Kim. 1998. Influences of indoor light, temperature, absolute humidity, and CO 2 concentration on the changes of transpiration and photosynthesis rate of Pachira aquatica and their statistical modeling. J. Kor. Soc. Hort. Sci. 39:605-609. Son, K.C., S.H. Lee, S.G. Seo, and J.E. Song. 2000. Effects of foliage plants and potting soil on the absorption and adsorption of indoor air pollutants. J. Kor. Soc. Hort. Sci. 41:305-310. Wolverton, B.C., A. Johnson, and K. Bounds, 1989. Interior landscape plants for indoor air pollution abatement. NASA. USA. Wolverton, B.C. and J.D. Wolverton. 1993. Plants and soil microorganism : Removal of formaldhyde, xylene, and ammonia from the indoor environment. J. Miss. Aca. Sci. 38(2):11-15. Wolverton, B.C. 1986. Houseplants, indoor air pollutants and allergic reactions, National Space Technologies Laboratories, NASA. Wolverton, B.C. 1997. How to grow fresh air. Penguin Books USA. Wood, R.A, R.L. Orwell, J. Tarran, F. Torry, and M. Burchett. 2002. Potted-plant/growth media interactions and capacities for removal of volatiles from indoor air. J. of Hort. Sci. & Bio. 77(1):120-120. - 255 -
Benzene ( μg / m3 cm2 leaf area) 0. 4 0. 3 0. 2 0. 1 0. 0-0.1 d a y n ig h t 0 2 4 6 8 1 0 1 2 Toluene ( μg / m3 cm2 leaf area) 3 2 1 0 0 2 4 6 8 1 0 1 2 m-xylene ( μg / m3 cm2 leaf area) 0. 8 0. 6 0. 4 0. 2 0. 0 0 2 4 6 8 1 0 1 2 T im e ( h r s ) o-xylene ( μg / m3 cm2 leaf area) 0. 8 0. 6 0. 4 0. 2 0. 0 0 2 4 6 8 1 0 1 2 T im e ( h r s ) Fig. 1. Accumulated removal amount of BTX exposed in gas tight chamber by Spathiphyllum spp. ( : day period, : night period, The plant was exposed for 12 hours to the mixture of BTX, which were composed of benzene:toluene:m-xylene:o-xylene=0.5ppm:3ppm:0.25ppm: 0.25ppm). Benzene ( μg / m3 cm2 leaf area) 0.4 0.3 0.2 0.1 0.0-0.1-0.2 d a y n ig h t 0 2 4 6 8 1 0 1 2 Toluene ( μg / m3 cm2 leaf area) 3 2 1 0 0 2 4 6 8 1 0 1 2 m-xylene ( μg / m3 cm2 leaf area) 0. 8 0. 6 0. 4 0. 2 0. 0-0.2 0 2 4 6 8 1 0 1 2 o-xylene ( μg / m3 cm2 leaf area) 0.8 0.6 0.4 0.2 0.0-0.2 0 2 4 6 8 1 0 1 2 T im e (h rs ) T im e (h rs ) Fig. 2. Accumulated removal amount of BTX exposed in gas tight chamber by Ficus elastica. See Fig. 1 for details. - 256 -
Benzene ( μg / m3 cm2 leaf area) 0. 4 0. 3 0. 2 0. 1 0. 0-0.1 d a y n ig h t 0 2 4 6 8 1 0 1 2 Toluene ( μg / m3 cm2 leaf area) 3 2 1 0 0 2 4 6 8 1 0 1 2 m-xylene ( μg / m3 cm2 leaf area) 0. 8 0. 6 0. 4 0. 2 0. 0-0.2 0 2 4 6 8 1 0 1 2 o-xylene ( μg / m3 cm2 leaf area) 0. 8 0. 6 0. 4 0. 2 0. 0-0.2 0 2 4 6 8 1 0 1 2 T im e ( h r s ) T im e ( h r s ) Fig. 3. Accumulated removal amount of BTX exposed in gas tight chamber by Syngonium podophyllum. See Fig. 1 for details. Benzene ( μg / m3 cm2 leaf area) 0. 4 0. 3 0. 2 0. 1 0. 0-0.1 d a y n ig h t 0 2 4 6 8 1 0 1 2 Toluene ( μg / m3 cm2 leaf area) 3 2 1 0 0 2 4 6 8 1 0 1 2 m-xylene ( μg / m3 cm2 leaf area) 0. 8 0. 6 0. 4 0. 2 0. 0-0.2 0 2 4 6 8 1 0 1 2 o-xylene ( μg / m3 cm2 leaf area) 0.8 0.6 0.4 0.2 0.0-0.2 0 2 4 6 8 1 0 1 2 T im e (h rs ) T im e (h rs ) Fig. 4. Accumulated removal amount of BTX exposed in gas tight chamber by Hedera helix. See Fig. 1 for details. - 257 -
Benzene ( μg / m3 cm2 leaf area) 0. 4 0. 3 0. 2 0. 1 0. 0-0.1-0.2 d a y n ig h t 0 2 4 6 8 1 0 1 2 Toluene ( μg / m3 cm2 leaf area) 3 2 1 0 0 2 4 6 8 1 0 1 2 m-xylene ( μg / m3 cm2 leaf area) 0. 8 0. 6 0. 4 0. 2 0. 0-0.2 0 2 4 6 8 1 0 1 2 o-xylene ( μg / m3 cm2 leaf area) 0. 8 0. 6 0. 4 0. 2 0. 0-0.2 0 2 4 6 8 1 0 1 2 T im e (h rs ) T im e (h rs ) Fig. 5. Accumulated removal amount of BTX exposed in gas tight chamber by Dieffenbachia amoena. See Fig. 1 for details. Benzene ( μg / m3 cm2 leaf area) 0.4 0.3 0.2 0.1 0.0-0.1-0.2 d a y n ig h t 0 2 4 6 8 1 0 1 2 Toluene ( μg / m3 cm2 leaf area) 3 2 1 0 0 2 4 6 8 1 0 1 2 m-xylene ( μg / m3 cm2 leaf area) 0.8 0.6 0.4 0.2 0.0-0.2 0 2 4 6 8 1 0 1 2 o-xylene ( μg / m3 cm2 leaf area) 0. 8 0. 6 0. 4 0. 2 0. 0-0.2 0 2 4 6 8 1 0 1 2 T im e (h rs ) T im e (h rs ) Fig. 6. Accumulated removal amount of BTX exposed in gas tight chamber by Ficus benjamina. See Fig. 1 for details. - 258 -
Benzene ( μg / m3 cm2 leaf area) 0. 4 0. 3 0. 2 0. 1 0. 0-0.1 d a y n ig h t 0 2 4 6 8 1 0 1 2 Toluene ( μg / m3 cm2 leaf area) 3 2 1 0 0 2 4 6 8 1 0 1 2 m-xylene ( μg / m3 cm2 leaf area) 0. 8 0. 6 0. 4 0. 2 0. 0-0.2 0 2 4 6 8 1 0 1 2 o-xylene ( μg / m3 cm2 leaf area) 0. 8 0. 6 0. 4 0. 2 0. 0-0.2 0 2 4 6 8 1 0 1 2 T im e (h rs ) T im e ( h r s ) Fig. 7. Accumulated removal amount of BTX exposed in gas tight chamber by Dracaena deremensis. See Fig. 1 for details. Benzene ( μg / m3 cm2 leaf area) 0. 4 0. 3 0. 2 0. 1 0. 0-0.1-0.2 d a y n ig h t 0 2 4 6 8 1 0 1 2 Toluene ( μg / m3 cm2 leaf area) 3 2 1 0 0 2 4 6 8 1 0 1 2 m-xylene ( μg / m3 cm2 leaf area) 0. 8 0. 6 0. 4 0. 2 0. 0-0.2 0 2 4 6 8 1 0 1 2 o-xylene ( μg / m3 cm2 leaf area) 0. 8 0. 6 0. 4 0. 2 0. 0-0.2 0 2 4 6 8 1 0 1 2 T im e ( h r s ) T im e (h rs ) Fig. 8. Accumulated removal amount of BTX exposed in gas tight chamber by Pachira aquatica. See Fig. 1 for details. - 259 -
Table 1. Comparison of benzene removal efficiency among the mixture of BTX exposed in air tight chamber by eight different indoor plants. Species Apparent removal efficiency of benzene z (ng m -3 hr -1 cm -2 leaf area) Day Night Spathiphyllum 12.4±2.5 y 10.6±3.2 Ficus elastica 11.9±1.7 5.2±1.5 Syngonium podophyllum 29.3±3.1 12.6±6.1 Hedera helix 20.0±8.7 23.8±2.1 Dieffenbachia amoena 14.2±3.3 13.1±3.2 Ficus benjamina 15.2±4.3 11.8±1.9 Dracaena deremensis 9.5±6.5 6.8±2.3 Pachira aquatica 13.7±2.4 9.7±2.6 z For apparent removal efficiency, ppm was first converted to mg/m 3 value was divided by leaf area hr. y Data are mean±se (n=3). and then the - 260 -
Table 2. Comparison of toluene removal efficiency among the mixture of BTX exposed in air tight chamber by eight different indoor plants. Species Apparent removal efficiency of toluene z (ng m -3 hr -1 cm -2 leaf area) Day Night Spathiphyllum 101.9±21.0 y 110.6±28.3 Ficus elastica 92.0±12.1 54.5±13.8 Syngonium podophyllum 266.3±25.8 155.4±39.8 Hedera helix 186.8±57.7 232.3±8.9 Dieffenbachia amoena 127.1±31.4 123.7±24.5 Ficus benjamina 121.3±31.5 135.2±23.8 Dracaena deremensis 116.5±47.6 100.6±35.3 Pachira aquatica 106.0±22.7 103.0±16.1 z For apparent removal efficiency, ppm was first converted to mg/m 3 value was divided by leaf area hr. y Data are mean±se (n=3). and then the - 261 -
Table 3. Comparison of m-xylene removal efficiency among the mixture of BTX exposed in air tight chamber by eight different indoor plants. Species Apparent removal efficiency of m-xylene z (ng m -3 hr -1 cm -2 leaf area) Day Night Spathiphyllum 37.5±6.9 y 40.4±13.6 Ficus elastica 31.0±8.0 19.3±4.4 Syngonium podophyllum 35.7±7.0 32.6±5.8 Hedera helix 33.2±8.2 37.8±1.7 Dieffenbachia amoena 42.6±8.2 44.3±6.4 Ficus benjamina 38.9±8.7 44.9±1.7 Dracaena deremensis 32.4±10.0 25.1±14.4 Pachira aquatica 34.3±7.4 38.4±5.4 z For apparent removal efficiency, ppm was first converted to mg/m 3 value was divided by leaf area hr. y Data are mean±se (n=3). and then the - 262 -
Table 4. Comparison of o-xylene removal efficiency among the mixture of BTX exposed in air tight chamber by eight different indoor plants. Species Apparent removal efficiency of o-xylene z (ng m -3 hr -1 cm -2 leaf area) Day Night Spathiphyllum 31.4±6.3 y 21.5±6.8 Ficus elastica 25.8±8.0 26.2±6.2 Syngonium podophyllum 35.5±2.4 30.4±5.7 Hedera helix 28.5±9.7 33.9±3.2 Dieffenbachia amoena 34.0±9.8 44.6±5.9 Ficus benjamina 31.9±7.4 42.9±0.8 Dracaena deremensis 30.6±7.9 25.9±15.6 Pachira aquatica 31.2±7.5 32.2±10.9 z For apparent removal efficiency, ppm was first converted to mg/m 3 value was divided by leaf area hr. y Data are mean±se (n=3). and then the - 263 -
3. 온도와광량조건에따른싱고니움의 TVOCs 의제거효과 류명화ㆍ손기철 * 건국대학교원예과학과 The effect of indoor temperature and light intensity on the removal of BTX by Syngonium podophyllum Myung Hwa Yoo ㆍ Ki-Cheol Son* Dept. of Horticultural Science, Konkuk Univ., Seoul 143-701, Korea (* Corresponding author) Abstracts. This study was conducted to investigate the effect of indoor temperature and light intensity on the removal of BTX by Syngonium podophyllum, removal efficiency was determined during 12 hours after injection of 4ppm BTX into chamber under conditions of 18 or 24C temperature and 50 μmol m -2 s -1 or 100μmol m -2 s -1 light intensity. Under 24 condition, benzene and toluene during day period was more effectively removed than night period, regardless of light intensity. However, there was no difference in xylene reduction according to day or night period. Additionally, there was no difference in removal efficiency by plant under 1 8 condition. For the effect of indoor temperature and light intensity on the Syngonium podophyllum plant's removal of mixed BTX, the elimination effect was greater under the 24 condition than the 18 condition, and the removal rate was higher under the high light intensity than under the low light intensity, when the temperature was low. 서 언 - 264 -
현대인들은대부분의시간을실내에서 80% 이상지내고있다 (Jenkins 등, 1992; Shin 등, 1993). 이런이유로, 실내공기질 (Indoor Air Quality: IAQ) 이중요한문제점으로인식되고있으며, 더나아가서는인간의삶의질 (Quality of Life: QOL) 에큰영향을미친다. 실내공기오염물질중에서도휘발성유기화합물질 (VOCs) 은실외보다실내가 2-100배이상높은것으로나타나며 (Godish, 1994), 이러한 VOCs는건축자재, 카페트, 접착제, 청소용품, 방향제, 화장품, 흡연등다양한오염원에서방출되며 (Hansen, 1999; Godish, 1989; Kim 등, 1997; Shin등, 1993; Sohn 과 Yoon, 1995), 한가지물질이아니라복합적으로고농도를이루어점막자극, 두통, 구역질및현기증과같은증상을일으켜서거주자건강에영향을준다 (Hong, 2000; Kim 등, 1997; Shin 등, 1993). 관엽식물은내음성과내건성이타화훼식물에비해비교적강하며 (Choi 등, 1998), 고온과저광도에서생육가능한특성을지니고있어실내에서많이재배되고있다 (Lee, 1981). 실내공간은밀폐화로인한고농도의이산화탄소와여름에는고온다습하고겨울에는건조한환경에있다. 이러한실내공간에식물을도입함으로써쾌적한공간을연출할수있으며 (Bales, 1995), 광합성작용과증산작용을통한실내공기의온습도조절효과 (Son과 Kim, 1998; Synder, 1990), 음이온발생효과 (Park, 1998) 및공기정화효과 (Wolverton 등, 1989; Wolverton, 1997) 를얻을수있다. 따라서, 본연구는실내온도와광조건에따른실내식물의 benzene, toluene, xylene (BTX) 의제거효과를조사하기위하여실시하였다. 재료및방법 본실험은실험 1의결과에서 BTX 제거에가장효과적인식물로선정된싱고니움 (Syngonium podophyllum) 을대상으로하였다. 직경 18cm포트에 Hydroball로심겨진싱고니움은실내의평균광도인 50 μmol m -2 s -1 와실내창가쪽에식물의광도를고려하여 100μmol m -2 s -1 로선정하였으며, 18 와 2 4 온도, 그리고습도는 50±10% 를유지시킨밀폐된챔버에서 2주이상순화시 - 265 -
켰다. 가스처리와실험방법은실험 1 과동일한방법으로하였다. 결과및고찰 식물 8종중에서복합 BTX 제거에효과적이며, 주 야간동안의제거효과가뚜렷한싱고니움을이용하여실내광조건과온도조건에따른식물의복합 BTX 제거를살펴본결과, 24 의경우에서는벤젠과톨루엔모두가광도에상관없이주간이야간보다제거효과가더크게나타났으며 (Fig. 1, 2), 50μmol m -2 s -1 PAR 조건이 100μmol m -2 s -1 PAR 조건보다주 야간의제거폭이크게나타났다 (Fig. 1, 2). 또한, 크실렌의경우, 24 와 100μmol m -2 s -1 PAR 조건에서는미미하지만주 야간에따른제거에차이가나타난반면 (Fig. 1), 24 와 50μ mol m -2 s -1 PAR 조건에서는별다른차이가없었다 (Fig. 2). 따라서, 24 조건에서는저광도일때가고광도에비해벤젠과톨루엔을더크게제거하였다 (Fig. 1, 2). 그러나, 18 조건에서는광도와가스종류별에상관없이주 야간의복합 BTX 제거의차이가나타나지않았지만, 높은광도조건이저광도에비해벤젠과톨루엔의가스제거효과가약간크게나타났다 (Fig. 3, 4). 단위엽면적당복합 BTX 제거효율를살펴보면, 24 조건에서 50μmol m -2 s -1 PAR 조건의 o-크실렌을제외한모든가스는야간에비해주간의제거효율이 1.5~9배이상높게나타났다 (Table 1, 2). 또한, 24 조건이 18 조건보다단위엽면적당복합 BTX 제거효율이높게나타났다. 한편, 18 조건에서는광도에상관없이주 야간의제거효율이비슷하거나주간또는야간이높은경우도있었다 (Table 3, 4). 광도와온도변화에따른싱고니움의복합 BTX 제거에있어서는광도와상관없이 24 조건이 18 조건보다제거효과가크게나타났으며 (Fig. 1~4), 저온하에서는저광도보다는고광도에서가스제거가효과적으로나타났다 (Fig. 1~4). Hong(2000) 은 23±3 조건에서스파티필름과관음죽에벤젠을처리한경우, 저광보다는고광도에서제거효과가뛰어났다고보고를한바있으나, 본실험결과에의하면싱고니움의복합 BTX 제거에는광도에대한영향도있지만, 온도조건에따른식물의 VOCs 제거효과가더뚜렷하다는것을알수있었다. 그러나, - 266 -
본실험은한식물종에국한되어실시된결과이므로, 추후에는여러종류의식 물을대상으로환경조건에따른식물의 VOCs 제거능력을조사하는것이바람 직하다고판단된다. 초 록 실내온도와광도의변화에따른식물의 BTX 제거효과를알아보고자, 싱고니움 (Syngonium podophyllum) 을이용하여온도와광도는각각 18, 24 와 50 μ mol m -2 s -1, 100μmol m -2 s -1 로하여 12시간동안 4ppm의혼합된 BTX의제거효과를조사하였다. 24 조건에서는벤젠, 톨루엔모두광도에상관없이주간이야간보다제거효과가더컸으나, 크실렌에는별다른차이가없었다. 한편, 18 에서는광도별에따른 BTX 제거효과가나타나지않았다. 따라서, 실내온도와광도의변화에따른싱고니움의복합 BTX 제거에있어서는 24 조건이 18 조건보다제거효과가크게나타났으며, 저온하에서는저광도보다는고광도에서가스제거가효과적으로나타났다. 인용문헌 Balse, S.F. 1995. The kitchen garden. Rased beds and electric chairs. Horticulture 73:34-39. Choi, J.I., J.H. Seon, K.Y. Paek, and J.J. Kim. Photosynthesis and stomatal conductance of eight foliage plant species as affected by photosynthetic photon flux density and temperature. 1998. 39(2):197-202. Godish, T. and C. Guindon, 1989. An assessment of botanical air purification as a formaldehyde mitigation measure under dynamic laboratory chamber conditions. Environmental pollution 61:13-20. Godish, T. 1994. Sick building: definition, diagnosis, and mitigation. Lewis Publishers, Boca Raton. - 267 -
Hansens, D.L. 1999. Indoor air quality issues. Taylor & Francis, NY. Han, S.W. 2001. Removal efficiency of indoor air pollutant gases using orientgal orchids. PhD thesis. Seoul University, Seoul Women's University, Seoul. Hong, J. 2000. Benzene and formaldehyde removal by indoor foliage plants. Ph D. thesis. Korea University, Seoul. Jenkins, P.L. Phillips, T.J., Mulberg, E.J. and Hui, S.P. 1992. Activity patterns of Californians: use of and proximity to indoor pollutant sources. Atmospheric Environment 26A:2141-2148. Kim, M.G., C.O. Park, Y.J. Kwon, Y.K. Lee, and D.W. Lee. 1997. Variations of Concentration levels of volatile organic compounds in the indoor air due to floor waxing. J. KAPPA 13(3):221-229. Lee, Y.M. 1981. Growth requirements of indoor trees. J. Kor. Ins. Land. Arch. 9:19-42. Shin, H.S., Y.S. Kim, and G.S. Heo. 1993. Measurements of indoor and outdoor volatile organic compounds(vocs) concentrations in ambient air. J. KAPPA 9(4):310-319. Son, K.C. and M.K. Kim. 1998. Influences of indoor light, temperature, absolute humidity, and CO2 concentration on the changes of transpiration and photosynthesis rate of Pachira aquatica and their statistical modeling. J. Kor. Soc. Hort. Sci. 39(5):605-609. 손장열, 윤동원. 1995. 실내공기환경에서휘발성유기화학물질 (VOCs) 의특성과제어방법. 공기조화냉동공학 24(1): 44-55. Snyder, S.D. 1995. Environmental interioscapes. Whitney, NY. Wolverton, B.C., A. Johnson, and K. Bounds, 1989. Interior landscape plants for indoor air pollution abatement. NASA. USA. Wolverton, B.C. 1997. How to grow fresh air. Penguin Books USA. - 268 -
Benzene ( μg / m3 cm2 leaf area) 0.5 0.4 0.3 0.2 0.1 0.0-0.1 day night 0 2 4 6 8 1 0 1 2 Toluene ( μg / m3 cm2 leaf area) 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 2 4 6 8 1 0 1 2 m-xylene ( μg / m3 cm2 leaf area) 0.5 0.4 0.3 0.2 0.1 0.0-0.1 0 2 4 6 8 1 0 1 2 T im e (h rs ) o-xylene ( μg / m3 cm2 leaf area) 0.5 0.4 0.3 0.2 0.1 0.0-0.1 0 2 4 6 8 10 12 Tim e (hrs) Fig. 1. Accumulated removal amount of BTX exposed in gas tight chamber by Syngonium podophyllum for 12 hours ( : day period, : night period) under condition of 24 temperature and 100μ mol m -2 s -1 PAR light intensity. Benzene ( μg / m3 cm2 leaf area) 0.5 0.4 0.3 0.2 0.1 0.0-0.1 day night 0 2 4 6 8 10 12 Toluene ( μg / m3 cm2 leaf area) 3 2 1 0-1 0 2 4 6 8 1 0 1 2 m-xylene ( μg / m3 cm2 leaf area) 0.5 0.4 0.3 0.2 0.1 0.0-0.1 0 2 4 6 8 1 0 1 2 T im e (h rs) 0 2 4 6 8 1 0 1 2 T im e (h rs) Fig. 2. Accumulated removal amount of BTX exposed in gas tight chamber by Syngonium podophyllum for 12 hours ( : day period, : night period) under condition of 24 temperature and 50μ mol m -2 s -1 PAR light intensity. o-xylene ( μg / m3 cm2 leaf area) 0.5 0.4 0.3 0.2 0.1 0.0-0.1-269 -
Benzene ( μg / m3 cm2 leaf area) 0.5 0.4 0.3 0.2 0.1 0.0-0.1 day night 0 2 4 6 8 1 0 1 2 Toluene ( μg / m3 cm2 leaf area) 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 2 4 6 8 1 0 1 2 m-xylene ( μg / m3 cm2 leaf area) 0.5 0.4 0.3 0.2 0.1 0.0-0.1 0 2 4 6 8 1 0 1 2 T im e (h rs) o-xylene ( μg / m3 cm2 leaf area) 0.5 0.4 0.3 0.2 0.1 0.0-0.1 0 2 4 6 8 1 0 1 2 T im e (h rs) Fig. 3. Accumulated removal amount of BTX exposed in gas tight chamber by Syngonium podophyllum for 12 hours ( : day period, : night period) under condition of 18 temperature and 100μ mol m -2 s -1 PAR light intensity. Benzene ( μg / m3 cm2 leaf area) 0.5 0.4 0.3 0.2 0.1 0.0-0.1 day night 0 2 4 6 8 1 0 1 2 Toluene ( μg / m3 cm2 leaf area) 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 2 4 6 8 1 0 1 2 m-xylene ( μg / m3 cm2 leaf area) 0.5 0.4 0.3 0.2 0.1 0.0-0.1 0 2 4 6 8 1 0 1 2 T im e (h rs) 0 2 4 6 8 1 0 1 2 Tim e (hrs) Fig. 4. Accumulated removal amount of BTX exposed in gas tight chamber by Syngonium podophyllum for 12 hours ( : day period, : night period) under condition of 18 temperature and 50μ mol m -2 s -1 PAR light intensity. o-xylene ( μg / m3 cm2 leaf area) 0.5 0.4 0.3 0.2 0.1 0.0-0.1-270 -
Table 1. Comparison of BTX removal efficiency by Syngonium podophyllum under condition of 24 temperature and 100μ mol m -2 s -1 PAR light intensity. Species Apparent removal efficiency of gas z (ng m -3 hr -1 cm -2 leaf area) Day Night Benzene 18.1±2.9 y 7.1±0.7 Toluene 157.6±15.4 64.4±14.2 m-xylene 18.1±1.9 7.9±3.0 o-xylene 14.8±1.8 8.0±1.3 z For apparent removal efficiency, ppm was first converted to mg/m 3 value was divided by leaf area hr. y Data are mean±se (n=3). and then the Table 2. Comparison of BTX removal efficiency by Syngonium podophyllum under condition of 24 temperature and 50μ mol m - 2 s -1 PAR light intensity. Species Apparent removal efficiency of gas y (ng m -3 hr -1 cm -2 leaf area) Day Night Benzene 39.8±1.7 4.2±1.8 Toluene 203.6±24.2 77.0±3.6 m-xylene 17.9±8.2 12.5±2.2 o-xylene 13.3±10.5 16.1±3.7 z For apparent removal efficiency, ppm was first converted to mg/m 3 value was divided by leaf area hr. y Data are mean±se (n=3). and then the - 271 -
Table 3. Comparison of BTX removal efficiency by Syngonium podophyllum under condition of 18 temperature and 100μ mol m - 2 s -1 PAR light intensity. Species Apparent removal efficiency of gas z (ng m -3 hr -1 cm -2 leaf area) Day Night Benzene 20.5±2.4 y 17.9±2.9 Toluene 125.0±27.5 164.4±38.3 m-xylene 7.8±2.0 12.2±5.7 o-xylene 6.1±2.3 11.9±5.9 z For apparent removal efficiency, ppm was first converted to mg/m 3 value was divided by leaf area hr. y Data are mean±se (n=3). and then the Table 4. Comparison of BTX removal efficiency by Syngonium podophyllum under condition of 18 temperature and 50μ mol m - 2 s -1 PAR light intensity. Species Apparent removal efficiency of gas z (ng m -3 hr -1 cm -2 leaf area) Day Night Benzene 14.4±2.2 y 8.7±2.1 Toluene 89.5±20.0 84.7±12.9 m-xylene 11.6±1.9 9.4±3.8 o-xylene 7.3±2.6 6.4±2.6 z For apparent removal efficiency, ppm was first converted to mg/m 3 value was divided by leaf area hr. y Data are mean±se (n=3). and then the - 272 -
4. 실내식물에의한단독혹은복합휘발성유기물질의제거능과그에 따른생리적반응 류명화ㆍ권윤정 윤지원 손기철 * 건국대학교원예과학과 Removal efficiency of single or mixtures of volatile organic compound by different plants and their physiological responses Myung Hwa Yoo ㆍ Youn Jung Kwon Jee Won Yoon Ki-Cheol Son* Dept. of Horticultural Science, Konkuk Univ., Seoul 143-701, Korea (* Corresponding author) Abstracts. This study was conducted to compare the gas removal efficiency of plants and identify the consequent physiological changes of plants when single gas or gas mixture of benzene and toluene was exposed in an air tight chamber. The plant species applied were Hedera helix., Spathiphyllum, Syngonium podophyllum and Cisus rhombifolia. Next, the removal efficiency of benzene and toluene using plants were examined for six hours during day condtion with 100μmol m -2 s -1 light intenisty and night condition with no light apiece. For the day, while Spathiphyllum and Syngonium resulted in the highest removal efficiency in treating single gas (benzene or toluene) whereas the removal efficiency of Cissus was the lowest. However, when both benzene and toluene were treated as the same time, while Cissus and Hedera illustrated relatively higher removal efficiency, Spathiphyllum and Syngonium showed lower efficiency. As a result, the gas removal rate by plants varied depending on day or night condition, plant species, and single gas or gas mixture. Meanwhile, when single gas or gas mixture of benzene or toluene were exposed to plants for six hours, all physiological factors such - 273 -
as photosynthetic rates, stomatal conductibility, and transpiration rate were significantly reduced after gas treatment as compared to those before gas treatment. 서 언 식물은기공을통해서대기중의이산화탄소를흡수하거나증산작용에의해서수증기를방출하는광합성작용을한다 (Son 등, 2000). 이러한가스교환과정에서식물은대기중의오염물질을함께흡수하거나, 식물체표면에흡착하고, 또는배지입자및토양미생물에의한흡수및흡착을통해서오염물질이제거되는것으로알려졌다 (Son 등, 2000; Wolverton, 1986; Wolverton 과 Wolverton, 1993; Wood 등, 2002). 실내에서대표적으로존재하는 VOCs 중벤젠과톨루엔에대한식물의제거능력에대한연구는이미여러차례보고된바있다 (Han, 2001; Hong, 2000; Ugrekhelidze 등, 1997; Wood 등, 2002). 실내식물들중에서벤젠제거에효과적인식물로는스파티필름, 드라세나, 산세베리아, 관음죽, 벤자민고무나무, 칼랑코에와보세란등이며, 톨루엔및크실렌에는아레카야자, 피닉스야자, 팔레놉시스가정화능력이높은식물로보고되었다 (Cornejo 등, 1999; Han, 2001; Hong, 2000; Wolverton 등, 1989; Wood 등, 2002). 그러나, 선행된연구는고농도또는저농도의단일가스처리를통한식물의 VOCs 제거효과를나타낸것이다. Wood 등 (2002) 에따르면, Howea forsteriana은 Spathiphyllum wallisii와 Dracaena deremensis cv Janet Craig 보다 n-헥산제거능력이뛰어나지만, 벤젠제거는다른식물들에비해낮게나타났으며, Dracaena deremensis cv Janet Craig 는 Howea forsteriana와상반된경향을나타났다. 이것은동일한식물일지라도가스종류에따라서제거능력이다르다는것을나타낸다. 한편, 식물은오염물질에노출되었을때다양한생리적변화를나타내었다. 알파파에 100ppb의오존을 1시간동안처리할때광합성율이저하되었으나 (Darrall, 1989), 시서스와싱고니움에 120ppb의오존을 2시간동안처리할경우오히려생리적활성이증가되는것으로보고되었다 (Jung, 2003). 또한, Hong (2000) 은 150ppb의벤젠을스파티필름에처리할경우기공확산저항이저하되고광합성율 - 274 -
이크게증가하여벤젠제거에효과적이었다고보고하였다. 그러나, 식물에 SO 2 와 O 3 를복합처리할경우에는각가스의단일처리때보다광합성율이더감소되었다고보고하였다 (Darrall, 1989). 실제로, VOCs는실내에서대부분복합적으로존재하기때문에단독혹은복합처리시식물의오염물질제거효과와이에따른생리적변화에관한연구가필요하다고생각된다. 따라서, 본연구는 4품종의실내식물을이용하여밀폐챔버내에벤젠과톨루엔의단독혹은벤젠과톨루엔복합처리시식물의제거능력비교와그에따른생리적변화를알아보고자실시하였다. 재료및방법 식물재료본실험의공시재료는실내에서많이이용하고있는아이비 (Hedera helix), 스파티필름 (Spathiphyllum spp.), 싱고니움 (Syngonium podophyllum), 싯서스 (Cisus rhombifolia) 로하였다. 모든식물들은경기도일대에서일괄구입하여, 직경 18cm포트에하이드로볼로분갈이한후, 자연광을 80% 차광하여 100±30μmol m -2 s -1 PAR, 온도 25±5 와습도 50±10% 를유지시킨유리온실에서 6개월이상순화시켰다. 관수는 1~2일에한번씩하였고, 2주마다액비 Technigro(N:P:K=24:7:5, SunGro Inc., USA) 를 200ppm으로시비하였다. 실험에사용된각식물의특징및처리에따른식물의표면적은 Table 1에나타내었다. 가스실험에사용하기위해식물들은 100μmol m -2 s -1 PAR, 온도 24 와습도 50~60% 로환경이제어되는환경조절생육상 (DF-95G-1485, 두리과학 ) 에두어한달동안순화시킨후, 측정하기하루전에충분히관수하여다음날사용하였다. - 275 -
1. Characteristics of foliage plants used for the experiment. Plant species Exposed Plant age Total leaf area gas (years) (cm 2 ) Hedera helix Benzene 2 1736 Toluene 1360 Mixture 1352 Cisus rhombifolia Benzene 2 3224 Toluene 3328 Mixture 3276 Spathiphyllum spp. Benzene 2 1522 Toluene 1577 Mixture 1705 Syngonium podophyllum Benzene 2 2100 Toluene 1913 Mixture 2625 가스처리및측정가스처리는투명유리와 stainless 재질로구성된가스챔버내 (0.55m(W) 0.58m(L) 0.9m(H), 287.1L) 에벤젠과톨루엔을각각 1ppm이되도록한단일처리와벤젠과톨루엔을각각 0.5ppm으로하여챔버내최종농도가 1ppm이되도록한복합처리방식으로하였다. 가스주입전에분상태의식물을먼저넣었으며, 이때분, 배지그리고토양미생물이가스제거에미치는영향을제거하고자 teflon 비닐로화분부위를밀폐하여지상부만가스에노출되도록하였다. 주간과야간동안의가스제거효과를비교하고자주 야간각각 6시간동안 2시간간격으로챔버내가스농도를경시적으로측정하였다. 챔버내가스농도측정은챔버두지점에서 ( 상, 하 ) gas-tight syringe(hamilton Co., USA) 로 0.5ml를취하여분석하였으며, GC 분석조건은 Ⅲ장과동일하였다. 챔버내에식물을넣지않았을상태를빈챔버의누기량으로계산하였으며, 각식물당 3개체씩반복측정하였다. 한편, 가스챔버는위에언급한일정한환경조건을주기위하여환경조절생육상 (DF-95G-1485, 두리과학 ) 내에두었다. 또한, 식물을둔챔버내습도를일정하게유지하기위하여챔버내아래쪽에스탠파이프를설치하고 10 의차가운물이지속적으로순환되도록하여, 실험기간동안챔버내습도를 60±5% 로일정하게유지시켰다. - 276 -
생리적반응측정가스처리전후의식물의생리적반응의변화를살펴보고자, 휴대용광합성측정기 (Li-6400, Li-Cor, USA) 를사용하여광합성율, 증산율, 기공전도도와세포내 CO 2 변화를조사하였다. 이때의광합성측정조건은 leaf chamber에유입되는공기의유량 250μmol s -1, 온도 24, CO 2 농도 350CO 2 mol -1 이며, 광도는 PPFD 100μmol m -2 s -1 이었다. 호흡측정은광도가 PPFD 0μmol m -2 s -1 이고, 나머지조건은광합성측정과동일하게하였다. 모든측정은각식물당 3개체씩반복하였으며, 1개체당 5개의잎을 5분동안측정하였다. 데이터분석방법모든데이터는밀폐챔버내에식물을넣은상태의농도변화에서빈챔버의누기량을뺀값으로계산하였다. 농도계산을위해서 ppm단위는 mg/m 3 으로환산하였으며, 24, 1기압을기준으로계산하였다 (Hines 등, 1993). 각각동일농도에서비교하기위해서초기농도를 0으로보정한후, 각측정시각까지의총감소량을그래프상에 + 값으로나타내었다. 또한, 모든측정은 3회반복으로하였으며, 그데이터값은평균 ± 표준오차로나타내었다. 식물체의가스오염물질의제거량 (A) 과단위엽면적당오염가스제거효율 (B) 은아래의식에따라산정하였다. 식 1) 식 2) A (mg m -3 cm -2 leaf area) = (P F CV)/L B (mg m -3 hr -1 cm -2 leaf area) = (P F CV)/(L T) P = 근권부를제외한잎을통해감소된농도 (ppm) F = 부피농도에서중량농도로의환산계수 CV = 챔버부피 (0.55m 0.58m 0.90m) L = 전체엽면적 (cm 2 ) T = 오염가스노출시간 (hr) 가스처리전후의광합성율, 기공전도도, 증산율과호흡의데이터는평균 ± 표준 오차로나타내었으며, 가스처리방법에따른처리전과후의식물의생리적활 성은 paired t-test 로비교분석하였다. - 277 -
결과및고찰 밀폐된챔버내총 1ppm의농도가되도록벤젠, 톨루엔단일가스처리혹은복합가스처리시 6시간동안의 4종식물 [ 아이비 (Hedera helix), 스파티필름 (Spathiphyllum spp.), 싱고니움 (Syngonium podophyllum), 서양담쟁이 (Cisus rhombifolia)] 의가스제거능력과가스처리직전과직후의식물의생리적변화를살펴보았다. 식물이가스에노출되었을때제거능력은가스처리방법, 식물종, 그리고주 야간에따라다른것으로나타났다 (Fig. 1, 2, 3, 4). 먼저, 식물종에따라주 야간의벤젠혹은톨루엔의제거율에는다소차이가있지만, 4종모두벤젠혹은톨루엔의제거에효과가있는것으로나타났다 (Table 2, 3, 4, 5). 또한, 기존의 O 3, SO 2, NOx와같은오염물질의제거능의결과를살펴보면, 가스처리후초기에처리농도의대부분이흡수되는데반하여, 벤젠과톨루엔이본실험에서는시간이경과함에따라꾸준히제거되는것으로나타났다 (Hong, 2000). 그중에서도벤젠과톨루엔을각각단일처리시스파티필름, 아이비와싱고니움이가스제거에효과적인것으로나타났으며, 싯서스는다른종들에비해제거효과가적었다 (Fig. 1, 2, 3, 4). 또한, 아이비를제외한식물들은주 야간의제거가뚜렷하게나타났다. 한편, 벤젠과톨루엔을복합처리시아이비는다른식물들에비해높은제거효과를나타났으며, 이외의식물들은비슷한제거능력을나타냈다 (Fig. 1, 2, 3, 4). 또한, 복합가스처리시벤젠의경우, 모든식물은주 야간의차이가나타나지않았으며, 톨루엔은야간보다주간에높은제거능력을나타났다 (Fig. 1, 2, 3, 4). 그러나, 복합가스제거효과가높은아이비는주 야간의차이가나타나지않았다 (Fig. 4). 식물의단위엽면적당주간의가스제거효율을살펴보면, 1ppm 벤젠단독처리시스파티필름이 174.5±3.8ng m -3 hr -1 cm -2 로제거효율이가장높았으며, 싱고니움과아이비의제거효율은중간정도로비슷하였으며, 싯서스는 50.3±7.0ng m -3 hr -1 cm -2 로제거효율이가장낮았다 (Table 2). 한편, 1ppm 톨루엔단독처리시가스제거효율에있어서는아이비, 스파티필름과싱고니움이높게나타났 - 278 -
다. 반면에싯서스는 85.7±6.0ng m -3 hr -1 cm -2 로벤젠과동일하게다른종에비해제거효율이가장낮게나타내었다 (Table 3). 그러나, 벤젠과톨루엔을복합처리시식물에의한제거효과는단일처리와다소다른경향을나타내었다. 단위엽면적당벤젠제거효율에있어서는아이비가 57.5±64.6ng m -3 hr -1 cm -2 으로가장높은제거효율을나타냈으며 (Table 4), 단독가스처리시제거효율이높았던스파티필름과싱고니움은각각 37.0±9.6ng m -3 hr -1 cm -2 과 28.1±5.2ng m -3 hr -1 cm -2 으로제거효율이낮게나타났다. 또한, 톨루엔에있어서도아이비가다른식물들에비해 1.5배이상의제거효율이나타났으며, 이에반해스파티필름과싱고니움은제거효율이낮았다 (Table 5). 이러한결과는한식물종이어떤단일휘발성물질의제거능력에뛰어난다할지라도단일이아닌다른물질과의복합에의한노출시에는그결과가달라진다는것을의미한다. 결과적으로볼때, 휘발성물질의제거능력은식물종에따라서로다를뿐만아니라유기물질의종류와복합정도에따라서도변화한다는것을나타낸다. 식물의단위엽면적당야간의가스제거율을살펴보면, 가스처리방법에상관없이주간에제거효율이높은식물이야간에도높은제거효율을나타내었다 (Table 2, 3, 4, 5). 또한, 대부분의식물들이야간보다주간에제거효율이높게나타났으나, 아이비는주 야간의제거효율이비슷하거나야간에오히려제거효율이높은경우도있었다 (Table 2, 3, 4, 5). 한편, 벤젠과톨루엔처리시식물의생리적변화를살펴보면, 모든식물들은가스종류에상관없이가스처리후광합성율, 기공전도도, 그리고증산율이감소하였으며, 복합처리시광합성, 기공전도도와증산율이단일가스처리보다더많이감소하였다 (Table 5). 이결과는벤젠과톨루엔의단일혹은복합가스처리가식물의생리적활성을떨어뜨린다는것을의미한다. 한편, 호흡률과세포내 CO 2 농도에서는식물종과가스처리방법에따라가스처리전보다가스처리후에호흡량과세포내 CO 2 농도가줄어들거나오히려늘어난경우도있었으며, 가스처리전과처리후의차이가없는경우도있었다. 본실험결과를살펴볼때, 식물의오염물질제거능력은가스처리방법, 식물종과주 야간에따라다르게나타났다. 식물은기공에의해가스교환이일어날 - 279 -
때오염물질을흡수하는경우, 식물의잎또는줄기에흡착하는경우, 배지표면및수분에의한흡착하는경우와근권부의미생물에의해서오염물질이제거된다 (Wolverton과 Wolverton, 1993). 그러나, 본실험에서는근권부의영향을배제한식물의지상부에있어서제거능력을살펴본것으로, 식물의오염물질제거기작을다음과같이생각할수있다. 즉, 주간에는식물이기공에의한오염물질흡수와식물의잎과줄기의흡착을동시에하며, 야간에는기공이닫히므로대부분흡착으로제거되어질것이다. 따라서, 야간보다주간에오염물질의제거능력이높은경우는흡착에의한제거보다는기공을통한흡수능력이더크기때문이라고생각된다. 예를들면, 스파티필름과싱고니움은기공을통한흡수능력이크기때문에야간보다주간에오염물질제거능력이크게나타난것이다. 또한, 단일처리시단위엽면적당제거효율이높았으나, 복합처리할때는제거효율이낮았으며 (Table 2, 3, 4, 5), 이때, 식물의생리적활성이가스처리전보다가스처리후에저하되고, 복합처리시에는더많이감소되었다 (Table 6). 결론적으로, 스파티필름과싱고니움은복합가스처리시기공흡수에피해를입어가스제거능력이더감소된것으로생각된다. 반면, 아이비는싱고니움과동일하게복합처리시생리적기능이더많이감소되었음에도불구하고 (Table 6), 단일처리보다복합처리시주 야간동안의가스제거효율이더높은것으로나타났다 (Table 2, 3, 4, 5). 또한, 아이비의단위엽면적당가스제거효율은주 야간이비슷하거나오히려주간보다야간이높게나타났다 (Table 2, 3, 4, 5). 따라서, 아이비는기공을통한흡수보다는흡착을통해서이루어지며, 흡수또는흡착이외의다른요인에의해서제거될것이라생각된다. 지금까지의연구결과에따르면, 식물의벤젠정화능력에는아이비, 벤자민고무나무, 스파티필름, 관음죽, 칼랑코에등이뛰어난것으로보고되었다 (Cornejo 등, 1999; Hong, 2000; Wolverton 등, 1989; Wood 등, 2002). 본연구에서도스파티필름이단일처리시주간동안에벤젠과톨루엔제거에효과적인것으로나타났다. 또한, 복합처리시대부분의식물들이벤젠보다는톨루엔의제거율이더높게나타났는데, 이결과는 K. blossefeldiana에벤젠과톨루엔을복합처리했을때벤젠은흡수되었으나톨루엔은흡수되지않았다는 (Cornejo 등, 1999) 보고와상반된 - 280 -
결과를보였다. 따라서, 단일혹은복합처리시식물의종류에따라제거효과가다르게나타나며, 동일한식물일지라도가스를선별적으로흡수하는것으로생각된다. 한편, 식물의가스제거에따른생리적변화를살펴본결과, 가스처리전에비해처리후에는광합성에관련된모든요인들이감소된것을볼수있다. 이러한사실은식물이 VOCs 가스흡수시생리적장해를받는것으로말할수있다. 아직식물종에따른 VOCs 제거효능과생리적변화와의상관관계에대해서는정확히알려진바없으나, 가스물질이제거될수록식물체의생리적기능이더약화된것이아닌가생각된다 (Table 6). 한편으로, 120ppb의 O 3 을스파티필름, 싯서스, 아이비와싱고니움에 25일동안처리하였을때, 싯서스를제외한식물들은시간이경과함에따라회복되었다는점을고려할때 (Jung, 2003), 식물종과 VOCs 처리농도에따라차이는있겠지만, 초기생리적장해가시간이경과함에따라회복되어질것으로판단된다. 현재로서는어떻게회복기작이발현되는가에대해서는명확하게알려진바없지만, 분명한사실은본실험에서행한바와같이 6 시간처리후에는분명히생리적장해를받는다는사실이다. 따라서차후에는회복과정에대한구체적기작을형태적, 효소학적, 생리적측면에서복합적으로접근해보는것이바람직하다고판단된다. 초 록 본연구는밀폐챔버내에벤젠과톨루엔의단일혹은혼합가스처리시식물의가스제거능비교와그에따른식물의생리적변화를알아보고자수행하였다. 식물재료로는아이비 (Hedera helix L.), 스파티필름 (Spathiphyllum Schott.), 싱고니움 (Syngonium podophyllum), 시서스 (cisus rhombifolia) 을사용하였으며, 주간 ( 광도 :100μmol m -2 s -1 ) 과야간 ( 광도 : 0μmol m -2 s -1 ) 각각 6시간동안식물에의한벤젠과톨루엔의제거효과를조사하였다. 주간의경우, 벤젠과톨루엔의단일처리시스파티필름과싱고니움의가스제거효과가높게나타난반면, 시서스의제거효과는가장낮게나타났다. 그러나, 벤젠과톨루엔의혼합처리시에는시서스와아이비의제거효과가높게나타난반면, 스파티필름과싱고니움의제거율 - 281 -
은낮은것으로나타났다. 결과적으로볼때, 식물에의한가스제거율은식물종, 주야간, 그리고단독혹은복합가스처리에따라서로다르게나타났다. 한편, 벤젠과톨루엔의단일혹은혼합가스를 6시간처리시모두가스처리전보다가스처리후에광합성율, 기공전도도, 증산율이감소하여생리적활성이감소되었다. 인용문헌 Cornejo, J.J., F.G. Munoz, C.Y. MA, and A.J. Stewart. 1999. Studies on the decontamination of air by plants. Ecotoxicology 8:311-320. Godish, T. and C. Guindon, 1989. An assessment of botanical air purification as a formaldehyde mitigation measure under dynamic laboratory chamber conditions. Environmental pollution 61:13-20. Hansens, D.L. 1999. Indoor air quality issues. Taylor & Francis, NY. Han, S.W. 2001. Removal efficiency of indoor air pollutant gases using oriental orchids. PhD Diss. Seoul Women's University, Seoul. Hong, J. 2000. Benzene and formaldehyde removal by indoor foliage plants. Ph D. thesis. Korea University, Seoul. Jenkins, P.L. Phillips, T.J., Mulberg, E.J. and Hui, S.P. 1992. Activity patterns of Californians: use of and proximity to indoor pollutant sources. Atmospheric Environment 26A:2141-2148. Kim, M.G., C.O. Park, Y.J. Kwon, Y.K. Lee, and D.W. Lee. 1997. Variations of Concentration levels of volatile organic compounds in the indoor air due to floor waxing. J. KAPPA 13(3):221-229. 김강석, 이희선, 공성용, 구현정. 2001. 실내공기오염에대한국민의식조사와정책방안연구. 한국환경정책 평가연구원 Shin, H.S., Y.S. Kim, and G.S. Heo. 1993. Measurements of indoor and outdoor volatile organic compounds(vocs) concentrations in ambient air. J. KAPPA 9(4):310-319. - 282 -
Snyder, S.D. 1990. Building interior, plants and automation, p. 5-29. Prentice Hall, Englewood Cliffs, NJ. Son, K.C., S.H. Lee, S.G. Seo, and J.E. Song. 2000. Effects of foliage plants and potting soil on the absorption and adsorption of indoor air pollutants. J. Kor. Soc. Hort. Sci. 41(3):305`310. 손장열, 윤동원. 1995. 실내공기환경에서휘발성유기화학물질 (VOCs) 의특성과제어방법. 공기조화냉동공학 24(1): 44-55. Ugrekhelidze, D., F. Korte, and G. Kvesitadze. 1997. Uptake and Transformation of benzene and toluene by plant leaves. Ecotoxicology and environmental safety 37:24-29. Wolverton, B.C. and J.D. Wolverton. 1993. Plants and soil microorganism:removal of formaldhyde, xylene, and ammonia from the indoor environment. J. Miss. Aca. Sci. 38(2):11-15. Wood, R.A, R.L. Orwell, J. Tarran, F. Torry, and M. Burchett. 2002. Potted-plant/growth media interactions and capacities for removal of volatiles from indoor air. J. of Hort. Sci. & Bio. 77(1):120-120. - 283 -
Benzene ( μg / m3 cm2 leaf area) 1.5 1.0 0.5 0.0 day night A Toluene ( μg / m3 cm2 leaf area) 1.5 1.0 0.5 0.0 B 0 1 2 4 6 0 1 2 4 6 Benzene ( μg / m3 cm2 leaf area) 0.8 0.6 0.4 0.2 0.0 C Toluene ( μg / m3 cm2 leaf area) 0.8 0.6 0.4 0.2 0.0 D 0 1 2 4 6 0 1 2 4 6 T im e ( h r s ) T im e ( h r s ) Fig. 1. Accumulated removal amount of single or mixture of benzene and toluene by Spathiphyllum spp. for 6 hours [ : day period, : night period, A: The plant was exposed to benzene (1 ppm) only in an airtight chamber, B: The plant was exposed to toluene (1 ppm) only, C and D: The plant was exposed to the mixture of benzene (0.5 ppm) and toluene (0.5 ppm)]. Benzene ( μg / m3 cm2 leaf area) 1.5 1.0 0.5 0.0 day night 0 1 2 4 6 A Toluene ( μg / m3 cm2 leaf area) 1.5 1.0 0.5 0.0 0 1 2 4 6 B Benzene ( μg / m3 cm2 leaf area) 0.8 0.6 0.4 0.2 0.0 C Toluene ( μg / m3 cm2 leaf area) 0.8 0.6 0.4 0.2 0.0 D 0 1 2 4 6 T im e ( h r s ) 0 1 2 4 6 T im e ( h r s ) Fig. 2. Accumulated removal amount of single or mixture of benzene and toluene by Cissus rhombifolia for 6 hours. See Fig. 1 for details. - 284 -
Benzene ( μg / m3 cm2 leaf area) 1.5 1.0 0.5 0.0 day night A Toluene ( μg / m3 cm2 leaf area) 1.5 1.0 0.5 0.0 B 0 1 2 4 6 0 1 2 4 6 Benzene ( μg / m3 cm2 leaf area) 0.8 0.6 0.4 0.2 0.0 C Toluene ( μg / m3 cm2 leaf area) 0.8 0.6 0.4 0.2 0.0 D 0 1 2 4 6 0 1 2 4 6 T im e ( h r s ) T im e ( h r s ) Fig. 3. Accumulated removal amount of single or mixture of benzene and toluene by Syngonium podophyllum for 6 hours. See Fig. 1 for details. Benzene ( μg / m3 cm2 leaf area) 1.5 1.0 0.5 0.0 day night A Toluene ( μg / m3 cm2 leaf area) 1.5 1.0 0.5 0.0 B 0 1 2 4 6 0 1 2 4 6 Benzene ( μg / m3 cm2 leaf area) 0.8 0.6 0.4 0.2 0.0 C Toluene ( μg / m3 cm2 leaf area) 0.8 0.6 0.4 0.2 0.0 D 0 1 2 4 6 0 1 2 4 6 T im e ( h r s ) T im e ( h r s ) Fig. 4. Accumulated removal amount of single or mixture of benzene and toluene by Hedera helix for 6 hours. See Fig. 1 for details. - 285 -
Table 2. Comparison of removal efficiency of 1ppm (3.21mg m -3 ) benzene exposed in air tight chamber by four different indoor plants. Species Apparent removal efficiency of benzene (ng m -3 hr -1 cm -2 leaf area) Day Night Spathiphyllum spp. 174.5±3.8 z a 129.4±39.5 a y Syngonium podophyllum 103.4±6.9 b 67.6±17.2 ab Cissus rhombifolia 50.3±7.0 c 26.6±8.0 b Hedera helix 102.8±8.3 b 134.5±13.7 a Significance *** ** z Mean ± SE of 3 samples. y Mean separation within columns by Duncan's multiple range test at P=0.05. **, *** Significant at P 0.01, or P 0.001, respectively. Table 3. Comparison of removal efficiency of 1ppm (3.79mg m -3 ) toluene exposed in air tight chamber by four different indoor plants. Species Apparent removal efficiency of toluene (ng m -3 hr -1 cm -2 leaf area) Day Night Spathiphyllum spp. 203.7±24.3 z a 128.9±12.2 ab y Syngonium podophyllum 161.6±19.2 a 60.2±8.3 a Cissus rhombifolia 85.8±6.0 b 57.8±15.1 a Hedera helix 220.2±31.8 a 142.1±41.5 b Significance * NS z Mean ± SE of 3 samples. y Mean separation within columns by Duncan's multiple range test at P=0.05. NS, * Nonsignificant or significant at P 0.05, respectively. - 286 -
Table 4. Comparison of benzene removal efficiency among 1ppm mixture of benzene and toluene exposed into air tight chamber by four different indoor plants. Species Apparent removal efficiency of benzene (ng m -3 hr -1 cm -2 leaf area) Day Night Spathiphyllum spp. 37.0±10.0 z ab 30.4±10.1 a y Syngonium podophyllum 28.2±5.2 b 18.8±8.5 a Cissus rhombifolia 33.0±5.7 b 28.0±4.2 a Hedera helix 57.5±4.6 a 50.6±12.9 a Significance NS NS z Mean ± SE of 3 samples. y Mean separation within columns by Duncan's multiple range test at P=0.05. NS Nonsignificant. Table 5. Comparison of toluene removal efficiency among 1ppm mixture of benzene and toluene exposed into air tight chamber by four different indoor plants. Species Apparent removal efficiency of toluene (ng m -3 hr -1 cm -2 leaf area) Day Night Spathiphyllum spp. 61.2±6.3 z b 27.1±3.9 b y Syngonium podophyllum 61.5±11.3 b 33.5±28.0 b Cissus rhombifolia 77.4±17.1 ab 44.3±14.2 b Hedera helix 112.2±4.1 a 121.6±5.6 a Significance * ** z Mean ± SE of 3 samples. y Mean separation within columns by Duncan's multiple range test at P=0.05. *, ** Significant at P 0.05 or P 0.01, respectively. - 287 -
Table 6. Changes in various physiological responses of four different indoor plants before and after exposure by single or mixture of benzene and toluene. Species Gas Photosynthetic rate (μmol CO 2m -2 s -1 ) Respiration rate (μmol CO 2m -2 s -1 ) Stomatal conductance ( molh 20m -2 s -1 ) Intercellular CO 2 concentration (μmol CO 2/ mol air) Transpiration rate (m mol H 20m -2 s -1 ) B before 1.57±0.11-0.16±0.03 0.0156±0.0014 174± 4 0.271±0.032 after 0.87±0.10* - 0.18±0.01 ns 0.0086±0.0009* 171± 15 ns 0.158±0.016* Spathiphyllum spp. T before 1.51±0.11-0.25±0.03 0.0146±0.0013 169± 6 0.259±0.022 after 0.62±0.11* -0.21±0.02* 0.0081±0.0009* 225± 10* 0.140±0.016* B+T before 1.40±0.08-0.26±0.02 0.0119±0.0007 148± 7 0.213±0.016 after 0.51±0.08* -0.19±0.01* 0.0048±0.0006* 537±311 ns 0.090±0.013* B before 2.34±0.09-0.12±0.01 0.0291±0.0025 199± 8 0.417±0.032 after 0.79±0.14* -0.23±0.02* 0.0073±0.0017* 127± 22* 0.101±0.021* Syngonium podophyllum T before 1.93±0.11-0.29±0.05 0.0213±0.0015 189± 6 0.320±0.019 after 0.96±0.14* -0.25±0.02 ns 0.0089±0.0017* 151± 10* 0.127±0.021* B+T before 2.00±0.18-0.12±0.01 0.0224±0.0026 173± 14 0.334±0.035 after 0.48±0.06* -0.23±0.02* 0.0041±0.0004* 156± 11 ns 0.070±0.007* Cissus rhombifolia Hedera helix B before 1.83±0.09-0.28±0.03 0.0226±0.0019 201± 8 0.341±0.029 after 1.15±0.14* -0.25±0.02 ns 0.0116±0.0018* 167± 8* 0.200±0.030* T before 1.61±0.08-0.26±0.03 0.0191±0.0011 203± 4 0.320±0.022 after 0.95±0.08* -0.22±0.01 ns 0.0092±0.0007* 175± 6* 0.160±0.012* B+T before 1.95±0.13-0.32±0.04 0.0312±0.0052 214± 10 0.492±0.069 after 0.94±0.19* -0.22±0.02* 0.0099±0.0024* 191± 14 ns 0.165±0.036* B before 1.87±0.14-0.24±0.03 0.0203±0.0021 180± 8 0.318±0.033 after 1.37±0.17* -0.25±0.01 ns 0.0151±0.0024 ns 181± 9 ns 0.236±0.035 ns T before 1.46±0.11-0.24±0.01 0.0150±0.0015 176± 8 0.230±0.021 after 0.60±0.33* -0.23±0.01 ns 0.0082±0.0017* 64±116 ns 0.147±0.029* B+T before 1.37±0.17-0.28±0.02 0.0135±0.0023 157± 10 0.173±0.026 after 0.49±0.17* -0.23±0.01* 0.0058±0.0016* 244± 17* 0.080±0.018* ns,* Nonsignificant or significant at P 0.05, respectively, by paired t-test between before and after exposure of gas. - 288 -
6 절. 실내공기질개선을위한식물 - 토양의관계성및토양 미생물의공기정화능조사 1. 실내식물분토양내미생물상연구 문영숙 천세철 손기철 건국대학교생명환경과학대학 Microbial diversity of indoor plant soil bed Young-Sook Moon and Se-Chul Chun* Ki-Cheol Son College of Life and Environmental Science, Konkuk University, Seoul 143-701 (* Corresponding author) Abstract. Microbial diversity in indoor plant cultivation media used for growing the different kinds of plants as a basic study was investigated in order that microbes present in plant cultivation media could play a role in removing volatile organic compounds (VOC). There were two plant cultivation media, hydroball and peatmoss. Types of plants used for this study were Hedera helix L., dracaena deremensis cv. Warneckii Compacta, Schefflera arboricola cv. Hong Kong, Scindapsus aureus Engler, Ficus elastica, Ardisia crenat, Pachira aquatica, Spathiphyllum wallisii Regel, Sansevieria trifasciata Prain var. laurentii N. E. Br, Chamaedorea elegans, Ficus benjamina L., Syngonium podophyllum SchottꡐAlbo-Virensꡑ, Dieffenbachia sp.ꡐmarrianneꡑ, Nephrolepis exalatata Bostoniensis', Rhapis excels. Cultivation media were suspended with sterile distilled water for ten fold serial dilution to the 10-7 and the suspensions were spread on tryptic soy agar for bacterial culture and acidified potato dextrose agar for fungal culture. In addition, we investigated if - 289 -
harmful bacteria for human such as Escherichia coli and Salmonella exist in cultivation media is present. Bacterial population was higher in peatmoss with 1.1 x 10-8 colony forming unit (CFU) than hydrobowl with 1.8 x 10-5. However, the fungal population did not show a big difference as in case of bacteria. Although there was a difference in microbial population between cultivation media, microbial diversity was similar. Bacterial populations were different depending on the types of plants grown on cultivation media. Harmful bacteria for human was not cultured in the cultivation media, suggesting that growing plant indoor would not be a problem for human health. Also, the difference in microbial population depending on types of plants used suggested that efficacy of VOCs removal by plants grown indoor in cultivation media could be also attributed to microbes present in cultivation media. 서 론 도시의공기는자동차매연, 실내의페인트등에의한휘발성유기화합물 (volatile organic compounds, VOCs) 에항상오염되어있기때문에 90% 이상의시간을실내에서보내는도시민들에게있어서는빌딩내의공기의질은개선될필요가있다 (Abbritti and Muzi, 1995, Krzyanowski, 1995, Amrican Lung Assoc., 2001). VOCs는실외, 실내에서유래되는데실외에서는자동차매연등이며 ( 주로벤젠 ), 실내에서는공장, 기계, 용매, 세탁제, 회장품등에서유래되는 n-핵산등이다. 이러한화학물질의혼합물은특별히에어콘이가동되는실내에서이른바빌딩증후군 (sick building syndrome 또는 building-related illness) 을일으키는원인으로서보고되었다 (Burge et al., 1987; Mendell and Smith, 1990; Carpenter, 1998; Brasche et al., 1999; Carrer et al., 1999). 300종이상의 VOCs 물질이실내에서검출되어졌고이러한물질들은두통, 호흡계질환, 집중력의상실등을가져온다고보고되어졌다 (Wolkoff, 1995; Weschler and Shields, 1997). 식물배양토의미생물들은분토양에서자라는실내식물의대기중의 VOCs 제거에관련이되었다는것이보고되어졌다 (Wolverton and Wolverton, 1993). 미 - 290 -
생물들은유기물질들예를들면유출된기름등으로오염된토양의생물제거에서효과적인것으로알려져있다 (Radwan et al., 1998; Siciliano and Germida, 1998a, b; Li et al., 2000). 미생물의활동이왕성한축축한다공성의배지를오염된공기가통과할때즉, biofilter reactor" 에의한탄화수소연기의처리에도사용되어왔다 (Hodge et al., 1991; Zhou et al., 1998, Yeom and Yoo, 1999). 또한, 분토양의미생물에의하여벤젠과 n-핵산을포함하는 VOCs가제거된다는것이보고되었다 (Wood et al., 2002). VOCs 제거능은단지주간에만국한된것이아니라야간에도효과적으로일어난다고밝혀졌다 (Wood et al., 2002). 이러한사실은 VOCs 제거가식물에의하여만일어나는것이아니라토양의흡착성및토양미생물이관여한다는것을암시하여준다. 한편, 대부분의경우, 분토양내의미생물이실내공기질을개선할수있다는암시를제시하여주는연구결과가있고공기질개선에미생물의역할이중요할수있으며, 또한편농가재배등일반토양을사용하는사람들에게인체에해로운세균, 진균등에감염되는사례가보고된적이없으며, 인간이토양이라는자연환경에항상노출되어있으나, 토양에서유래하는세균이나진균이대기를통하여인체에전염될가능성매우희박하다하겠으나, 그럼에도불구하고분토양내존재하는미생물등이혹시나인체에해로움을주지는않을까하는막연한두려움도갖고있어, 실제병원에서는구체적인연구가없이는병원내분도입을제한하고있는실정이다. 재료및방법 분토양의종류에따른미생물의생존과번식조사피트모스와하이드로볼의시료를 ( 그림 1) 각 10g씩분의상층부에서채취하여삼각플라스크에넣고 90ml의멸균증류수와잘혼합하여현탁액을만들고멸균유리 test tube를사용하여천만분의 1까지희석하는일련의농도를만들었다. 각각의농도에대한현탁액을각 1ml 씩페트리디쉬에분주하고세균과방선균의밀도및균체분리를위하여 tryptic soy agar(tsa) 를 14ml 씩분주하였다. 곰팡이의밀도및균분리조사를위하여는 acidified potato dextrose agar - 291 -
(APDA) 를 14ml 씩분주한후세균조사를위하여는 32 o C 에 2 일간, 진균의경우 에는 28 o C 에 3 일간배양하여균체를계수하고순수분리하였다. A B 그림 1. A, 하이드로볼, B, 피트모스 배양토종류에따른인체위해세균조사 E. coli and Coliform. 500ml의증류수를 1L의 Pyrex병에담고 13.25g의 COLIFORM Agar와마그네틱바를넣은후에 1L의 Pyrex병을물을넣은 2L 비커를가열하여중탕으로 COLIFORM Agar(Merk Korea Ltd., Seoul, Korea) 를완전히녹인후배지는분주할때까지 45~50 의 Water Bath에보관하였다. 피트모스와하이드로볼의비중차는 9:1의차이를보이므로부피를맞추기위해하이드로볼 9g과피트모스 1g을각각삼각플라스크에넣고 100ml가되도록증류수를넣어서 30분동안 shaking 하였다. Test tube에각각 9ml의증류수를분주한후에 autoclave(121, 30분 ) 를마친다음 shaking 한플라스크로부터 1ml 을피펫으로옮겨서 10-1 부터 10-8 의농도까지희석현탁액을만들었다. 10-3 부터 10-8 까지각농도당 2반복으로 2개의페트리디쉬에 1ml 씩분주한다음미리준비된 COLIFORM 배지를 15ml 씩분주하여잘흔들어섞어배지를잘굳히고배지가모두굳은다음 36 의 incubator chamber에넣어 48시간배양하여진한청색에서자주색의콜로니의유무를판단하고계수하였다. Samonella. 2L의비커에물을넣고가열하여중탕으로 Rambach agar(merk Korea Ltd., Seoul, Korea) 를완전히녹인후배지는분주할때까지 45~50 의 - 292 -
Water Bath에보관하였다. 상기에서준비된피트모스와하이드로볼의 10-3 부터 10-8 현탁액 1ml을분주하고미리준비된 Rambach agar 배지를 15ml 씩분주하여잘흔들어섞어배지를잘굳히고배지가모두굳은다음 36 의 incubator chamber에넣어 48시간배양하여빨간색의콜로니의유무를판단하고계수하였다. Staphylococcus. 2L 비커에물을넣고가열하여중탕으로 Egg-yolk tellurite 을첨가한 Barid-Parker agar(merk Korea Ltd., Seoul, Korea) 를완전히녹인후배지는분주할때까지 45~50 의 Water Bath에보관하였다. 상기에서준비된피트모스와하이드로볼의 10-3 부터 10-8 현탁액 1ml을분주하고미리준비된 Barid-Parker agar를 15ml 씩분주하여잘흔들어섞어배지를잘굳히고배지가모두굳은다음 36 의 incubator chamber에넣어 48시간배양하여검은색의볼록하고 shiny한콜로니의유무를판단하고계수하였다. 실내식물종에따른미생물분포식물의종류는아이비, 쉐프렐라, 드라세나, 스킨답세스, 인도고무나무, 백량금, 파키라, 스파티필름, 산세베리아, 테이블야자, 벤자민, 싱고니움, 디펜바키아, 네프로네피스, 관음죽이사용되었다. 각식물에대하여피트모스와하이드로볼의시료를각 10g씩식물의뿌리부분에서채취하여삼각플라스크에넣고 90ml의멸균증류수와잘혼합하여현탁액을만들고멸균유리 test tube를사용하여천만분의 1까지희석하는일련의농도를만들었다. 각각의농도에대한현탁액을각 1ml 씩페트리디쉬에분주하고세균과방선균의밀도및균체분리를위하여 tryptic soy agar(tsa) 를 14ml 씩분주하였다. 곰팡이의밀도균분리조사를위해서 acidified potato dextrose agar(apda) 를 14ml 씩분주하였다. 그후, 세균조사를위해서는 32 o C에 2일간, 진균의경우에는 28 o C에 3일간배양하여균체를계수하고순수분리하였다. 분리된균에대한분류동정 진균의동정을위해서는곰팡이의포자형성등형태적인특징을광학현미경 을사용하여관찰하고불완전균류에대해서는 Barnett and Hunter(1998) 의 - 293 -
Illustrated Genera of Imperfect Fungi" 문헌을참고하여분류동정하였다. 방선균은배지에성장하는특징이사상형으로나타나는세균을조사하였고, 다른일반적인세균에대하여는 3% KOH 용액을만들고슬라이드글라스위에서분리된균체를세균계대이식용 loop를사용하여 3% KOH와균체의콜로니를썩어그람양성또는음성균인지의여부를판단하였다. 결과및고찰 배양토종류에따른미생물상조사식물이재식되어있지않은배양토의종류에따라서세균과진균의 1g 토양당균체수의차이가매우뚜렷하였다 ( 표 1). 세균과진균의종류에있어서피트모스배양토가세균은 1g당 1.1 x 10 8 ( 억단위 ) 의숫자로하이드로볼의 1.8 x 10 5 ( 십만단위 ) 에비하여현저히많은숫자의세균을가지고있었다. 진균의경우에있어서도배양토그람당균체수가피트모스는 3.6 x 10 7 ( 천만단위 ) 숫자로의하이드로볼의 1.8 x 10 7 ( 천만단위 ) 의균체수에비하여많았으나세균에서와같이매우큰차이는보이지않았다 ( 표 1). 하이드로볼의질량은피트모스의약 9배에해당하는데동일부피당균체의수를고려한다해도피트모스에더욱많은세균이서식하고있음을알수있었다. 두종류의배양토모두에서방선균은검출되지않았다. 그러나, 하이드로볼과피트모스에의한분토양미생물의 VOCs 제거능에차이가있는지에대한예비조사를하는중 VOCs가피트모스를통과하는과정의 biofilter 제작은피트모스가공극이너무좁아공기가통과할수없게되어불가능하게되었다. 따라서배지종류중하이드로볼에서의미생물의 VOCs 제거능만을조사하였고, 그러한 VOCs 제거능을가진개개균주의선발을하여 VOCs 제거능조사를진행하는중이다. 표 1. 배양토종류에따른미생물상조사 - 294 -
배양토 CFU /g 토양세균진균방선균 하이드볼 1.8 x 10 5 1.8 x 10 7 0 피트모스 1.1 x 10 8 3.6 x 10 7 0 VOC처리피트모스 1.0 x 10 7 8.0 x 10 8 0 CFU: colony forming unit 배양식물종에따른토양의세균의밀도조사재식되어있는배양토에따라서또한, 식물의종류에따른근권의세균과진균의밀도에있어아주현저한차이가있었다. 재식전과비슷하게피트모스에서는세균의균체수가하이드로볼에비하여 1,000배로많이서식하고있었다 ( 표 2). 방선균은검출이되지않았다. 하이드로볼이사용된식물에있어서의세균의균체수를살펴보면쉐프렐라, 인도고무나무, 네프로네피스식물들은 1g당배양토의세균수가각각 37.1 x 10 4 ( 일만단위 ), 16.0 x 10 4, 15.0 x 10 4 로써파키라, 드라세나, 산세베리아식물의세균수각각 0.1 x 10 4, 0.3 x 10 4, 1.5 x 10 4 에비하여 10에서 100배까지의매우뚜렷한차이가있었다. 피트모스가배양토로사용된식물의종류에따른토양의균체수를살펴보면, 스파티필름, 스킨답세스, 디펜바키아등은토양 1그람당각각 109 x 10 7, 54 x 10 7, 40 x 10 7 ( 천만단위 ) 의세균수가존재하여파키라, 드라세나, 산세베리아등의각각 1.0 x 10 7, 1.0 x 10 7, 7.0 x 10 7 의세균수에비하여약 10배에서 100배의매우큰차이를나타내고있어서식물뿐만아니라배양토의종류와그들의조합에따라서도세균균체수의밀도에매우큰차이가존재하였다 ( 표 2). 이와같은결과는배양토와사용되는식물의종류에따라서미생물의기여에의한 VOCs 제거능에있어서도현격한차이가있을수있음을제시하여준다고하겠다. - 295 -
A B 그림 2. 세균밀도차이. A, 쉐프렐라 ; B, 벤자민 표 2. 배양식물종에따른토양의세균균체수 CFU/g of soil 식물종류아이비쉐프렐라드라세나스킨답세스인도고무나무백량금파키라스파티필름산세베리아테이블야자벤자민싱고니움디펜바키아네프로네피스관음죽 하이드로볼 (x 10 4 ) (x10 7 ) 0.4 37.1 0.3 0.8 16.0 9.6 0.1 2.2 1.5 0.3 0.4 0.4 0.4 15.0 0.2 피트모스 30.0 10.0 1.0 54.0 20.0 20.0 1.0 109.0 7.0 9.0 10.0 30.0 40.0 10.0 20.0 CFU 는 colony forming unit - 296 -
배양토종류에인체위해세균의종류조사 E. coli 와 Coliform 세균, Samonella, Staphylococcus 에속하는인체위해한 세균은피트모스와하이드로볼의 10-3 ~ 10-8 까지현탁액을도말한각각의판별 배지에서인체위해세균으로서나타나는특징적인세균은관찰되지않았다. 피트모스 1g 당 1,000개와하이드로볼배양토 1g 당 111개수준에서검출되지않았다. 이것은하이드로볼과피트모스에는식중독등인체에위해한세균이없거나존재하여도 1g 당 1,000 또는 111개수준이하에서검출될수있는정도로염려가될수준은아님을보여준것이다. 표 2. 배양토종류에따른인체위해세균조사 배양토 CFU /g 토양 E. coli Samonella Staphylococcus 하이드로볼 0 0 0 피트모스 0 0 0 CFU는 colony forming unit 배양식물종에따른진균의밀도분석배양식물종에따른진균의개체수는세균에비하여매우적었고진균또한배양토와식물의종류에따라서균체수의밀도가매우달랐다. 세균에서유사하게진균의경우에도피트모스에더많은진균이존재하고있었다 ( 표 4). 하이드로볼을사용한배양토에서의진균의숫자는산세베리아, 드라세나모두 11 x 10 4 숫자로서피트모스를배양토로사용한처리에서테이블야자, 인도고무나무, 백량금등은균체수가각각 310 x 10 7 ( 천만단위 ), 150 x 10 7, 90 x 10 7 로써파키라, 관음죽, 쉐프렐라등의각각 1.0 x 10 7, 1.0 x 10 7, 10.0 x 10 7 의균체수에비하여 10배에서 100배정도의큰차이를보여식물의종에따라서진균의숫자도매우다양하였다 ( 표 4). - 297 -
A B C 그림 3. 진균밀도차이. A, 드라세나 ; B, 테이블야자 표 4. 배양식물종에따른토양의진균균체수 식물종류아이비쉐프렐라드라세나스킨답세스인도고무나무백량금파키라스파티필름산세베리아테이블야자벤자민싱고니움디펜바키아네프로네피스관음죽 CFU/g of soil 하이드로볼 (x 10 4 ) 피트모스 (x10 7 ) nd nd 1.2 10.0 11.0 nd 0.1 10.0 0.6 150.0 nd 90.0 nd 1.0 0.2 nd 11.0 nd 0.1 310.0 1.0 nd nd nd nd nd nd nd nd 1.0 nd: not detectable at 10-1, and 10-6 dilutions. - 298 -
배양식물종에따른분세균의그람반응조사분리한세균에대하여그람양성또는음성여부를판정하는것은분류동정의기본절차인데, 세균에대한순수분리작업이된것에한하여각식물종마다, 배양토별로각각 20개의균주를무작위선발하여그람반응을조사한결과모든분리된세균에대한그람양성및음성의비율이다양하게분포되어있었다 ( 표 5). 표 5. 배양식물종에따른분리세균그람반응 식물종류 아이비쉐프렐라드라세나스킨답세스인도고무나무백량금파키라스파티필름산세베리아테이블야자벤자민싱고니움디펜바키아네프로네피스관음죽 그람양성또는음성의비율 a 하이드로볼 피트모스 양성 음성 양성 음성 0.8 0.2 0.0 1.0 0.9 0.1 1.0 0.0 1.0 0.0 0.5 0.5 0.5 0.5 0.6 0.4 0.9 0.1 0.2 0.8 0.2 0.8 1.0 0.0 1.0 0.0 0.5 0.5 0.1 0.9 1.0 0.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0 1.0 0.0 0.0 1.0 0.6 0.4 1.0 0.0 0.5 0.5 0.8 0.2 1.0 0.0 1.0 0.0 0.5 0.5 0.4 0.6 a 각식물당 20 개의세균을이용하여시험하였음 배양토에따른진균의종류진균의종류는주로 Aspergillus spp., Aternaria spp., Rhizopus spp., Penicillium spp. Trichoderma spp. 등토양이나대기중에서자주발견되는종류가대부분이었고피트모스에서더욱곰팡이가분리되었지만분토양에따라검출되는곰팡이종류의차이는없었다 ( 표 6). - 299 -
표 6. 분토양에서분리된속까지분류된진균의종류 종류 하이드로볼 피트모스 Aspergillus spp. 10 12 Aternaria spp. 7 5 Rhizopus spp. 5 12 Penicillium spp. 8 25 Trichoderma spp. 11 21 Unkown 15 23 계 56 98 초 록 식물의분토양에존재하는미생물에의한휘발성유기화합물 (VOCs) 의제거효과가있는지를알아보기위한기본조사로서실내식물의배양에사용되는배양토의종류와식물의종류에따라서미생물의생존과번식, 미생물의분포에있어서어떠한차이가있는지를조사하였다. 배양토피트모스와하이드로볼, 그리고, 식물의종류는아이비, 쉐프렐라, 드라세나, 스킨답세스, 인도고무나무, 백량금, 파키라, 스파티필름, 산세베리아, 테이블야자, 벤자민, 싱고니움, 디펜바키아, 네프로네피스, 관음죽이었다. 미생물의생존과번식이어떻게되는지조사하기위하여배양토의현탁액을 10-7 까지희석하여현탁액을도말하였고, 세균의배양을위해서는 Tryptic soy agar, 곰팡이의번식에대하여는산성 potato dextrose agar를사용하였다. 또한, 인체에위해한세균에대하여는대장균, 살모넬라, 포도상구균을대상으로하여판별배지를이용, 조사하였다. 피트모스배양토는세균이 1그람당 1.1 x 10 8 의 colony forming unit(cfu) 로존재하여하이드로볼의 1.8 x 10 5 CFU에비하여현저히많은숫자의세균을가지고있었다. 진균의경우에있어서도배양토그람당균체수가피트모스는 3.6 x 10 7 CFU로하이드로볼의 1.8 x 10 7 의균체수에비하여많았으나세균에서와같은매우큰차이는보이지않았다. 그러나, 미생물의종류에서양상은유사하였다. 또한, 생육중인식물의배양토에따른미생물의밀도에서는하이드로볼은쉐프렐라식물이 3.7 x 10 5, 드라세나는 0.3 x 10 4, 피트모스배양토에서는스파티필름이 1.09 x 10 9, 드라세나는 1.0 x 10 7 의세균의 CFU가 - 300 -
존재하고있어식물종에따른미생물의밀도에큰차이가있음을보여주었다. 식물종에따른배양토에서의그람양성과그람음성그룹에있어서는양상에차이는있었지만, 인체에위해한미생물이발견되지않았으므로화분재배되는식물을실내에서재배한다고하여인체에위해한미생물이대기중에확산될염려는없는것으로생각되었다. 또한, 식물의종에따라서미생물의번식숫자가현저하게차이가나타나 VOCs의제거능이미생물에의하여도차이가있을수있음을암시하여주었다. 인용문헌 Abbritti, M.C. and Muzi, G. (1995). Indoor air quality and health effects in office buildings. In: Proceedings of Healthy Buildings '95, An International Conference on Healthy Buildings in a Mild Climate. (Maroni, M., Ed.). Univerisity of Milano and International Center for Pesiticide Safety, Milan, Italy, 1:185-195. Brasche, S., Bullinger, M., Gebhardt, H., Herzog, V., Hornung, P., Kruppa, B., Meyer, E., Morfield, M., Schwab, R., Mackensen, S., Winkens, A., and Bischof, W. 1999. Factors determining different symptom patterns of sick building syndrome-results from a mutivariate analysis. In: Proceedings of Indoor Air '99, The 8th International Conference on indoor air quality and climate, Edinburgh, UK, 5:402-407. Burge, S., Hedge, A., Wilson, S., Harris, B.J. and Robertson, A. 1987. Sick building syndrom: a study of 4373 office workers. Annals of Occupational Hygiene, 31:493-504. Carpenter, D. O. 1998. Human health effects of envionmental pollutants: New insights. Environmental monitoring and Assessment, 53:245-258. Carrer, P., Alcini, D., Cavallo, D., Visigalli, F., Bollini, D. and Maroni, M, 1999. Home and work place complaints and symptoms in office workers and correlation with indoor air polution. In: Proceedings of Indoor Air - 301 -
'99, The 8th International Conference on indoor air quality and climate, Edinburgh, UK, 1:129-134. Li, G., Huang, A., Lerner, D. N. and Zhang, X. 2000. Enrichment of degrading microbes and bioremediation of petrochemical contaminants in polluted soil. Water Research, 34:3845-3853. Mendell, M.J. and Smith, A.H. 1990. Consistant pattern of elevated symptoms in air-conditioned office buildings: A re-analysis of epidemiological studies. Amercan Journal of Public Health, 80:1193-1199. Radwan, S.S., AL-Awadhi, H., Sorkhoh, N.A. and EL-Nemr, I.M. 1998. Rhizospheric hydrocarbon utilizing microorganisms as potential contributors to phytoremediation for the oily Kwaiti desert. Microbiology Research, 153:247-251. Siciliano, S.D. and Germida, J.J. 1998a. Mechanisms of phytoremediation: Biochemical and ecological interactions between plants and bacteria. Environmental Review, 6:65-79. Siciliano, S.D. and Germida, J.J. 1998b. Biolog analysis and fatty acid methyl ester profiles indicate that pseudomonad inoculants that promote phytoremediation alter the root-associated microbial community of Bromus biebersteinii. Soil Biology and Biochemistry, 31:299-305. Weschler, C.J. and Shields, H.C. 1997. Potential reactions among indoor air pollutants. Atmospheric Environment 31:3487-3495. Wolkoff, P. 1995. Volatile organic compounds-sources, measurements, emissions and the impact on indoor air quality. Indoor air. Suppl. No. 3. Wolverton, B.C. and Wolverton, J.D. 1993. Plants and soil microorganisms-removal of formaldehyde, xylene and ammonia from the indoor environment. Journal of the Mississippi Academy sciences, 38:11-15. Wood, R. A., Orwell, R.L, Tarran, J. Torpy, F. and Burchett, M. 2002. Potted-plant/growth media interactions and capacities for removal of volatiles - 302 -
from indoor air. Journal of Horticultural Science & Biotechnology 77:120-129. - 303 -
2. 분토양의토양미생물이휘발성유기화합물의제거에미치는영향 문영숙 천세철 손기철 건국대학교생명환경과학대학 Effect of Microbe of Cultivation Media on Removal of Volatile Organic Compound Young-Sook Moon and Se-Chul Chun* Ki-Cheol Son College of Life and Environmental Science, Konkuk University, Seoul 143-701 (* Corresponding author) Abstract. Effect of total bacterial population cultured from the cultivation media of different plants on removal of volatile organic compounds (VOCs) such as benzene and toluene was studied. Also, the bacteria effective for removal of VOCs was isolated from total bacterial population. Total bacterial populations of the cultivation media of Hedera helix L., Dracaena deremensis cv. Warneckii Compacta, Scindapsus aureus Engler, Ficus elastica, Ardisia crenat, Pachira aquatica, Spathiphyllum wallisii Regel, Sansevieria trifasciata Prain var. laurentii N. E. Br, Chamaedorea elegans, Ficus benjamina L., Syngonium podophyllum Schott Albo-Virens, Dieffenbachia sp. Marrianne, Nephrolepis exalatata Bostoniensis was inoculated into the glass bottle (diameter 81mm x height 170mm, 600ml) and then mixed VOCs of bezene (0.36ppm), toluene (0.18ppm), m,p-xylene (0.976ppm) and o-xylene (0.569ppm) were injected. The initial gas concentration of VOCs from bottles was measured and incubated for 12 hrs. Benzene, toluene and m,p-xylene was significantly reduced from inoculated treatments compared to non-inoculated (LSD, P=0.05). However, reduction of o-xylene in the inoculated could not be compared because the final gas concentration was reduced significantly even from the control. Compared to the control with reduction rate of 0.031-0.596, - 304 -
the reduction rates of benzene by the inoculation of total bacterial populations from the cultivation media were significantly great, ranged from 0.741-1.000 of Spathiphyllum wallisii Regel, Pachira aquatica, Ficus elastica, Ardisia crenat, Dieffenbachia sp. Marrianne, Chamaedorea elegans. Compared to the control with toluene reduction rate of 0.652-0.777, the reduction rates by the total bacterial populations of Dracaena deremensis cv. Warneckii Compacta, Nephrolepis exalatata 'Bostoniensis, Spathiphyllum wallisii Regel, Ficus elastica, Dieffenbachia sp. Marrianne, Chamaedorea elegans were significantly great with ranges of 0.906-1.000. These results indicate that the microbial population in plant cultivation media could play an important role in removal of VOCs. 서 론 도시의공기는자동차매연, 실내의페인트등에의한휘발성유기용매 (volatile organic compounds, VOCs) 에항상오염되어있기때문에 90% 이상의시간을실내에서보내는도시민들에게있어서는빌딩내의공기의질은개선될필요가있다 (Abbritti and Muzi, 1995, Krzyanowski, 1995, Amrican Lung Assoc., 2001). VOCs는실외, 실내에서유래되는데실외에서는자동차매연등이며 ( 주로벤젠 ), 실내에서는공장, 기계, 용매, 세탁제, 회장품등에서유래되는 n-핵산등이다. 이러한화학물질의혼합물은특별히에어컨이가동되는실내에서이른바빌딩증후군 (sick building syndrome 또는 building-related illness) 을일으키는원인으로서보고되었다 (Burge et al., 1987; Mendell and Smith, 1990; Carpenter, 1998; Brasche et al., 1999; Carrer et al., 1999). 300이상의 VOCs 물질이실내에서검출되어졌고이러한물질들은두통, 호흡계질환, 집중력의상실등을가져온다고보고되어졌다 (Wolkoff, 1995; Weschler and Shields, 1997). 식물배양토의미생물들은분토양에서자라는실내식물의대기중의 VOCs 제거에관련이되었다는것이보고되어졌다 (Wolverton and Wolverton, 1993). 미생물들은유기물질들예를들면유출된기름등으로오염된토양의생물제거에 - 305 -
서효과적인것으로알려져있다 (Radwan et al., 1998; Siciliano and Germida, 1998a, b; Li et al., 2000). 미생물의활동이왕성한축축한다공성의배지를오염된공기가통과할때즉, biofilter reactor" 에의한탄화수소연기의처리에도사용되어왔다 (Hodge et al., 1991; Zhou et al., 1998, Yeom and Yoo, 1999). 또한, 분토양의미생물에의하여벤젠과 n-핵산을포함하는 VOCs가제거된다는것이보고되었다 (Wood et al., 2002). VOCs 제거능은단지주간에만국한된것이아니라야간에도효과적으로일어난다고밝혀졌다 (Wood et al., 2002). 이러한사실은 VOCs 제거가식물에의하여만일어나는것이아니라토양의흡착성및토양미생물이관여한다는것을암시하여준다. 한편, 대부분의경우, 분토양내의미생물이실내공기질을개선할수있다는암시를제시하여주는연구결과가있고공기질개선에미생물의역할이중요할수있으며, 또한편농가재배등일반토양을사용하는사람들에게인체에해로운세균, 진균등에감염되는사례가보고된적이없으며, 인간이토양이라는자연환경에항상노출되어있으나, 토양에서유래하는세균이나진균이대기를통하여인체에전염될가능성매우희박하다하겠으나, 그럼에도불구하고분토양내존재하는미생물등이혹시나인체에해로움을주지는않을까하는막연한두려움도갖고있어, 실제병원에서는구체적인연구가없이는병원내분도입을제한하고있는실정이다. 따라서, 식물의실내도입에따른배양토의안정성과및토양미생물에의한 VOCs 제거능을조사하고자먼저실내식물종에따른미생물상의차이를구명하고, VOCs 제거능을가진미생물집단을선발하였다. 재료및방법 식물배양토미생물군의휘발성유기화합물제거효과. 피트모스배지는식물및식물배양토에존재하는미생물에의한실내의공기질개선을위한장치를개발하는데있어서공기가피트모스를쉽게통과할수가없었다. 반면에하이드로볼은통풍장치에의하여공기가쉽게통과할수있었으므로하이드로볼을이용한배양토만이공기질개선을위한장치를만드는데유용하게되었다. 이러한이유로하이드로볼에서배양된미생물집단에대해서만 - 306 -
VOCs 제거효과가시험되게되었다. 아이비, 드라세나, 스킨답세스, 인도고무나무, 백량금, 파키라, 스파티필름, 산세베리아, 테이블야자, 벤자민, 싱고니움, 디펜바키아, 네프로네피스식물의하이드로볼배양토를 10g을 90ml의멸균증류수에희석한후 10-7 까지시험에서희석한후 10-3 에서 10-7 까지의희석현탁액을 1ml을취하여멸균페트리디쉬에분주한후여기에 TSA를분주하여굳힌후 28 o C에서 12~24시간배양하였다. 10-5 에서배양된세균에멸균수를넣고현탁액을만든후 TSA에다시도말한후 30% glycerol 6ml을분주하여총세균의집단을수득하여 -20 o C에보관하였다. 30% 에글리세롤에있는세균을 100μl를 (O.D. at 600nm = about 2.0) 5ml의멸균증류수에희석현탁한후각 1ml를직경이 81mm이며높이가 170mm이고볼륨이 600ml인마개가있는병의 TSA에분주하여도말이되도록해주었다 ( 그림 1). 대조구로는 TSA배지만분주하고어떠한세균도접종하지않았다. 마개로 (Septum, Sigma, USA) 밀봉하고다시한번 Parafilm(Parafilm, Chicago, IL, USA) 으로 2차밀봉하였다. 위의처리를마친후 benzen 2.143ppm, toluene 1.152ppm, m,p-xylene 5.368ppm, o-xylene 3.131ppm의혼합가스를각병에주입하고최초의농도를다시 GC로조사하고 28 에서 12시간배양한후각가스의최종농도를측정하였다. 그림 1. 휘발성유기화합물제거미생물군의효과조사에사용된병 - 307 -
VOCs 제거세균집단으로부터의단콜로니분리및동정 VOCs 제거효과큰식물배양토세균집단으로부터단콜로니를 3차에걸쳐 TSA agar에 streak하여단콜로니를분리하여일련의번호를부여하고지방산분석을하여동정하였다. 지방산분석을위하여 TSA에서 streak 접종하여 28 o C에 2일배양하여자란단콜로니를박테리아분리용 loop를사용하여떼어내어멸균유리 test tube 박닥에 coating하였다. NaOH와 MeOH가함유된시약을 1.0ml 시험관 tube에주입하고 5-10초간 votex로믹스하였다. 다시시험관 tube를중탕으로 100 o C에 5분동안가열한후다시 5~10초간 votex로믹스하고 100 o C에 25분동안가열한후흐르는수돗물에식혔다. 식힌시험관튜브에 2ml의 MeOH가함유된시약을 2ml을주입하고 5~10초간 votex로믹스한후시험관 tube를중탕으로 80 o C에 10분동안가열한후흐르는수돗물에식혔다. 식힌시험관 tube에 Hexane과 MTBE가함유된시약을 1.25ml을주입하고 10분간 swirling하고 bottom phase 를피펫을사용하여제거한후 NaOH를 3.0ml 주입하여 5분간다시 swriling 하고 top phase의 2/3를제거하고 GC vial에주사기로옮긴후 MIDI system(gc 와 database) 으로지방산을분석하여세균을분류동정하였다. VOCs 제거세균의선발글리세롤 (30%) 에있는세균 100μl를 (O.D. at 600nm = about 2.0) 1ml의멸균증류수에희석현탁한후 1ml를직경이 81mm이며높이가 170mm이고볼륨이 600 ml인마개가있는병의 TSA에분주하여도말이되도록해주었다 ( 그림 1). 각세균당 3개의반복으로하고대조구로는 TSA배지만분주하고어떠한세균도접종하지않았다. 마개로 (Septum, Sigma, USA) 밀봉하고다시한번 Parafilm (Parafilm, Chicago, IL, USA) 으로 2차밀봉하였다. 위의처리를마친후 benzen 0.4286ppm, toluene 0.2304ppm, m,p-xylene 1.0772ppm, o-xylene 0.6262ppm의혼합가스를각병에주입하고최초의농도를다시 GC로조사하고 28 에서 24 시간배양한후각가스의최종농도를측정하였다. - 308 -
결과및고찰 세균등이전혀추가되지되지않은 control 병에서벤젠, 톨루엔, m,p-xylene, o-xylene 등의가스를주입하고나서 12시간에최종농도를조사한결과벤젠, 톨루엔, m,p-xylene 등에대하여최초농도에비하여최종농도의감소량이식물배양토의세균집단이첨가된것에비하여현저히작았으나 (LSD, P=0.05)( 표 1), o-xylene은 control에서감소량이현저히나타나식물배양토의세균집단에의한 o-xylene의감소효과를비교할수없었다. 벤젠에대하여는대조구의감소율 (0.031-0.596) 은산세베리아, 드라세나, 스킨답세스의감소율 0.691-0.690과비교할때통계적인유의차가없었으나, 기타테이블야자등다른식물배양토의세균집단에의한벤젠의감소효과는대조구에비하여현저히높았다 (LSD, P=0.05). 톨루엔은대조구의감소율 0.031-0.596에비하여드라세나, 네프로네피스, 스파티필름, 인도고무나무, 디펜바키아, 테이블야자등에배양된세균의집단에의해서는감소율이 0.906에서 1.000으로현저히가스농도가감소하였다 (LSD, P=0.05)( 표1). m,p-xylene에대하여는파키라, 인도고무나무, 백량금, 디펜바키아, 테이블야자등이대조구의감소율 0.919-0.931에비하여 0.997-1.000으로감소율이현저히높았다 (LSD, P=0.05)( 표1). BTX( 종합가스 ) 의경우는파키라, 인도고무나무, 디펜바키아, 테이블야자등은대조구의감소율 0.835-0.864에비하여 0.994-1.000으로감소율이현저히높았다 (LSD, P=0.05)( 표1). o-xylene에대하여는대조구에서도현저한감소가일어나서각식물의배양토의세균집단에의하여가스가감소되는효과를확인할수없었다. Wood(2002) 등은 potting 혼합물을사용하여미생물에의한벤젠과 hexane의제거효과를연구하였는데 25ppm의벤젠을 5일만에 5ppm이하로감소시켰다고보고하였다. 또한, Howea 식물의배양토인 vermiculite를 Tryptic soy broth에현탁시켜배양하여미생물에의한벤젠의제거효과를조사하였는데 25ppm의벤젠이 4일만에 5ppm이하로감소되었다고보고하였다 (Wood et al., 2002). 식물과토양미생물에의하여포름알데하이드, xylene, 암모니아등이제거될수있음에대하여는 Wolverton and Wolverton(1993) 등이보고하였다. 또한, Radwan 등은 (1998) 쿠웨이트사막의기름제거에있어서탄화수소를이용하는근권미생물 - 309 -
에의한잠재적인공헌이있다고보고하였다. 대기중의톨루엔과 xylene 등에대하여 biofilter를이용할수있는가능성은 Marek 등 (2000) 에의하여제시되었다. xylene은병의밀봉을위하여사용되는고무마개와반응을하여없어질수도있을수있을것으로생각된다. 또한, xylene은더욱쉽게가스가세어나갈가능성도배제할수없다. 따라서본연구에서는대조구와처리구의감소율을비교하여세균에의한휘발성유기화합물의제거가일어나는지를조사하였다. Wood(2002) 등에의하면휘발성유기용매는유리나스테인레스등에만반응을하지않는것으로보고되었다. 그러나, 본연구에서는휘발성유기화합물을제거할수있는세균을최종적으로선발하여분토양에재주입하므로써미생물에의한유기용매제거효과와식물체에의한흡수등으로실내공기질을개선하고자하였으므로어느정도의제한조건은감수하지않을수가없었다. 특히, 디펜바키아와테이블야자의식물배양토하이드로볼에서분리한세균집단은벤젠과톨루엔의감소효과가 1.0으로현저히높았는데, 여기에서개별세균을분리하면휘발성유기화합물의제거효과가큰세균을분리하여휘발성유기화합물제거식물배양시스템장치를개발할수있을것이다. 50개의분리된세균중에서 17개의균주들은지방산분석기 (MIDI system) 의 gas chromatography(gc) 를이용한세포벽의지방산조성을분석하여 (Fig. 1) 분류동정 DB에서비교한결과 70% 이상의유사도를보여종으로판명될수있었으며기타 23개의균주는동정이되지않은세균으로판별되었다 ( 표 2). 대부분의동정된균주들은 Bacillus cereus, B. lichenformis, B. diposuri, Alcaligenes faecalis 등이었다. 특히, Bacillus속의균이식물배양토에내에서의미생물상의대부분을차치하고있음을보여주었다. 아이비 17번균주는벤젠의제거효과가대조구에비하여매우현저하였다 ( 표 3). 톨루엔, 자일렌등에대하여는감소효과가대조구에비하여우수한균주가없었다. 본실험에서는 5개의균주만이시험되어앞으로더욱많은균주가시험된다면 VOCs 제거에우수한균주가선발될수있을것으로생각된다. - 310 -
표 1. 식물배양토에서배양된세균집단에의한휘발성유기용매감소효과 식물종류 Benzen(ppm) a Toluene(ppm) m,p-xylene(ppm) 초기 b 최종감소율초기최종감소율초기최종감소율 Control1 0.159 0.154 0.031c c 0.145 0.050 0.652a 1.185 0.081 0.931a Control2 0.428 0.173 0.596a 0.164 0.037 0.777a 0.689 0.056 0.919a 산세베리아 0.390 0.121 0.691a 0.209 0.035 0.835a 1.006 0.052 0.948a 드라세나 0.451 0.138 0.695a 0.315 0.030 0.906b 1.890 0.055 0.971a 네프로네피스 0.553 0.167 0.697a 0.355 0.000 1.000b 2.291 0.186 0.919a 스파티필름 0.403 0.105 0.741b 0.210 0.000 1.000b 1.174 0.026 0.978a 파키라 0.633 0.114 0.820b 0.482 0.077 0.839a 4.253 0.013 0.997b 인도고무나무 0.357 0.028 0.922b 0.119 0.000 1.000b 0.829 0.000 1.000b 백량금 0.248 0.054 0.782b 0.062 0.013 0.797a 0.325 0.000 1.000b 스킨답세스 0.229 0.071 0.690a 0.182 0.035 0.809a 1.224 0.043 0.965a 디펜바키아 0.235 0.000 1.000b 0.130 0.000 1.000b 0.798 0.000 1.000b 테이블야자 0.159 0.000 1.000b 0.099 0.000 1.000b 0.558 0.000 1.000b (Table continued) 식물종류 o-xylene(ppm) BTX(ppm) 초기최종감소율초기최종감소율 Control1 0.610 0.000 1.000 2.097 0.285 0.864a Control2 0.325 0.000 1.000 1.607 0.265 0.835a 산세베리아 0.491 0.000 1.000 2.096 0.207 0.901a 드라세나 0.984 0.009 0.990 3.640 0.232 0.936a 네프로네피스 1.220 0.025 0.980 4.418 0.378 0.914a 스파티필름 0.557 0.000 1.000 2.345 0.131 0.944a 파키라 2.518 0.000 1.000 7.776 0.204 0.974b 인도고무나무 0.438 0.000 1.000 1.743 0.028 0.984b 백량금 0.167 0.000 1.000 0.801 0.066 0.984b 스킨답세스 0.625 0.000 1.000 2.259 0.148 0.934a 디펜바키아 0.408 0.000 1.000 1.571 0.000 1.000b 테이블야자 0.251 0.000 1.000 1.066 0.000 1.000b a Benzen 0.36ppm, toluene 0.18ppm, m,p-xylene 0.976ppm, o-xylene 0.569ppm 등의혼합가스 (BTX, bezene, toluene, m,p-xylene) 를유리병에주입한가스의 양 - 311 -
b 가스를주입하고나서바로초기의농도를측정하였다. 12시간 28 에항온후최종농도를측정하였다. 감소율 = 1-최종농도 / 초기농도. 감소율 1은가스가완전히제거된것을의미한다. c 서로다른알파벳글자를갖는것은통계적유의성이인정된다 (LSD, P=0.05). o-xylene은대조구의감소율이커서통계처리의의미가없었다. Fig. 1. Strain 009, Bacillus cereus 세포벽의지방산조성의 GC data - 312 -
표 2. VOCs 제거세균집단에서분리한균주들에대한 MIDI system 에의한 동정 균주번호균주의종명유사도 27 Alcaligenes faecalis 0.904* 28 A. faecalis 0.854* 32 A. faecalis 0.815* 37 A. faecalis 0.785* 41 A. faecalis 0.820* 58 A. faecalis 0.891 25-1 A. xylosoxydans 0.370 25-2 A. faecalis 0.842* 7 Bacillus. cereus 0.406 9 B. cereus 0.702* 012-1 B. cereus 0.529 11 B. cereus 0.447 13 B. cereus 0.529 15 B. cereus 0.422 18 B. cereus 0.468 20 B. cereus 0.463 22 B. cereus 0.525 48 B. cereus 0.535 52 B. cereus 0.437 56 B. cereus 0.468 59 B. cereus 0.548 19 B. diposauri 0.662 23 B. diposauri 0.709* 24 B. diposauri 0.808* 46 B. diposauri 0.716 57 B. diposauri 0.676 60 B. diposauri 0.738* 5 B. licheniformis 0.570 30 B. licheniformis 0.812* 31 B. licheniformis 0.675 33 B. licheniformis 0.761* 34 B. licheniformis 0.670 35 B. licheniformis 0.597 36 B. licheniformis 0.691 44 B. licheniformis 0.677 51 B. licheniformis 0.709* 54 B. licheniformis 0.815* 40 B. pasteurii 0.770* (Table continued) - 313 -
균주번호 균주의종명 유사도 17 B. cereus 0.541 3 Bacillus 0.124 10 Bacillus 0.036 2 Bacillus cereus 0.521 62 Escherichia coli O157 0.510 61 E. coli O157 0.525 012-2 Flavobacterium mizutaii 0.798* 53 Paenibacillus 0.513 * indicates that the strain was identified as species based on similarity value. 표 3. 세균들에의한 VOCs 제거효과 Strain Benzene(ppm) Toluene(ppm) m,p-xylene(ppm) 초기최종감소율초기최종감소율초기최종감소율 Control 0.187 0.205 0.000a a 0.167 0.200 0.000a 0.255 0.340 0.000a 스킨34 0.332 0.353 0.000a 0.507 0.528 0.000a 0.477 0.489 0.000a 싱고40 0.456 0.469 0.000a 0.345 0.370 0.000a 0.592 0.659 0.000a 히데라17 0.395 0.235 0.404b 0.126 0.116 0.082a 0.196 0.199 0.000a 스킨35 0.646 0.505 0.218a 0.667 0.584 0.124a 0.921 0.854 0.072a 스킨44 0.493 0.475 0.035a 0.297 0.351 0.000a 0.434 0.459 0.000a (Table continued) Strain o-xylene(ppm) BTX(ppm) 초기최종감소율초기최종감소율 Control 0.142 0.190 0.000a 0.750 0.369 0.509a 스킨34 0.213 0.220 0.000a 1.528 1.174 0.232a 싱고40 0.274 0.307 0.000a 1.573 1.359 0.136a 히데라17 0.079 0.081 0.000a 0.854 2.221 0.000a 스킨35 0.399 0.365 0.085a 2.632 0.694 0.736b 스킨44 0.215 0.225 0.000a 1.439 0.671 0.533a a 서로다른알파벳글자를갖는것은통계적유의성이인정된다 (LSD, P=0.05). 초 록 - 314 -
배양토로사용되는하이드로볼에재식되는실내식물의종류에따른하이드로볼에서식하는미생물에의하여 benzene, toluene, m, p-xylene, o-xylene 등의휘발성유기화합물제거효과가있는지를조사하고또한효과가있는배양토에서미생물을선발하고자식물종에따른배양토에서전체세균집단을배양하여휘발성유기화합물의제거능을조사하였다. 아이비, 드라세나, 스킨답서스, 인도고무나무, 백량금, 파키라, 스파티필름, 산세베리아, 테이블야자, 벤자민, 싱고니움, 디펜바키아, 네프로네피스의식물배양토에서배양된세균집단을 Tryptic soy agar가첨가된직경이 81mm이며높이가 170mm이고볼륨이 600ml병에접종하고 benzene 0.36ppm, toluene 0.18ppm, m, p-xylene 0.976ppm, o-xylene 0.56ppm의혼합가스를각병에주입하고최초의농도를다시확인하고 28 에서 12시간세균을배양한후각가스의양을측정하였다. 벤젠, 톨루엔, m, p-xylene 등에대하여최초농도에비하여최종농도의감소량이식물배양토의세균집단이첨가된것에비하여현저히작았으나 (LSD, P=0.05), o-xylene은 control에서감소량이현저히나타나식물배양토의세균집단에의한 o-xylene의감소효과를비교할수없었다. 대조구는세균이배양되지않은것이사용되었다. 특히, 벤젠에대하여는대조구의감소율 (0.031-0.596) 에비하여스파티필름, 파키라, 인도고무나무, 백량금, 디펜바키아, 테이블야자등은감소율이 0.741-1.000으로식물배양토의세균집단에의한감소효과가현저히높았다 (LSD, P=0.05). 톨루엔에대하여는드라세나, 네프로네피스, 스파티필름, 인도고무나무, 디펜바키아, 테이블야자등의배양토의세균집단에의하여대조구의감소율 0.652-0.777에비하여감소율이 0.906-1.000으로현저히높았다 (LSD, P=0.05). 이러한결과들은식물의배양토에있는미생물에의하여 VOCs가제거될수있으며또한식물의종류에따라서도 VOCs 제거능력이다양함을보여주었다. 인용문헌 Abbritti, M.C. and Muzi, G. (1995). Indoor air quality and health effects in office buildings. In: Proceedings of Healthy Buildings '95, An International Conference on Healthy Buildings in a Mild Climate. - 315 -
(Maroni, M., Ed.). Univerisity of Milano and International Center for Pesiticide Safety, Milan, Italy, Vol. 1:185-195. Brasche, S., Bullinger, M., Gebhardt, H., Herzog, V., Hornung, P., Kruppa, B., Meyer, E., Morfield, M., Schwab, R., Mackensen, S., Winkens, A., and Bischof, W. 1999. Factors determining different symptom patterns of sick building syndrome-results from a mutivariate analysis. In: Proceedings of Indoor Air '99, The 8th International Conference on indoor air quality and climate, Edinburgh, UK, 5:402-407. Burge, S., Hedge, A., Wilson, S., Harris, B.J. and Robertson, A. 1987. Sick building syndrom: a study of 4373 office workers. Annals of Occupational Hygiene, 31:493-504. Carpenter, D. O. 1998. Human health effects of environmental pollutants: New insights. Environmental monitoring and Assessment, 53:245-258. Carrer, P., Alcini, D., Cavallo, D., Visigalli, F., Bollini, D. and Maroni, M, 1999. Home and work place complaints and symptoms in office workers and correlation with indoor air polution. In: Proceedings of Indoor Air '99, The 8th International Conference on indoor air quality and climate, Edinburgh, UK, 1:129-134. Li, G., Huang, A., Lerner, D. N. and Zhang, X. 2000. Enrichment of degrading microbes and bioremediation of petrochemical contaminants in polluted soil. Water Research, 34:3845-3853. Marek, J., Paca, J. and Gerrard, A. M. 2000. Dynamic responses of biofilters to changes in the operating conditions in the process of removing toluene and xylene from air. Acta Biotechnologica 20:17-29. Mendell, M.J. and Smith, A.H. 1990. Consistant pattern of elevated symptoms in air-conditioned office buildings: A re-analysis of epidemiological studies. Amercan Journal of Public Health, 80:1193-1199. Radwan, S.S., AL-Awadhi, H., Sorkhoh, N.A. and EL-Nemr, I.M. 1998. Rhizospheric hydrocarbon utilizing microorganisms as potential - 316 -
contributors to phytoremediation for the oily Kwaiti desert. Microbiology Research, 153:247-251. Siciliano, S.D. and Germida, J.J. 1998a. Mechanisms of phytoremediation: Biochemical and ecological interactions between plants and bacteria. Environmental Review, 6:65-79. Siciliano, S.D. and Germida, J.J. 1998b. Biolog analysis and fatty acid methyl ester profiles indicate that pseudomonad inoculants that promote phytoremediation alter the root-associated microbial community of Bromus biebersteinii. Soil Biology and Biochemistry, 31:299-305. Weschler, C.J. and Shields, H.C. 1997. Potential reactions among indoor air pollutants. Atmospheric Environment 31:3487-3495. Wolkoff, P. 1995. Volatile organic compounds-sources, measurements, emissions and the impact on indoor air quality. Indoor air. Suppl. No. 3. Wolverton, B.C. and Wolverton, J.D. 1993. Plants and soil microorganisms-removal of formaldehyde, xylene and ammonia from the indoor environment. Journal of the Mississippi Academy sciences, 38: 11-15. Wood, R. A., Orwell, R.L, Tarran, J. Torpy, F. and Burchett, M. 2002. Potted-plant/growth media interactions and capacities for removal of volatiles from indoor air. Journal of Horticultural Science & Biotechnology 77:120-129. - 317 -
7 절. 식물 / 토양을이용한실내공기정화시스템의 설계및제작 1. 실내공기정화시스템의설계방향본연구책임자가 2000년에출원한특허 ( 발명의명칭 : 화분을이용한실내환경조절방법및그장치, 특허제0371527호 ) 를고려하고, 본연구의결과를토대로하여다음과같이 식물 / 토양 / 토양미생물을이용한공기정화시스템 을구상, 설계하였다. 가. 설계방향 (1) 1년차실험결과로얻어진결과와기능성식물을활용하도록한다. (2) 1차적인공기질개선은식물자체로가능하도록설계한다. (3) 2차적인공기질개선은배지 / 토양미생물 / 기계적방법을이용하도록설계한다. (4) 공기질개선뿐만아니라시스템제작시온열환경을조절할수있도록설계한다. (5) 본시스템은수경재배및자동관수가되도록설계한다. ( 가 ) 여기에서수경재배라함은세가지특징을가지고있는데, 1물구멍이없는용기를사용한다는것과 2하이드로볼과같은굵은입자를용기내에기존의배양토대신으로사용한다는것, 그리고 3용기내물량을감지하고적절하게조절할수있는기기나도구를사용한다는것이다. ( 나 ) 현재실내로의식물도입추세와거주자의선호도, 관리의편리성, 실내다른가구와조화, 관수시설의설치어려움등을고려할때, 앞으로는수경재배가주를이룰것으로판단된다. ( 다 ) 한편, peat moss를주체로한배양토를본기기에적용할경우, 팬에과부하가걸리고동시에소음이지나치게발생되며, 식물이지나치게자라실내기능성식물로서의역할이감소되며, 배지의입자크기가너무작 - 318 -
아, 실내오염원이될수있다. ( 라 ) 식물-배지-토양미생물의관계를살펴보면다음과같다. 배지는필터의역할을함과동시에미생물의서식처가되며, 식물은토양미생물에필요한양분을공급한다. 한편, 상당량의휘발성유기물질들은식물자체와더불어토양미생물의분해작용에의해서제거된다. 나. 본장치의구성 (1) 실내에서선호되는식물중기능성이있는것으로판단된식물들 - 특히, 주야간의이산화탄소를일정하게유지하도록 C3와 CAM 식물의혼식 - 실내유해공기를제거하는기능성이있는식물의선정 (2) 실내공기를적절하게빨아들이는필터의역할을하는배양토와용기 - 토양입자에흡수되거나부착된수분을통해서공기질을개선함. - 실내공기중에있는다양한휘발성물질과분진을제거할수있는배양토 - 이러한배양토를적절하게배치할수있는새로운용기구조 (3) 실내공기를분표면에서부터분내토양을거치도록강제흡입함으로서공기를정화시키는데필요한팬부분 (4) 식물에일시적이아닌지속적으로자동으로관수를할수있는장치 - 자동관수는수위조절기를부착하던지, 아니면영구적으로자동으로관수되는장치를부착 - 심지관수 - 관수시물을저장하는통은일종의발열혹은감열하는완충용액으로사용 (5) 토양을통해서정화된공기를기계적으로재살균함으로서, 토양내가능한유해미생물을완전히제거할수있는장치 - UV light 설치 (6) 계속적인심지관수를통해서습한토양을부압에의해서공기가통과됨으로인하여공기의상대습도가높은상태이다. 이러한공기를계절에따라적절한습도및온도로유지시키는장치 ( 예, 여름철에서시원하고습 - 319 -
도가낮은공기가방출되도록함 / 반면에겨울에는따뜻하고고습도를유지한공기가방출되도록함.) - 스위치를통해저온건조한공기혹은고온다습한공기로전환 (8) 전자제어컨트롤박스 ( 온도및습도조절 / 냄새, 분진, VOCs 및기타물질조절 / 온도및습도조절 / 광조절및타이머 ) 선정된 C3 용식물용기 선정된 CAM 용식물용기 Aroma 발생기 전자제어부 정화된공기토출구 Fig. 1. 설계된실내식물을이용한공기정화시스템 ( 구체적인부분은생략되었으 며, 전체적인외관과외부모양만제시되었음 ). 다. 개발된시스템의특징 (1) 본시스템은여러개의식물을동시에키울수있는사이즈로만든다. 위치나실내에따라크기는조절할수있다. (2) 사용자의편의에따라, 실내공기정화를식물만으로또는식물-토양-기계적인장치를따로선택할수있다. (3) 이시스템은공기질개선뿐만아니라온열환경까지도제어를할수있어실내환경을획기적으로변화시킬수있다. (4) 식물을관리하기위한특별한노하우가필요하지않다. 즉, 수경재배로인하여식물이지나치게빨리생육하지않아잦은관리가필요없으며, - 320 -
또한, 자동관수및광조절이가능하다. (5) 실내공간의일부부에설치함으로서원예치료적효과를볼수있다. 라. 기존특허출원된시스템들의문제점해결및보안사항 (1) 팬을내장함으로서소음을줄일수있다 ( 특허제0371527호 ). (2) 현재특허등록된대부분의시스템은팬으로공기를배지에불어넣으므로, 토양지상부에는먼지가날우려성이있다. 그러나본시스템은공기를빨아들임으로서이러한문제를제거할수있다. (3) 심지관수로물을빨아올림과동시에위에서아래로공기를흡입시키면식물의생육에좋지않는영향을미치나, 본시스템은물을위에서부터아래로흘림과동시에공기를흡수함으로서식물생육에아무런영향도미치지않는다. (4) 단순히공기질개선뿐만아니라공기질에온열환경까지도조합적용함으로서, 정화된공기의온도및습도까지조절할수있게하였다. 2. 실내공기정화시스템의초기버젼설계및제작가. Prototype 시스템제작 (1) 단계별공기정화시스템으로제작되었음. 식물자체를이용한정화식물-배지-토양미생물 / 기계적공기순환을이용한정화 (2) 공기정화외부가적효과 ( 온열환경 ) 를달성할수있는시스템이제작되었음. 기존의시스템을사용할경우, 실내공기가수분이함유된토양의간극을통과하게됨으로정화는되었지만항상습한공기가실내방출될수밖에없다. 이경우, 겨울철에는효과적이지만, 여름철에는비효과적일수밖에없다. 따라서이에대한보완이필요하다. (3) 소음을최소화할수있는시스템이제작되었음. 소음을줄일수있는팬을제작하는것과팬의소음을줄일수있는방법으로시스템을제작하는두가지방법이있다. 이경우, 전자는경제적 - 321 -
인측면과기술적인측면에서무리가따르게됨으로소음을최소화하는방법으로시스템을제작해야된다고판단된다. (4) 식물생육에지장이없는관수시스템이제작되었음. 기존의경우는심지관수가용기저면에서모세관현상에의해화분용토의아랫부분에서위쪽을이동하는형태를취하고있으나, 공기의흐름이반대일경우는식물체가식물을흡수, 이용하는데어려움이있을것으로판단된다. 따라서이에대한적절한해결책을제시하였다. - 322 -
나. 문제점및보완사항 (1) 심지관수시뒤쪽의물통의높이가분높이보다낮으면모세현상이제대로일어나지않는다. 따라서물통의높이를보완하든지관수시스템을재고려해야할필요성이있다. (2) 분아래부위에서팬으로부압을걸어대기-배지-기기안으로공기를흡입하지않고, 외부에설치된 BLC 타입의팬으로는토출되는공기량이적을뿐만아니라, 소음문제에있어서도개선되지않고있다. (3) 정화된공기의온습도를조절하기위해서만들어진냉각소자의경우, 방열판과그용량이작아정화된공기의온습도를조절하는데무리가있다고판단된다. 따라서냉각소자의용량을늘이고방열판의위치및크기를재조정할필요가있다. (4) 시스템이한몸체내에서제작되었기때문에, 수정및개선이매우어렵다. 따라서차후제작시에는단위시스템으로만들어조립하는형태가훨씬좋을것으로판단되었다. * 2) 본시스템은특허출원중이며, 사업화를위하여보완을요청하는바입니다. 따라서, 평가시확인후아래사항 ( 보안유지 1~3 페이지 ) 은삭제해주시기바랍니다. * 보안유지페이지 1-323 -
3. 식물 / 배지를이용한실내공기정화시스템의특허출원 위에서만들어진시제품의구조및장단점을파악한뒤 식물 / 배지를이용한실내공기정화 시스템 (A room cleaning system using plant and media) 으로특허가출원되었다. 발명의명칭 식물-토양을이용한실내공기정화시스템 {A ROOM CLEANING SYSTEM USING PLANT AND SOIL} 출원일자 : 2003. 11. 14. 출원번호 : 10-2003-0080491 요약서 요약 본발명은공기정화장치에적어도 1개이상의화분을구비하여자동급수조절에의한상면심지관수수경재배로식물을키우면서실내공기를계절에따라냉, 온열조절하여실내의온도조절, 습도조절, 냄새, 분진, 휘발성유기화합물 (VOCs) 제거및기타방향액분사를타이머조절로자동제어함으로사계절에걸쳐실내의공기를양질화하고사용자의건강한실내생활을도모하게한식물- 토양을이용한실내공기정화시스템에관한것으로, 급수탱크와 2중구조화분과분리되게하면서오수흐름을유도하는분리벽의저면에수납되게오수받이를구비하고방진체로지지되는하우징과, 상기 2중구조화분을통해외기를흡입하게흡기통로상에설치된흡기팬과, 상기흡기팬에의해흡입되어흡기통로를이동하는공기를살균하게흡기통로의일단에설치된 UV램프와, 상기 UV램프에의해살균된공기와급수탱크의공급수를냉각하거나발열시키게냉각핀을형성하면서급수탱크의알루미늄판에설치된냉각소자와, 상기 UV램프와냉각소자를통한냉기나온기를실내로배출하게하우징측벽에설치된배기팬과, 상기배기팬의일측에종류별로구비되어전기적인신호기향을분사하게설치된방향장치와, 상기하우징의일측에방향장치를통한향선택과분사, 흡, 배기팬 3) 에의한공기의흡, 배기와 UV램프에의한살균, 냉각소자에의한발열, 냉 * 보안유지페이지 2-324 -
각, 급수제어밸브에의한급수량등이조작판넬로조작되어설정된정보에의해작동을제어하게되는제어부를포함한식물-토양을이용한실내공기정화장치로구성하여자동관수에의한식물의상면심지관수수경재배와더불어실내공기를흡입하여여과살균, 히팅또는예냉하여음이온, 향과더불어실내로배출하여쾌적한실내공기를유지하면서장식적인소품으로서기능도하게실내의제습과온도를자동으로조절할수있게함은물론원예치료도도모하게하는다기능의공기청정기를제공하는뛰어난효과가있다. 대표도 - 325 -
4. 실내공기정화시스템실험용제작 Prototype 으로제작된시스템을수정보완하여시스템을제작하였으며, 전체적인외양과성 능은다음과같다. 4) 실내공기정화시스템 * 5) 본시스템은특허출원중이며, 사업화를위하여보완을요청하는바입니다. 따라서, 평가시확인후위사항 ( 보안유지 1~3 페이지 ) 은삭제해주시기바랍니다. * 보안유지페이지 3-326 -
식물 / 배지 / 토양미생물을이용한공기정화시스템의특징 가. 실험의용이성을위하여단위유니트로구성되도록제작하였다. 유니트의구성은식물정화분과팬이장착된챔버부분, 관수용통과냉각소자와 UV light가장착된정화된공기의살균및온열조절부분, 그리고 control 박스부분이다. 나. 팬의가동시간에따른식물의생리적활성을저하를방지하기위해서챔 버부분은둘로나누었으며, 타이머에따라서자동으로번갈아작동하도 록설계되었다. 다. 관수는관수용통에서나온심지를통하여표토위에서아래로흘러내리도 록되어있다. 라. 정화분의아래부분에장착된팬의작동으로인하여분표토밖에서안으로공기가흡입되어지며, 흡입되어진공기는배지의모든면에고르게흡입되어정화분의갈라진틈사이로나오게되며, 이공기는모여져서 1차적으로살균되어지고, 2차적으로냉각소자가있는부분을통과하면서온도를올리든지아니면냉각되어진다. 5. 개발된시스템의하드웨어수정및개선실험 가. 개발된시스템내식물용기의성능실험분용기내첨가물질의유무와일중분과이중분의효과를조사하기위해서기초 실험을한결과다음과같은결과를얻었다. - 일중분내활성탄을첨가하는방법과일중분의외곽과주위분사이에활성탄을넣고비교실험한결과, (1) 이중분의경우소음이더심하고, (2) 담배연기로조사한결과연기제어에별다른차이가없는것으로밝혀져일중분에활성탄을고르게첨가하는것이최상의방법이라고판단되었다. 나. 시스템내팬의사용시소음감소를위한개선실험 - 팬사용에따른식물생육의차이는약 4 개월동안하루에 3-6 시간씩가동할 - 327 -
경우에도생육에는별다른문제가없는것으로밝혀졌다 ( 낙엽정도, 발육정도의비교시 ). - 팬의크기를조절할경우, 제작된시스템을재재작하여야하기때문에현재로서는불가능한것으로판단되었다. - 현재성능을최대화하고, 기존의 air cleaner와비교하기위해서팬속도를최대화하여성능실험을해왔으며, 이에따른식물생육에미치는영향을조사한바별다른문제가없는것으로판명되었다. - 소음감소를우한개선실험에서는 1차적으로만든시스템을개선하여 2차적으로보완하였으며, 소음이상당히감소되었다. 현재로서는시스템이아크릴로제작되었기때문에소음을더감소시키기위해서는시제품의재질을고려해야한다. 따라서, 현재로서는팬을외벽내부에설치하였기때문에지금의구조가소음감소에는최선이라고판단되었다. 다. 정화된공기의토양미생물살균실험 - 현재제 8절 3장실험의결과에서본바와같이, 배지를통과한정화된공기내에서유해한미생물이전혀검출되지않았기때문에더이상 UV를이용한살균은필요없는것으로판단되었다. 라. 정화된공기의온습도조절에대한실험 - 2차에걸쳐냉각소자의크기와설치위치를변경하였음에도불구하고, 정화된공기의방출시온습도변화는용이하지않았다. 따라서차후 (1) 냉각소자의크기와숫자에대한고려, (2) 공기의순환을가능한한오랫동안머무를수있는통로고려, (3) 실내볼륨에대한냉각소자의능력비교실험등이필요한것으로판단된다. 마. 자동관수장치의보강 - 관수통에서심지를통하여배지표토에물을관수하는방법을택하였으나, 실제로조사해본결과하이드로볼에서는모세관현상이일어나지않아수분이배지내로폭넓게이동하지못하는단점이발견되었다. 따라서, 배지에수분을폭넓게공급할수있는방법이필요하다. - 또한, 관수량이많을경우아래로흘러내려간물이받침통에고이게되고물의이동이없어장기간방치할경우냄새가날우려가있다. - 이러한문제를해결하기위해서그림에서보는바와같이아래받침통에전 - 328 -
자식수위계를달아일정한물이항상있도록한다음모터펌프를사용하여물을호스로끌어올린다음위에서분사하는방법을고안하였다. 분사량과분사시키는컨트롤박스에서조절할수있도록하였다. 이시스템은현재시중에서판매되고있는시스템의일부를수정하여장착한것이다. - 329 -
8 절. 식물 / 토양을이용한실내공기정화시스템의개선 실험및성능실험 1. 식물 / 배지 / 미생물을이용한공기정화시스템의팬사용에따른실내식물 의생리적반응 류명화ㆍ권윤정 윤지원 정성애 손기철 * 건국대학교원예과학과 Physiological responses of indoor plants according to fan operation of air purification system using plant/medium Myung Hwa YooㆍYoun Jung Kwon Jee Won Yoon Seung Ae Jeong Ki-Cheol Son* Dept. of Horticultural Science, Konkuk Univ., Seoul 143-701, Korea (* Corresponding author) Abstracts. When a fan is in operation for the purpose of enhancing the efficiency of air filtering system using plants/medium, the air flows went reversely against direction of the water absorption from root system. Thus, for examining the water absorption disorders and changes of physiological reaction of plants according to the operation of fan in the system, the fan timer was adjusted to be active or inactive at the interval of 30 minutes, one hour, and two hours. With this condition, the photosynthetic rate, stomatal conductibility, transpiration rate using portable photosynthesis analysis, and stem flux rate and boundary leaf resistance using phytomonitoring system were consecutively measured for three days. For this test, the representative indoor plants with different shapes, Ficus elastica and Syngonium - 330 -
podophyllum were selected. While the stem flux rate depending on the activation or inactivation of fan was slightly changed according to the time interval for Ficus elastica, the intrinsic diurnal variations during the day or at night were not significantly impacted. On the contrary, Syngonium podophyllum illustrated the significant influences by time interval as well as diurnal variation. Meanwhile, for the boundary leaf resistance according to the activation or inactivation of fan, both plants didn't demonstrated the significant impacts. When the fan was activated, the boundary leaf resistance was reduced so that the transpiration was positively influenced. Compared to the physiological factors when the system fan was inactive, the photosynthetic rate, stomatal conductibility and transpiration rate in both plants were gradually reduced as times went by when the system fan was activated at the interval of 30 minutes. On the contrary, both plants didn't demonstrate the significant impacts in their physiological activities when the fan was activated at the interval of one hour or two hours. 서 언 현대인들의생활이대부분실내에서이루어짐에따라식물의이용이실외에서실내로전환되고있다 (Jenkins 등, 1992; Shin 등, 1993; Snyder, 1990). 그러나, 저광도, 건조한공기, 그리고지나치게높거나낮은온도등의실내환경은식물이생육하기에는불량한조건들이므로적절한재배관리가중요하다 (Kim 등, 1999). 많은사람들이식물관리중에서가장어려워하는부분이관수방법인데, 식물마다관수량, 관수시기, 관수횟수, 계절적특성등에따라관수하는방법이다르므로어려움이있으며, 특히장기간외출시에는관수문제로곤란을겪는경우가많다. 그러나, 심지를이용한저면관수는배지가건조해지고부압이걸리면모세현상에따라아래쪽의물이심지를통해서빨려올라감으로써식물생육에적 - 331 -
당한토양수분을유지시키고, 일정한재관수가없이자동관수가이루어지며, 다른관수방법에비해관수량이적어물을절약할수있는적당한관수방법이다 (Park, 2000; Son, 2004). 한편, 식물의근권부의환경은지상부의생육을좌우하며, 이러한근권부의환경은관수방법, 배양토의조합, 그리고용기의특성에따라달라진다 (Park, 2000). 특히, 용기에팬 (fan) 을부착하여외부공기를용기내배지내로끌어들인후배출시키면근권부의공기유통을원활하게할뿐만아니라, 배지의유해가스흡착량을증가시키며, 잎과배지의증발산량을향상시켜보다쾌적한실내환경을만들수있다고한다 (Wolverton 등, 1989). 그러나실제로이러한방법을이용한실내공기질개선에대한연구는이론적으로는효과적이라고볼수있으나, 실제로실증된예는거의없는실정이다. 또한, 공기가강제적으로배지표면위에서부터배지아래로흡입되어짐에따라심겨진식물체근권부의수분흡수에는어떤영향을미칠것인지에대한것과이에따른식물의생리적변화에대한연구는미미한실정이다. 결과적으로, 식물의배지를필터화하여실내공기질의정화에대한기술을실제적으로활용하기위해서는우선기술도입에따른식물의생리적현상에대한구명이먼저되어야할것이다. 따라서, 본연구는실험실에서자체제작한식물-배지를이용한공기정화시스템을이용하여시스템팬사용의유무에따른식물의생리적반응에대해서조사하고자수행하였다. 재료및방법 식물재료본실험에서는식물-배지를이용한공기정화시스템내의팬작동유무에따른식물의생리적반응을조사하고자, 실내에서많이이용되고있는주간이있는인도고무나무 (Ficus elastica) 와주간이뚜렷치않는싱고니움 (Syngonium podophyllum) 을식물재료로사용하였다. 식물들은경기도에위치한농가에서일괄구입하여직경 15cm정화분 (Luwasa hydroculture, Switzerland) 에활성탄이 60% 함유된 4~8mm 크기의하이드로볼 - 332 -
(Luwasa hydroculture, Switzerland) 을 3/4정도채워넣었고, 저면관수를위하여 5개의심지 (L W, 25cm 2cm) 를화분에꽂았다. 모든식물들은자연광을 80% 차광하여 100±30μmol m -2 s -1 PAR과온도 25±5, 습도 50±10% 를유지시킨유리온실에서 6개월이상순화시켰으며, 관수는 1~2일에한번씩하였고, 2주마다액비 Technigro(N:P:K= 24:7:5, SunGro Inc., USA) 을 200ppm으로시비하였다. 식물-배지를이용한공기정화시스템본공기정화시스템은식물이식재된내부분 ( 측벽이가로망으로되어있어하이드로볼은고정되나공기는유동됨 ) 과물을공급할수있는외부용기로구성 (H D, 30cm 22cm) 되어있으며, 직경이 12cm인팬 (2400rpm) 을외부용기의기부로부터 11cm 높이의측면에부착하여용기내공기를순환시키도록하였다 (Fig. 6-1). 팬작동시공기가배지내로흡입되어내부분에서부터용기를통하여밖으로방출됨으로, 배지내는부압을받게되고, 그결과로표토위의공기는지속적으로배지내로유입되어진다. 흡입되어진공기는배지를거쳐내부분밖으로방출되며, 방출된공기는아래부분의수면에부딪치거나아니면막바로팬을통해밖으로방출된다. 이시스템은심지를이용한저면관수시스템으로, 처음에 3l의수돗물을채워준후측정기간 3일동안에는물을보충해주지는않았다. 시스템내의팬은작동하지않았을경우와타이머를이용하여, 30분, 1시간그리고 2시간간격으로팬작동이 on 혹은 off로되도록하였다. - 333 -
Fig. 1. An air purification system using plant-medium and inner filtration pot used in this experiment. 공기정화시스템팬사용에따른식물의생리적변화식물-배지를이용한공기정화시스템을이용하여팬의사용에따른식물의생리적변화를알아보고자, 휴대용광합성측정기 (Li-6400, Li-Cor, USA) 를사용하여광합성, 증산율, 기공전도도와세포내 CO 2 변화를조사하였으며, phytomonitoring system(lps-03ma, PhyTech, Inc,. USA) 을이용하여식물의 stem flux rate와경계층저항치를 3일동안연속적으로모니터링하였다. Stem flux rate와경계층저항치측정센서는각식물의상부에있는잎뒷면과줄기에장착하였다. 한편, 광합성측정기의환경은 leaf chamber에유입되는공기의유량은 250μmol s -1, 온도 24, CO 2 농도 350CO 2 mol -1 조건에서측정하였고, 광도는 PPFD 100μmol m -2 s -1 이었다. 식물체의증산량측정을위하여광합성측정장치를사용할경우사용된챔버가 closed type이기때문에팬작동으로인한식물체아랫부분의미세환경의영향을제대로파악할수없다. 이러한점을보완하기위하여 phytomonitoring system(lps-03, Phytech, Israel) 을이용하여경계층저항치 (boundary layer resistance) 를 open type으로측정하였다. 식물-배지를이용한공기정화시스템은 100μmol m -2 s -1 PAR, 온도 24±2 와습도 50±10% 환경에서생리적변화를측정하였고, 광주기는 14hr/10hr - 334 -
(DT/NT) 로하였다. 공기정화시스템내의팬은작동하지않은상태와타이머를이용하여 30분, 1시간, 그리고 2시간간격으로 on 혹은 off로작동시킨상태로조건을주었다. 동일한조건하에서인도고무나무와싱고니움을대상으로예비실험한결과, 본실험의결과와동일한패턴으로나타났다. 따라서, 본실험의데이터는 3일동안연속모니터링한결과로제시하였다. 결과및고찰 본실험에서는식물-배지를이용한공기정화시스템을이용하여시스템팬사용의유무에따른식물의생리적반응에대해서알아보고자, 외형에뚜렷한차이가나는두식물체 [ 인도고무나무 (Ficus elastica) 와싱고니움 (Syngonium podophyllum)] 를선정하여시스템의팬을작동시키지않은상태에서광합성율, 기공전도도, 증산율, stem flux rate (SFR), 그리고경계층저항등과같은식물체의기초적인생리를조사하였다. 보통식물의일반적인상태 ( 시스템의팬을가동시키지않는상태 ) 하에서는인도고무나무의경우, 낮동안에 stem flux rate, 광합성율, 기공전도도, 증산율이증가하였으며, 밤동안에는감소하는것으로나타났고, 경계층저항은이와상반되는경향이나타났다 (Fig. 2). 한편, 이러한경향은싱고니움에서도동일하게나타났다 (Fig. 6) 즉, 두종모두 stem flux rate는명기와암기에따라명확하게구분되어졌다. 광합성에있어서인도고무나무의경우는명기초기에급증하였다가시간이경과함에따라서서히감소되는경향을나타내었으며, 주야간을통해서경시적으로고저경감되는경향 (damping off) 없이지속적으로반복되었다 (Fig. 2). 그러나, 싱고니움의경우에는시간에경과함에따라감소하지않고초기상태를그대로유지하는경향을나타내었으며, 주야간을통해서경시적으로고저경감되는경향없이지속적으로반복되었다 (Fig. 6). 한편, 기공전도도와증산율도동일한패턴을나타내었다 (Fig 2, 6). 반면에경계층저항치는인도고무나무의경우주야간에따른뚜렷한경향은나타나지않 - 335 -
았지만 (Fig. 2), 싱고니움의경우는명기초기에오히려감소하였다가서서히증가하는영향을나타내었다 (Fig. 6). 그러나, 전체적으로볼때일중변화는그다지크지않았다 (Fig. 6). 시스템의팬을 30분, 1시간, 그리고 2시간간격으로작동했을때, 인도고무나무와싱고니움의생리적현상을살펴보면 (Fig. 3~5, 7~9) 다음과같았다. 우선, SFR은전체적으로볼때팬을작동시키지않는것과동일한경향을나타내었다. 즉, 팬의작동에상관없이 SFR은주간에는증가하였고야간에는감소하였다. 그러나타이머의작동시간이짧을수록 SFR이 on/off 시간에비례하여더분명히영향을받는것으로나타났다. 타이머의간격이 2시간일경우는팬이작동하지않는상태와동일한경향을나타내었다. 팬 on/off 간격에따른인도고무나무의생리적변화를살펴보면, 광합성의경우는타이머의간격이 30분일경우는광합성이정상적으로수행되지않았을뿐만아니라일수가경과함에 damping off 현상이일어났다. 타이머의간격이 1시간일경우는광합성율의전체적인패턴이팬을가동시키지않는상태와비슷하나시간이경과함에따라고저차가매우심하였다 (Fig. 4). 그러나타이머의간격이 2시간일경우는팬을작동시키지않는상태와동일하였다 (Fig. 5). 한편, 이러한경향은기공전도도와증산율에서도비슷하게나타났으며, 타이머의간격이길어질수록정상적으로회복되었다. 또한, 시스템의팬가동시경계층저항치가주야간에따라뚜렷이구별되었으며, 팬의 on/off 시간에따른변화가분명하게나타났다는것이다. 즉, 팬이 on일경우는경계층저항치가감소하여기공이열려증산작용이증가하는것으로추론되어진다. 이러한사실은팬이가동될경우부압에의해서표토위의공기가배지내로흡입됨으로식물체수관부에미약하나미세공기의흐름을유도할것이고이것이기공열림에긍정적인영향을준것으로판단된다. 결과적으로볼때, SFR는팬의가동에따라약간의영향을받으나 (Kill, 2000) 주야간에따른식물의본래적증감에영향을미칠만큼큰영향을주지는않았다. 그러나팬타이머간격이줄어들수록더많은영향을받는것으로나타났다. 또한, 경계층저항치는팬이작동할경우수관부내공기의미세흐름으로인하여낮아짐으로기공열림에도움을주는것으로나타났다. - 336 -
인도고무나무의경우는주간이있어나무의형태를갖춘목본류이나, 싱고니움의경우는여러줄기가배지에서부터나오는초본류이다. 따라서, 싱고니움의반응에있어전체적인경향은인도고무나무와비슷하나팬의작동에따른반응이인도고무나무에비해보다명확하고뚜렷하였다. 실례로, SFR과경계층저항치가팬타이머의간격에따라뚜렷하게영향을받은것으로나타났다. 팬타이머가 30분간격일경우 SFR이거의일어나지않는것으로나타났으며, 타이머간격이 2시간보다는 1시간간격이 SFR에훨씬좋은것으로나타났다. 또한, 경계층저항치의값은타이머의간격이길어질수록인도고무나무와는달리일주기보다는팬타이머의간격에훨씬큰영향을받는것으로나타났다 (Fig. 6~9). 그러나, 팬타이머가 1시간간격일때광합성율, 기공전도도와증산율이 2일째에몇시간동안떨어졌다가증가한이유는실험수행시외부에서공급되는이산화탄소탱크를교체할때발생된실험상의오차이다. 식물-배지를이용한공기정화시스템은그효과정도를차치하고라도이론적으로는매우흥미로운생물학적공기정화기술이다. 우선, 이러한시스템은식물뿐만아니라다양한입자와다공성을지닌배지를공기정화필터로사용한다는점에서흥미롭다. 대부분의기존제품의경우는주기적으로필터를청소하거나갈아주어야하지만, 배지의경우는주기적으로관수를하기때문에배지를갈아줄필요가없다. 또한, 관수시입자의표면과공극에상당한수분표면이형성됨으로엄청난량의먼지를제거시킬수있는이점도있다. 한편, 연구가많이되지는않았지만, 각식물별로근권부에특이적인토양미생물들이공존하고있기때문에이러한미생물이상당량의휘발성유기물질들을대사적으로제거할것이라고생각된다 (Wood 등, 2002). 그외에도이러한시스템은단순한공기정화시스템뿐만아니라온열환경조절과원예치료적인효과면에서도상당한영향을미칠것이다 (Son, 2004). 그러나식물-배지를이용한공기정화시스템을이용한실내에실제적으로적용할때는크게세가지문제들을선결해야할것이다. 우선, 식물은중력에반하여근권부에서배지로부터수분을흡수하는데만약공기가표토위에서부터배지아래로강압적으로흡수된다면뿌리의수분흡수는어떤영향을받을것인가에대한것이다. 두번째는팬가동으로인한소음과진동등으로인한식물체의 - 337 -
생리적장해는무엇인가에대한것이다. 마지막으로, 만약배지내에서공기가방출될경우배지내에존재하는토양미생물이인체에어떤영향을미칠것인가에대한것이다. 그러나, 선행실험을통해서배지내에서방출된공기는인체에위해한세균이없는것으로나타났다. 본실험은이러한문제들을이해하고자시도되었으며, 상당히흥미로운결과를얻었다. 실험의결과를살펴보면, 우선식물-배지를이용한공기정화시스템내에근권부의수분흡수와반대방향의팬을사용하는경우팬작동이식물체의생리에영향을미친다는결과를얻었다. 이러한사실은식물체의형태가다른두식물모두에서동일한경향을나타내었다. 그러나, 팬타이머의시간을조절할경우생리적장해를최소화할수있다. 두식물모두팬타어머가 30분간격일때는시간이경과함에따라식물의생리적활성이감소하였지만, 간격이 1 시간혹은 2시간일경우는생리적활성에별다른영향을미치지않은것으로밝혀졌다. 또한, 타이머의간격이길어지면 SFR에는식물체에따라차이는있지만, 그럼에도불구하고증산량이감소되지않으며, 오히려수관부내공기의미세흐름을촉진시켜기공열림에긍정적인영향을미치는것으로나타났다. 이러한현상은실내식물을이용한실내유해가스제거및실내온열환경개선등에도긍정적인영향을미칠것으로판단된다. 초 록 식물 / 배지 / 미생물을이용한공기정화시스템의효율성을높이기위해서팬을가동시키면근권부의수분의흡수방향과는반대되는공기의흐름이진행된다. 따라서시스템의팬사용에따른식물의수분흡수장애와생리적반응변화를조사하기위해서, 팬타이머 on/off 간격을각각 30분, 1시간, 2시간으로조절한상태에서광합성률, 기공전도도, 증산율, stem flux rate, 경계층저항치를 3일동안연속측정하였다. 이실험을위하여형태가서로다른대표적인실내식물인도고무나무 (Ficus elastica) 와싱고니움 (Syngonium podophyllum) 을선정하여조사하였다. 팬의작동유무에따른 stem flux rate는인도고무나무의경우는시간간격에 - 338 -
따른미세한변화는있었지만, 주야간에따른본래의일중변화에큰영향을받지않았다. 반면에싱고니움의경우는시간간격에따른영향뿐만아니라일중변화에도영향을미치는것으로나타났다. 한편, 팬의가동유무에따른경계층저항치는두식물모두큰영향을받지않았으며, 팬이가동될경우저항치가감소되어증산작용에긍정적인영향을미쳤다. 시스템의팬을작동시키지않았을때의생리적요인과비교해보면, 두식물모두시스템팬이 30분간격으로작동할경우에는광합성율, 기공전도도, 그리고증산율이시간이경과함에따라점차적감소하였다. 반면에 1시간또는 2시간간격의팬작동시에는두식물모두생리활성에별다른영향을받지않았다. 인용문헌 Jenkins, P.L. Phillips, T.J., Mulberg, E.J. and Hui, S.P. 1992. Activity patterns of Californians: use of and proximity to indoor pollutant sources. Atmospheric Environment 26A:2141-2148. Kill, M.J. 2000. Physiological changes in indoor plants spathyphyllum Clevelandii according to soil water contents. MS thesis, Konkuk Univ. Kim, K.S., K.W. Park, Y.J. Park, K.C. Son, J.S. Lee, C.H. Lee, Y.K. Joo, and B.J. Choi. 1999. Life and Horticulture. Hayang-mun Press. Seoul. Park, W.K. 2000. Effect of functional container by wick culture onthe growth of foliage plant and change of indoor environmental. Konkuk Univ., M.S. thesis, Seoul Korea. Shin, H.S., Y.S. Kim, and G.S. H대. 1993. Measurements of indoor and outdoor volatile organic compounds(vocs) concentrations in ambient air. J. KAPPA 9(4):310-319. Snyder, S.D. 1990. Building interior, plants and automation, p. 5-29. Prentice Hall, Englewood Cliffs, NJ. Son, K.C., S.H. Lee, S.G. S대, and J.E. Song. 2000. Effects of foliage plants and potting soil on the absorption and adsorption of indoor air pollutants. J. - 339 -
Kor. Soc. Hort. Sci. 41(3):305-310. 손기철. 2004. 실내식물이사람을살린다. 중앙생활사. 서울. Woleverton, B.C., R.C. McDonald, and H.H. Mesick. 1985. Foliage plants for the indoor removal of the primary combustion gases carbon monoxide and nitrogen oxides. J. MS. Acad. Sci. 30:1-8. - 340 -
2 1.5 Stem flux rate (ml/hr) 1 0.5 0-0.5 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 4201 5 4.5 Boundary resistance 4 3.5 3 2.5 2 1.5 1 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 4201 5 4 Photosynthesis (umolco2 m -2 s -1 ) 3 2 1 0-1 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 Stomatal conductance (mmolh 2O m - 2 s -1 ) 0.035 0.03 0.025 0.02 0.015 0.01 0.005 0-0.005-0.01 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 0.6 0.5 Transpiration rate (mmolh2o m -2 s -1 ) 0.4 0.3 0.2 0.1 0-0.1-0.2 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 Time (min) Fig. 6-2. Changes in stem flux rate, boundary resistance, photosynthesis, stomatal conductance, and transpiration rate of Ficus elastica for 3 days when the fan of system was not operated ( : dark condition). - 341 -
2 Stem flux rate (ml/hr) 1.5 1 0.5 0-0.5 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 4201 5.5 5 Boundary resistance 4.5 4 3.5 3 2.5 2 1.5 1 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 4201 5 4 Photosynthesis (umolco2 m -2 s -1 ) 3 2 1 0-1 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 0.09 0.08 Stomatal conductance (mmolh2o m -2 s -1 ) 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0-0.01-0.02 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 1.2 1 Transpiration rate (mmolh2o m -2 s -1 ) 0.8 0.6 0.4 0.2 0-0.2 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 Time (min) Fig. 6-3. Changes in stem flux rate, boundary resistance, photosynthesis, stomatal conductance, and transpiration rate of Ficus elastica for 3 days when the fan of system was operated with on and off interval of 30 min ( : dark condition, : system fan off). - 342 -
2 Stem flux rate (ml/hr) 1.5 1 0.5 0-0.5 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 4201 4321 6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 4201 4321 4441 4561 4681 4801 Boundary resistance 7 6 5 Photosynthesis (umolco2 m -2 s -1 ) 4 3 2 1 0-1 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 4201 4321 0.14 0.12 Stomatal conductance (mmolh2o m -2 s -1 ) 0.1 0.08 0.06 0.04 0.02 0-0.02 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 4201 4321 1.6 1.4 Transpiration rate (mmolh2o m -2 s -1 ) 1.2 1 0.8 0.6 0.4 0.2 0-0.2 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 4201 4321 Time (min) Fig. 6-4. Changes in stem flux rate, boundary resistance, photosynthesis, stomatal conductance, and transpiration rate of Ficus elastica for 3 days when the fan of system was operated with on and off interval of 1 hour ( : dark condition, : system fan off). - 343 -
2 Stem flux rate (ml/hr) 1.5 1 0.5 0-0.5 5 4 Photosynthesis (umolco2 m -2 s -1 ) 3 2 1 0-1 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 Stomatal conductance (mmolh 2O m - 2 s -1 ) 0.12 0.1 0.08 0.06 0.04 0.02 0-0.02 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 1.4 Transpiration rate (mmolh 2O m -2 s -1 ) 1.2 1 0.8 0.6 0.4 0.2 0-0.2 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 4201 Boundary resistance 6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 4201 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 Time (min) Fig. 6-5. Changes in stem flux rate, boundary resistance, photosynthesis, stomatal conductance, and transpiration rate of Ficus elastica for 3 days when the fan of system was operated with on and off interval of 2 hour ( : dark condition, : system fan off). - 344 -
1 0.8 Stem flux rate (ml/hr) 0.6 0.4 0.2 0-0.2 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 4201-0.4 3.5 3 Boundary resistance 2.5 2 1.5 1 0.5 0 5 4 Photosynthesis (umolco2 m -2 s -1 ) 3 2 1 0-1 -2 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 0.1 0.08 Stomatal conductance (mmolh2o m -2 s -1 ) 0.06 0.04 0.02 0-0.02 1.2 1 Transpiration rate (mmolh2o m -2 s -1 ) 0.8 0.6 0.4 0.2 0-0.2 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 4201 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081-0.4 Time (min) Fig. 6-6. Changes in stem flux rate, boundary resistance, photosynthesis, stomatal conductance, and transpiration rate of Syngonium podophyllum for 3 days when the fan of system was not operated ( : dark condition). - 345 -
1 0.8 Stem flux rate (ml/hr) 0.6 0.4 0.2 0-0.2 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 Dark 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 4201-0.4 3.5 3 2.5 Boundary resistance 2 1.5 1 0.5 0 5 4 Photosynthesis (umolco2 m -2 s -1 ) 3 2 1 0-1 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081-2 0.1 0.08 Stomatal conductance (mmolh2o m -2 s -1 ) 0.06 0.04 0.02 0-0.02 1.2 1 Transpiration rate (mmolh2o m -2 s -1 ) 0.8 0.6 0.4 0.2 0-0.2-0.4 1 1 1 121 241 121 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 4201 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 Time (min) Fig. 6-7. Changes in stem flux rate, boundary resistance, photosynthesis, stomatal conductance, and transpiration rate of Syngonium podophyllum for 3 days when the fan of system was operated with on and off interval of 30 min( : dark condition, : system fan off). - 346 -
1 0.8 Stem flux rate (ml/hr) 0.6 0.4 0.2 0-0.2 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 4201-0.4 3.5 3 Boundary resistance 2.5 2 1.5 1 0.5 0 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 5 4 Photosynthesis (umolco2 m -2 s -1 ) 3 2 1 0-1 -2 1 3481 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 0.1 Stomatal conductance (mmolh2o m -2 s -1 ) 0.08 0.06 0.04 0.02 0-0.02 1 3601 3721 3841 3961 4081 4201 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 1 0.8 Transpiration rate (mmolh2om -2 s -1 ) 0.6 0.4 0.2 0-0.2 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081-0.4 Time (min) Fig. 6-8. Changes in stem flux rate, boundary resistance, photosynthesis, stomatal conductance, and transpiration rate of Syngonium podophyllum for 3 days when the fan of system was operated with on and off interval of 1 hour ( : dark conditon, : system fan off). - 347 -
0.35 0.3 Stem flux rate (ml/hr) 0.25 0.2 0.15 0.1 0.05 0-0.05-0.1 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 4201-0.15 Boundary resistance 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 5 4 Photosynthesis (umolco2m -2 s -1 ) 3 2 1 0-1 -2 1.2 1 Transpiration rate (mmolh2om -2 s -1 ) 0.8 0.6 0.4 0.2 0-0.2-0.4 1 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 0.1 0.08 Stomatal conductance (mmolh2om -2 s -1 ) 0.06 0.04 0.02 0-0.02 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 4201 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761 2881 3001 3121 3241 3361 3481 3601 3721 3841 3961 4081 Time (min) Fig. 6-9. Changes in stem flux rate, boundary resistance, photosynthesis, stomatal conductance, and transpiration rate of Syngonium podophyllum for 3 days when the fan of system was operated with on and off interval of 2 hour ( : dark condition, : system fan off). - 348 -
2. 식물 / 배지 / 토양미생물을이용한공기정화시스템의배지와식물종에 따른 BTX 제거효과 류명화ㆍ권윤정 윤지원 손기철 * 건국대학교원예과학과 Removal efficiency of BTX as affected by indoor plant species and media in air filtering system using plant/medium/soil microorganism Myung Hwa Yoo ㆍ Youn Jung Kwon Jee Won Yoon Ki-Cheol Son* Dept. of Horticultural Science, Konkuk Univ., Seoul 143-701, Korea (* Corresponding author) Abstracts. The removal efficiency of volatile organic compound(total 4 ppm BTX: benzene:toluene:m-xylene:o-xylene = 0.5ppm:3ppm:0.25ppm:0.25ppm) by media and plants was investigated using the air filtering system applying the plants, media and soil microorganism. Five plant species were used: Sansevieria trifasciata, Hedera helix L., Spathiphyllum Schott., Syngonium podophyllum and Ficus elastica. The media applied were the domestic hydroball (H), Luwasa hydroball (LH) and Luwasa hydroball (LC) containing active carbon of 60% (v/v). All plants were acclimatized in each medium for six months. With the above idle system without operation, the removal efficiency of BTX showed the best result in the LC medium regardless of plant species. Meanwhile, benzene and toluene demonstrated the highest efficiency in Sansevieria trifasciata and Spathiphyllum, respectively. This result suggested that both the plant body itself and soil microorganism in root system would be involved in the removal efficiency of BTX. In the same manner as the idlee system, the LC medium with the active system proved the remarkable - 349 -
removal efficiency of BTX. While the gas types varied by plant species in the active system, BTX was completely removed 20 or 60 minutes after treatment. Especially for Sansevieria trifasciata, the gas was thoroughly eliminated within 20 minutes after gas treatment. Consequently, the selection of medium as well as the plant species are important in removing the volatile organic compound included in a room and when a medium is used as the air purifying filter, removal efficiency could be tremendously enhanced by the medium additive to plant itself. 서언 실내에서식물을재배할때는적당한생육환경을조성해주어야하며, 식물용기내환경도중요한역할을한다 (Need, 1996 ;Nelson, 1991). 용기내의환경은배양토의조합과용기의형태와밀접한관련이있는데, 그중식물관리에있어서배양토는가장중요한부분이다 (Park, 2000). 식물재배에있어서배양토는적당한수분과양분을공급할뿐만아니라, 뿌리에서가스교환을도와주고, 식물을바람이나다른외부자극에대해서지지및보호할수있도록한다 (Nelson, 1991; Reed, 1996; Siingh 와 Sainju, 1980). 또한, 배양토의물리 화학적특성이식물의생육에직 간접적으로영향을주며 (Carson, 1971), 화학적으로안정된경량배양토가식물의생육에좋고 (Song 등, 1996), 병원균이나잡초종자가없는배양토이어야한다. 최근화훼류의분식재배가활발하게이루어지면서노지토양으로부터전염되는병해충을방지하기위해토양물리 화학성을작물생육에적합하도록조절한인공배양토의이용량이급증하고있다 (Kim, 2004). 또한, 식물의관리를용이하기위한배수공이없는용기를사용함으로써, 이에적합한다공질소재의배양토인 hydroball 이용도증가하고있다. 식물이대기오염물질을흡수하는경로는기공을통한엽내의흡수, 식물의잎에의한흡착과토양입자표면및토양내수분에의해흡착되는것으로알려져있으며 (Sehemel, 1980; Hong, 2000; Park, 2000), 최근연구에따르면, 단지식물뿐만아니라배양토내미생물도실내공기정화에영향을미치는것으로밝혀졌 - 350 -
다 ( 손등, 2000; Wood 등, 2002). 그러나, 이러한식물의대기정화능만으로는실내공기질을개선하는데는시간적으로오래걸리며, 실내공간과식물의도입량과녹시율을고려할때지나치게많은식물들이요구되어진다. 따라서, 식물뿐만아니라분토양을이용한공기정화기술은단순히식물만을이용하는것보다는더효율적으로대기를정화시킬수있을것이다. 배지를실내공기정화시필터로사용할수있는중요한요인은 1) 다양한입자크기를가지고, 2) 입자의종류에따라서는다양한다공성을지니고있고, 3) 관수에의해서적은입자들의표면에수분을함유할수있으며, 4) 토양내미생물들이공기내다양한물질들을대사적으로분해시킬수있다는점이다. 이에본연구는실험실에서자체제작한식물 / 배지 / 토양미생물을이용한공기정화시스템을통하여, 식물종별배지에따른혼합 BTX 가스제거효과에미치는영향을조사하기위하여실시하였다. 재료및방법 식물재료본실험의공시재료는실내에서많이이용하고있는산세베리아 (Sansevieria trifasciata), 아이비 (Hedera helix L.), 스파티필름 (Spathiphyllum Schott.), 싱고니움 (Syngonium podophyllum), 인도고무나무 (Ficus elastica) 로하였다. 모든식물들은경기도일대에서일괄구입하여, 직경 15cm정화용화분 (Luwasa hydroculture, Switzerland) 에 6~8mm 크기의국내용 hydroball (H), 4~8mm의국외용 hydroball(luwasa hydroculture, Switzerland) (LH) 과활성탄이 60% 함유된 4~8mm 크기의 hydroball(luwasa hydroculture, Switzerland) (LC) 를각각 3/4정도채워넣었고, 저면관수를위하여 5개의심지 (L W, 25cm 2cm) 를화분에꽂았다. 분갈이한후, 자연광을 80% 차광하여 100±30μmol m -2 s -1 의광과온도 25±5, 습도 50±10% 를유지시킨유리온실에서 6개월이상순화시켰다. 관수는저면관수대신에 1~2일에한번씩상면관수하였고, 2주마다액비 Technigro(N:P:K=24:7:5, SunGro Inc., USA) 200ppm으로시비하였다. - 351 -
식물 / 배지 / 토양미생물을이용한공기정화시스템식물 / 배지 / 토양미생물을이용한공기정화시스템은식물이식재된정화분 (filteration port) 과물을공급할수있는외부용기로구성 (H D, 30cm 22cm) 되어있으며, 직경이 12cm인팬을기부로부터 11cm 위치에부착하여용기내공기를밖으로방출시키도록하였다 ( 그림 1). 즉, 팬이작동됨에따라실내공기는화분의표토를통해서흡입되고근권부의배지를지나정화분과외부용기안쪽으로배출되고물과접촉하거나그냥팬을통해서외부로방출하게된다. 시스템내의팬은작동하지않았을경우 (fan-off) 와 1시간동안팬을작동 (fan-on) 하는경우로설정하였다. 팬의회전속도 (rpm) 는 2400min -1 이다. Fig. 1. A example of system used in this experiment. 가스처리및측정방법가스처리는투명유리와 stainless 재질로구성된가스챔버내 (0.55m 0.58m 0.9m, 287.1L) 에혼합 BTX 가스를 4±0.5ppm(benzene: toluene: m-xylene :o-xylene=1ppm:3ppm:0.5ppm:0.5ppm) 로주입하였다. 매실험시가스처리전에는이전실험으로잔존해있는 VOCs를제거하기위해챔버를 90% 에탄올로닦았다. 식물이든시스템을챔버에설치한후밀폐하고, 챔버내습도가 60% 가될때가스를주입하였다. 식물이정치되지않는시스템은대조구 (con) 로정하여가스주입후누기율을보았으며, 각식물당 3개체씩반복측정하였다. - 352 -
챔버내가스농도측정은 gas-tight syringe 로 0.5ml를취하여 capillary column (VB-624A, 0.32nn 1.8μm 30m) 이연결된 gas chromatography (Shimadzu G-14A, FID, 100 oven temp., 200 Inj. temp., 270 det. temp., 1~2ml/min flow rate, N 2 carrier gas) 로가스주입직후, 20분후, 1시간후에측정하였다. 가스챔버는광 100μmol m -2 s -1, 온도 24, 습도 50~60% 로환경이제어되는환경조절생육상 (DF-95G-1485, 두리과학 ) 에두었으며, 가스챔버내의습도는챔버내에장착된스탠파이프에 10 의차가운물이순환함으로써챔버내습도를 60±5% 로유지시켰다. 데이터분석방법식물종별배지에따른혼합 BTX 가스제거량은동일농도에서비교하기위해서초기농도를 0으로보정한후, 각측정시각까지의총감소량으로나타냈다. 모든측정은 3반복으로하였으며, 그데이터값은평균 ± 표준오차로나타내었다. 결과및고찰 밀폐챔버내에둔식물 / 배지 / 토양미생물을이용한공기정화시스템을이용하여 식물과배지종류에따른 BTX 제거효과를조사하였다. 시스템을작동하지않은상태 (sym-off): 대조군에있어서는식물종에따라초기농도가약간감소하거나증가하는경향을나타내었다. 국내하이드로볼 (H) 의경우는심겨진식물과휘발성유기물질에따라차이는있지만제거효율이매우낮은것으로나타났다. 예를들면, 인도고무나무에서는벤젠, 톨루엔, 그리고자일렌모두에서약간의제거효과가나타났으며, 산세베리아, 스파티필름, 싱고니움에서는휘발성유기물질에따라약간의차이를보인반면, 아이비에서는전혀제거효과가없는것으로나타났다. 또한, 루와사하이드로볼 (LH) 은국내하이드로볼 (H) 보다는약간좋은것으로나타났다. 그러나식물종에관계없이조사된모든휘발성유기물질을가장잘제거하는것은활성탄이함유된하이드로볼 (LC) 인것으로밝혀졌다. 특히, 벤젠의경우 - 353 -
는산세베리아, 그리고톨루엔의경우는스파티필름이심겨진 LC에서특이적으로많이제거된것으로보아각식물종의영향도있는것으로판단된다 (Fig. 2-6). 활성탄이함유된하이드로볼배지 (LC) 의식물별 BTX 제거효과를살펴보면, 1 시간동안의 benzene 제거에있어서는아이비가 150ppb이고, 산세베리아는 110ppb로나타났다 (Fig. 3, 4). Toluene에있어서는스파티필름이 770ppb로제거효과가높게나타났으며, 싱고니움, 인도고무나무, 산세베리아모두 600ppb 이상의 toluene을제거하였다 (Fig. 2, 4, 5, 6). 그러나 benzene제거에효과가있었던아이비는 toluene에있어서 450ppb로가장적게제거하는것으로나타났다 (Fig. 3). 한편, m-xylene과 o-xylene은다른가스들에비해 1시간동안의제거효과가식물종류별이나배양토별에큰차이를나타나지않았다. 이전에수행된실험중에 (4.2) 분토양을배제한지상부의식물만의혼합 BTX 제거효과를살펴본결과, 아이비는가스처리 2시간후에벤젠을초기치보다 40ppb정도제거하였으며, toluene은 130ppb정도제거하였다. 이것은활성탄이함유된하이드로볼 (LC) 의아이비가 1시간이내에 benzene과 toluene을각각 150ppb 와 450ppb로제거한결과와비교해볼때, 휘발성유기물질의제거에는식물에비해서배지에의해 3.5배이상의제거효과를기대할수있었다. 시스템을작동한상태 (sym-on): 식물 / 배지 / 토양미생물을이용한공기정화시스템을가동한경우, 식물종에상관없이활성탄이함유된 hydroball 배지 (LC) 가가스처리 20분후또는 60분후에 benzene, toluene, m-xylene과 o-xylene 모두초기투여된가스를완전히제거하는것으로나타났다 (Fig. 7, 8, 9, 10, 11). 특히, 실험에사용된 5가지식물종중에서산세베리아가 20분안에 BTX를모두제거하는것으로나타났다 (Fig. 9). 현재로서는이러한결과가산세베리아식물체자체의제거능인지혹은산세베리아식물체지하근권부에생존하는토양미생물의영향인지는확실치않다. 본실험의결과를종합해보면, 시스템을작동하지않는상태 (system-off) 에서 도 LC 배지가가장효과적이었지만, system-on 에서도다른배지에비해제거효 - 354 -
과가월등한것으로나타났다. 이러한사실은실내공기를팬으로강제적으로순환시킴으로써더많은량의공기가배지를통과하도록하였기때문일것이다 (Park, 2000; Wolverton 등, 1989). 또한본실험에서는조사된바가없지만, 실험에사용된모든정화분은각배지에서 6개월이상순화시킨것이기때문에배지내식물종에따른적정토양미생물이많이존재할것으로판단되어토양미생물도상당히관여할것으로판단된다. 한편, 시스템의 on과 off에상관없이배지에따른휘발성유기물질의제거능차이가훨씬컸기때문에본래본실험에서계획하였던식물종에따른휘발성유기물질의제거능은밝힐수없게되었다. 또한, 국산하이드롤 (H) 과루와사하이드로볼 (LH) 배지의차이는식물과휘발성물질에따라약간의차이는있었지만별다른효과차이는없는것으로판단된다. 따라서, 앞으로이러한사용시는휘발성유기물질의제거효과보다는식물의생육에미치는영향에초점을맞추는것이좋다고생각된다. 결과적으로볼때, 식물에사용된배지에따라실내휘발성유기물질의제거가상당히달라진다는것을알수있다. 또한, 배지의휘발성유기물질의제거능은몇가지식물의특이적인효과를제외하고는식물에의한제거능보다훨씬좋다는것을알수있다. 한편, 식물과토양미생물을포함한 system off 배지자체에비해서시스템을작동하여실내공기를강제로흡입 / 방출할경우는매우빠른속도로휘발성유기물질을완전히제거시킬수있음을볼수있다. 이와같은사실은식물을실내에둘때식물종의선정뿐만아니라배지의선정도매우중요하다는것을말해주고있다. 또한, 시스템을작동하지않는경우도육안으로보기에는식물체지하부의배지내공기유동이거의없는것처럼보이나실제로는식물의증산작용을통한공기의미세유동이있음을알게되었다. 즉, 식물이증산작용을함에따라근권부를통하여토양내수분이흡수되어지고, 결과로배지윗부분에는부압이작용하여자연스럽게표토위의공기가배지내로빨려들어간다는것이다. 이에따라서, 휘발성유기물질도동시에흡입될것이고배지와더불어배지내토양미생물에의해서흡수 / 흡착 / 대사적분해가일어날것이다. 현재본실험에서는토양미생물에의한휘발성유기물질의제거능에대 - 355 -
해서는조사한바가없지만, 다른연구결과를볼때분명하다고판단된다 (Wood, 2002). 그러나지금까지대부분의연구는시스템을작동하지않은상태에서의배지내토양미생물이휘발성유기물질의제거에미치는영향에대해서조사한것이기때문에, 차후팬이작동하는경우에어떤영향이나타나는지에대한연구가필수적이라고판단된다. 또한, 본실험에서사용된식물 / 배지 / 토양미생물을이용한공기정화시스템이상용화될경우에는배지내에서강제적으로방출되는공기중에배지내토양미생물이방출되어인체에어떤영향을미치는지에대해서도조사가필요하다고판단된다. 초 록 식물 / 배지 / 토양미생물을이용한공기정화시스템을이용하여배지와식물에따른혼합휘발성유기물질 (total 4 ppm BTX: benzene:toluene:m-xylene: o-xylene=0.5ppm:3ppm:0.25ppm:0.25ppm) 의제거효과에대해서조사하였다. 사용된식물은산세베리아 (Sansevieria trifasciata), 아이비 (Hedera helix L.), 스파티필름 (Spathiphyllum Schott.), 싱고니움 (Syngonium podophyllum), 인도고무나무 (Ficus elastica) 로 5종이었으며, 사용된배지는국산하이드로볼 (H), 루와사하이드로볼 (LH), 활성탄이 60% 포함된루와사하이드로볼 (LC) 였다. 모든식물들은각배지에서 6개월동안순화되었다. 시스템을작동하지않은상태에서식물종에상관없이 LC배지에서 BTX제거율이가장좋았다. 한편, 벤젠의경우는산세베리아, 톨루엔의경우는스파티필름의제거율이높아, 식물체자체혹은근권부의토양미생물이관여된것으로추론된다. 한편, 시스템을작동한상태에서도시스템을작동하지않은상태와마찬가지로 LC배지에서 BTX의제거효과가탁월한것으로나타났으며, 시스템작동시에는식물종에따라가스종류차이는있었지만처리후 20분또는 60분후에 BTX가완전히제거되었다. 특히, 산세베리아의경우는가스처리후 20분내에모든가스가완전히제거되었다. 결과적으로, 실내에함유된휘발성유기물질의제거에는식물종뿐만아니라배지의선정도매우중요하며, 배지를정화필터로사용할경우제거효과를탁월하게높일수있었다. - 356 -
인용문헌 Carson, E.W. 1971. The plant root and its environment. p.271-292. Univ. Press of Virginia. Charloottesville. VA. Cornejo, J.J., F.G. Munoz, C.Y. MA, and A.J. Stewart. 1999. Studies on the decontamination of air by plants. Ecotoxicology 8:311-320. Hong, J. 2000. Benzene and formaldehyde removal by indoor foliage plants. Ph D. thesis. Korea University, Seoul. Kim, M.J. 2004. Physiological responses and CO2 removal efficiency of foliage plants according to indoor environment condition. Konkuk Univ., M.S. thesis, Seoul Korea Nelson, P.V. 1991. Greenhouse operation and management. 4th ed. Prentice Hall. Englewood Cliff. N.J. Park, W.K. 2000. Effect of functional container by wick culture onthe growth of foliage plant and change of indoor environmental. Konkuk Univ., M.S. thesis, Seoul Korea Reed, D.W. 1996. Water, media, and nutrition for greenhouse crops. p. 110-111. Ball Publishing. Illinois. Sehmel, G.A. 1980. Particle and gas deposition, Atmos. Environ. 14:983-1011. Singh, B.P. and U.M. Sainju. 1980. Soil physical and morphological properties and root growth. J. Amer. Soc. Hort. Sci. 105(4):514-517. Son, K.C., S.H. Lee, S.G. Seo, and J.E. Song. 2000. Effects of foliage plants and potting soil on the absorption and adsorption of indoor air pollutants. J. Kor. Soc. Hort. Sci. 41(3):305`310. Song, C.Y., J.M. park, J.M. Choi, C.S. Bang, and J.S. Lee. 1996. Effect of composted rice-hull on physico-chemical properties of growing media and growth of Petunia hybrida. J. Kor. Soc. Hort. Sci. 37:451-454. Wolverton, B.C., A. Johnson, and K. Bounds, 1989. Interior landscape plants for indoor air pollution abatement. NASA. USA. Wood, R.A, R.L. Orwell, J. Tarran, F. Torry, and M. Burchett. 2002. - 357 -
Potted-plant/growth media interactions and capacities for removal of volatiles from indoor air. J. of Hort. Sci. & Bio. 77(1):120-120. - 358 -
Benzene (ppm) 0.15 CON H 0.10 LH LC 0.05 0.00-0.05 Toluene (ppm) 1.50 1.00 0.50 0.00-0.10 0 20 60 Time (min) -0.50 5 20 60 Time (min) 0.15 0.15 m-xylene (ppm) 0.10 0.05 0.00-0.05 o-xylene (ppm) 0.10 0.05 0.00-0.05-0.10 5 20 60 Time (min) -0.10 5 20 60 Time (min) Fig. 2. Removal efficiency of BTX exposed in gas tight chamber by Ficus elastica in combination with different media under system-off condition (CON: no plant and no medium, H: Ficus elastica planted in domestic hydroball medium, LH: Ficus elastica planted in Luwasa hydroball medium, LC: Ficus elastica planted in Luwasa hydroball medium containing activated carbon). Benzene (ppm) 0.3 0.2 0.1 0.0 CON H LH LC Toluene (ppm) 1.50 1.00 0.50 0.00-0.1 5 20 60 Time (min) -0.50 5 20 60 Time (min) m-xylene (ppm) 0.15 0.10 0.05 0.00-0.05-0.10 5 20 60 Time (min) o-xylene (ppm) -0.05-0.10 5 20 60 Time (min) Fig. 3. Removal efficiency of BTX exposed in gas tight chamber by Hedera helix in combination with different media under system-off condition. See Fig. 2 for details. 0.15 0.10 0.05 0.00-359 -
Benzene (ppm) 0.15 0.10 0.05 0.00-0.0 5 CON H LH LC Toluene (ppm) 1.50 1.00 0.50 0.00-0.1 0 5 2 0 6 0 Time (min) -0.5 0 5 2 0 6 0 Time (min) 0.15 0.15 m-xylene (ppm) 0.10 0.05 0.00-0.0 5 o-xylene (ppm) 0.10 0.05 0.00-0.0 5-0.1 0 5 2 0 6 0 Time (min) -0.1 0 5 2 0 6 0 Time (min) Fig. 4. Removal efficiency of BTX exposed in gas tight chamber by Sansevieria trifasciata in combination with different media under system-off condition. See Fig. 2 for details. Benzene (ppm) 0.15 0.10 0.05 0.00-0.05 CON H LH LC Toluene (ppm) 1.50 1.00 0.50 0.00-0.10 5 20 60 Time (min) -0.50 5 20 60 Time (min) 0.15 0.15 m-xylene (ppm) 0.10 0.05 0.00-0.05 o-xylene (ppm) 0.10 0.05 0.00-0.05-0.10 5 20 60 Time (min) -0.10 5 20 60 Time (min) Fig. 5. Removal efficiency of BTX exposed in gas tight chamber by Spathiphyllum spp. in combination with different media under system-off condition. See Fig. 2 for details. - 360 -
Benzene (ppm) 0.15 0.10 0.05 0.00-0.05 CON H LH LC Toluene (ppm) 1.50 1.00 0.50 0.00-0.10 5 20 60 Time (min) -0.50 5 20 60 Time (min) m-xylene (ppm) 0.15 0.10 0.05 0.00-0.05-0.10 5 20 60 Time (min) o-xylene (ppm) 0.15 0.10 0.05 0.00-0.05-0.10 5 20 60 Time (min) Fig. 6. Removal efficiency of BTX exposed in gas tight chamber by Syngonium podophyllum in combination with different media under system-off condition. See Fig. 2 for details. Benzene (ppm) 0.5 CON H 0.4 LH 0.3 LC 0.2 0.1 0.0-0.1 5 20 60 Time (min) Toluene (ppm) 3.0 2.0 1.0 0.0 5 20 60 Time (min) 0.3 0.3 m-xylene (ppm) 0.2 0.1 0.0 o-xylene (ppm) 0.2 0.1 0.0-0.1 5 20 60 Time (min) -0.1 5 20 60 Time (min) Fig. 7. Removal efficiency of BTX exposed in gas tight chamber by Ficus elastica in combination with different media under system-on condition. See Fig. 2 for details. - 361 -
Benzene (ppm) 0.5 CON 0.4 H LH 0.3 LC 0.2 0.1 0.0-0.1 5 20 60 Time (min) Toluene (ppm) 3.0 2.0 1.0 0.0 5 20 60 Time (min) 0.3 0.3 m-xylene (ppm) 0.2 0.1 0.0 o-xylene (ppm) 0.2 0.1 0.0-0.1 5 20 60 Time (min) -0.1 5 20 60 Time (min) Fig. 8. Removal efficiency of BTX exposed in gas tight chamber by Hedera helix in combination with different media under system-on condition. See Fig. 2 for details. Benzene (ppm) 0.5 CON H LH LC 0.4 0.3 0.2 0.1 0.0-0.1 5 20 60 Time (min) Toluene (ppm) 3.0 2.0 1.0 0.0 5 20 60 Time (min) 0.3 0.3 m-xylene (ppm) 0.2 0.1 0.0 o-xylene (ppm) 0.2 0.1 0.0-0.1 5 20 60 Time (min) -0.1 5 20 60 Time (min) Fig. 9. Removal efficiency of BTX exposed in gas tight chamber by Sansevieria trifasciata in combination with different media under system-on condition. See Fig. 2 for details. - 362 -
Benzene (ppm) 0.5 CON H LH LC 0.4 0.3 0.2 0.1 0.0-0.1 5 20 60 Time (min) Toluene (ppm) 3.0 2.0 1.0 0.0 5 20 60 Time (min) 0.3 0.3 m-xylene (ppm) 0.2 0.1 0.0 o-xylene (ppm) 0.2 0.1 0.0-0.1 5 20 60 Time (min) -0.1 5 20 60 Time (min) Fig. 10. Removal efficiency of BTX exposed in gas tight chamber by Spathiphyllum spp. in combination with different media under system-on condition. See Fig. 2 for details. Benzene (ppm) 0.5 CON 0.4 H LH 0.3 LC 0.2 0.1 0.0-0.1 5 20 60 Time (min) Toluene (ppm) 3.0 2.0 1.0 0.0 5 20 60 Time (min) 0.3 0.3 m-xylene (ppm) 0.2 0.1 0.0 o-xylene (ppm) 0.2 0.1 0.0-0.1 5 20 60 Time (min) -0.1 5 20 60 Time (min) Fig. 11. Removal efficiency of BTX exposed in gas tight chamber by Syngonium podophyllum in combination with different media under system-on condition. See Fig. 2 for details. - 363 -
3. 토양내미생물균주들의휘발성유기화합물제거능효과및식물체 접종시식물생육및공기정화효과에미치는영향 Effect of Single Bacterial Strains and Inoculation of the Bacterial Population of Pachira aquatica into Several Different Plants on the Removal of Volatile Organic Compounds 류명화, 문영숙, 손기철, 천세철 * Myung-hwa Yoo, Young-Sook Moon, Ki-Cheol Son, Se-Chul Chun College of Life and Environmental Science, Konkuk University, Seoul 143-701 (*Corresponding author) Abstract: Effect of single bacteria isolated from total populations cultured from the cultivation media of different plants on removal of volatile organic compounds (VOCs) such as benzene and toluene was studied. Bacterial suspension of each strain was inoculated into the glass bottle (diameter 81mm x height 170mm, 600ml) and then mixed VOCs of benzene (1.8ppm), toluene (0.9ppm), m,p-xylene (4.88ppm) and o-xylene (2.845ppm) was injected. The initial gas concentrations of VOCs from bottles was measured right after injections and incubated for 24 hrs. Each bacteria was different in the capacity of removal of different VOCs, i.e. Scin010 was good at the removal of every species of VOCs but some bacterial strains such as Hede56, Hide15, and Hide11 not good at removal of any other VOCs compared to the control. In the after all, Scin010 was the best for removal of every species of VOCs, suggesting that this strain could be very well utilized for VOCs removal related to the application in real. Microbial population from Pachira aquatica shown good capacity for the removal of benzene and toluene was inoculated into different plant pots such as P. aquatica, Ficus elastica, Syngonium podophyllum. The inoculated microorganisms had significant effect on the removal of benzene and toluene compared to the removal efficacy by the only plants, indicating that microbes in the rhizosphere could play a - 364 -
significant role in the removal of VOCs along with plants. In addition, the harmful bacteria to human was not detected at the level beyond hazardous critical point from the absorbed air passed through the plant pot systems made for the purpose of the removal of VOCs in the room. 서론 도시의공기는자동차매연, 실내의페인트등에의한휘발성유기용매 (volatile organic compounds, VOCs) 에항상오염되어있기때문에 90% 이상의시간을실내에서보내는도시민들에게있어서는빌딩내의공기의질은개선될필요가있다 (Abbritti and Muzi, 1995, Krzyanowski, 1995, Amrican Lung Assoc., 2001). VOCs는실외, 실내에서유래되는데실외에서는자동차매연등이며 ( 주로벤젠 ), 실내에서는공장, 기계, 용매, 세탁제, 회장품등에서유래되는 n-핵산등이다. 이러한화학물질의혼합물은특별히에어콘이가동되는실내에서이른바빌딩증후군 (sick building syndrome 또는 building-related illness) 을일으키는원인으로서보고되었다 (Burge et al., 1987; Mendell and Smith, 1990; Carpenter, 1998; Brasche et al., 1999; Carrer et al., 1999). 300 이상의 VOCs 물질이실내에서검출되어졌고이러한물질들은두통, 호흡계질환, 집중력의상실등을가져온다고보고되어졌다 (Wolkoff, 1995; Weschler and Shields, 1997). 식물배양토의미생물들은분토양에서자라는실내식물의대기중의 VOCs 제거에관련이되었다는것이보고되어졌다 (Wolverton and Wolverton, 1993). 미생물들은유기물질들예를들면유출된기름등으로오염된토양의생물제거에서효과적인것으로알려져있다 (Radwan et al., 1998; Siciliano and Germida, 1998a, b; Li et al., 2000). 미생물의활동이왕성한축축한다공성의배지를오염된공기가통과할때즉, biofilter reactor" 에의한탄화수소연기의처리에도사용되어왔다 (Hodge et al., 1991; Zhou et al., 1998, Yeom and Yoo, 1999). 또한, 분토양의미생물에의하여벤젠과 n-핵산을포함하는 VOCs가제거된다는것이보고되었다 (Wood et al., 2002). VOCs 제거능은단지주간에만국한된것이아니라야간에도효과적으로일어난다고밝혀졌다 (Wood et al., 2002). 이러한사실은 VOCs 제거가식물에의하여만일어나는것이아니라토양의흡착성및토양미생물이관여한다는것을암시하여준다. 한편, 대부분의경우, 분토양내의미생물이실내공기질을개선할수있다는암시를제시하여 - 365 -
주는연구결과가있고공기질개선에미생물의역할이중요할수있으며, 또한편농가재배등일반토양을사용하는사람들에게인체에해로운세균, 진균등에감염되는사례가보고된적이없으며, 인간이토양이라는자연환경에항상노출되어있으나, 토양에서유래하는세균이나진균이대기를통하여인체에전염될가능성매우희박하다하겠으나, 그럼에도불구하고분토양내존재하는미생물등이혹시나인체에해로움을주지는않을까하는막연한두려움도갖고있어, 실제병원에서는구체적인연구가없이는병원내분도입을제한하고있는실정이다. 따라서, 공기정화시스템으로만들어진분식물의실내도입에따른인체위해미생물의검출조사및개개세균의 VOCs 제거능, 또한, 분식물에미생물을접종하였을때의토양미생물에의한 VOCs 제거능을조사하였다. 재료및방법 식물배양토미생물균주 (strain) 의휘발성유기화합물제거효과. 히데라, 드라세나, 스킨담세스, 인도고무나무, 만량금, 파키라, 스타티필름, 산세베리아, 테이블야자, 벤자민, 심고니움, 디펜바키아, 네프로네피스식물에전체세균집단에서단콜로리로분리된세균 strains를 Tryptic soy agar (TSA) 에평판도말하여하룻밤동안 28 o C에배양하고증류수에희석하여현탁액을만들고 100μl를 (O.D. at 600nm = about 2.0) 5ml의멸균증류수에희석현탁한후각 1 ml를직경이 81mm이며높이가 170mm이고볼륨이 600ml인마개가있는병의 TSA에분주하여도말이되도록해주었다. 대조구로는 TSA 배지만분주하고어떠한세균도접종하지않았다. 마개로 (Septum, Sigma, USA) 밀봉하였다. 위의처리를마친후 benzene 1.8ppm, toluene 0.9ppm, m,p-xylene 4.88ppm and o-xylene 2.845ppm의혼합가스 (VOCs) 를각병에주입하고바로즉시최초의농도를다시 GC로조사하고 28 에서 24시간배양한후각가스의최종농도를측정하였다. 식물체에대한미생물의접종에의한공기정화식물시스템에있어서의미생물의 VOCs 제거효과. 1년차연구를통해서, 파키라의식물배양토 hydroball에서분리한세균집단이벤젠과톨루엔의감소효과가뛰어난것으로나타났다. 따라서, 본연구에서는 - 366 -
파키라의토양미생물을다른식물체에접종시 VOCs 제거효과를조사하고자하였다. 본실험에서이용한실내식물은직경 18cm 포트에 hydroball로심겨진파키라 (Pachira aquatica), 인도고무나무 (Ficus elastica), 싱고니움 (Syngonium podophyllum) 으로하였으며, 대조구로는식물체가없는 hydroball로하으며, 식물의 VOCs 제거효과를조사한후, 파키라토양미생물을접종시킨후 12시간동안식물의 VOCs 제거효과를살펴보았다. 실험에들어가기 1시간전에 500ml 의 distilled water로관수하였으며, 미생물을접종할때는 200ppm Technigro(N:P:K=24:7:5, SunGro Inc., USA) 을시비한후, 500ml의파키라세균현탄액을 ( 현탁도, Absorbance 2.0 at 600nm) 주었다. 가스처리는가스챔버내에혼합 VOCs 가스를전체농도 4ppm±0.5ppm(benzene: toluene:m-xylene:o-xylene=1: 3: 0.5: 0.5) 으로주입한후, 12시간동안 2시간간격으로 VOCs 제거효과를살펴보았으며, 빈챔버의 VOCs gas leakage는 10.1% 이었다. 모든식물들은자연광을 80% 차광하여 100±30μmolm -2 s -1 의광과온도 25±5, 습도 50±10% 를유지시킨유리온실에서 6개월이상순화시켰으며, 관수는 1~2일에한번씩하였고, 2주마다액비 Technigro(N:P:K=24:7:5, SunGro Inc., USA) 200ppm으로시비하였다. 가스실험에들어가기 1주일전에환경조절생육상내 ( 두리과학, DF-95G-1485) 로옮겨와순화시켰으며, 평균광량이 100μmolm -2 s -1 이고, 온도 24 o C, 습도 60% 이었으며, 광주기는 14/10(Day/Night) 이었다. 또한, 접종후의미생물의변화를추적하기위하여파키라세균전체집단의현탁액을주입시켜그주입전후관수시화분을거쳐나온액을 Effendorf-tube 에받아각각의세균수의변화를알아보기위한실험에들어갔다. 예비실험을통해 count하기에적절한적정한희석승수를찾았다 ( 본실험에서는 10-5, 10-6, 10-7 의희석농도사용 ). 관수전후의물의세균현탁액을 10-5, 10-6, 10-7 의희석농도에서각각 1ml 씩페트리디쉬에분주했다. 분주한페트리디쉬에 55 의 TSA 배지를분주하여배지가잘혼합되도록하였다. 씰링한후 28 에서 48시간배양후세균수를계수하였다. 식물분재료를통과한배양토종류에따른인체위해세균조사. 샘플링 : 먼저 VOCs 가스제거실험중인식물체중 10개체, 즉, 스파티필름, 아이 - 367 -
비, 인도고무나무, 산세베리아, 싱고니움, 파키라, 네프로네피스, 관음죽, 드라세나, 벤자민고무나무의공기정화용식물분시스템을선택배지에팬을이용해서토양미생물을강제흡입시켜미리준비된 Coliform Agar, Barid-Parker Agar, RamBach Agar 플레이트에한식물개체씩동시에 3반복으로 1분간 warming up 시킨후 1분간노출시키는방법으로배지를배양하여인체위해균의유무를조사하였다. Coliform Agar는빛에민감하므로너무밝지않은곳에팬을설치하였다. 대조구는식물이없는배양토통과공기, 건국대생명환경과학대학 206호, 208호, 114호에 23:00~08:00까지준비된플레이트의뚜껑을열어암상태에서노출시킨후조사하였다. E. coli and Coliform. 500ml의증류수를 1L의 Pyrex병에담고 13.25g의 COLIFORM Agar와마그네틱바를넣은후에 1L의 Pyrex병을물을넣은 2L 비이커를가열하여중탕으로 COLIFORM Agar(Merk Korea Ltd., Seoul, Korea) 를완전히녹인후배지는분주할때까지 45~50 의 Water Bath에보관하였다. 노출시킨배지는 36 의 incubator chamber에넣어 48시간배양하여진한청색에서자주색의콜로니의유무를판단하고계수하였다. Samonella. 2L의비이커에물을넣고가열하여중탕으로 Rambach agar(merk Korea Ltd., Seoul, Korea) 를완전히녹인후배지는분주할때까지 45~50 의 Water Bath에보관하였다. 노출된 Rambach agar 배지를 36 의 incubator chamber에넣어 48시간배양하여빨간색의콜로니의유무를판단하고계수하였다. Staphylococcus. 2L 비이커에물을넣고가열하여중탕으로 Egg-yolk tellurite을첨가한 Barid-Parker agar(merk Korea Ltd., Seoul, Korea) 를완전히녹인후배지는분주할때까지 45~50 의 Water Bath에보관하였다. 노출된배지는 36 의 incubator chamber에넣어 48시간배양하여검은색의볼록하고 shiny한콜로니의유무를판단하고계수하였다. 결과및고찰 각각의세균들은 VOCs 제거능력이달랐다. Scin010은모든휘발성가스에대한제거효과가대조구에비하여매우우수하였다 ( 표1). 하지만, Hede56, Hide15, 및 Hide11 등과같은세균들은어떤가스에대하여도제거효과가없었다 ( 표 1). VOCs 감소효과를보인대부분의세균들은지방산분석에있어서종수준까지로동정이되지못한것이많이있었다 ( 제 5절 2항연구표 2에서 - 368 -
균주의숫자번호는본연구의표1에서의숫자번호와일치한다 ). 벤젠에대하여는, 스킨담세스의근권에서분리된스킨010, 스킨013, 그리고네프로네피스근권에서분리된네프005가각각 0.751, 0.753, 0.622 등으로대조구의 0.282에비하여감소효과가뚜렷하였다 ( 표 1). 톨루엔에대하여는디펜바키아에서분리된디펜 002와스킨010가각각감소율이 0.758과 0.808로서대조구의 0.446에비하여감소효과가현저하였다 ( 표 1). m,p-자일렌에대하여는디펜002, 디펜023, 디펜 046, 디펜024 그리고싱고니움의근권에서분리된싱고037, 스킨010, 스킨021 등이각각감소율이 0.718, 0.787, 0.585, 0.854, 0.773, 0.403, 0.772, 0.989 등으로대조구의감소율 0.315에비하여감소효과가현저하였다 ( 표 1). o-자일렌에대하여는디펜023, 디펜024, 싱고058, 스킨010, 스킨013, 스킨021 등이감소율이각각 0.809, 0.863, 0.892, 0.827, 0.790, 0.969 등으로대조구의감소율 0.572에비하여현저히감소하였다 ( 표1). 전체 VOCs ( 혼합가스 ) 에대하여감소효과를가져온것은디펜002, 디펜24, 스킨010, 스킨013, 스킨021, 네프005 등이각각감소율이 0.566, 0.504, 0.792, 0.638, 0.760, 0.501 등으로대조구의감소율 0.376에비하여감소효과가뚜렷하였다. 이와같은결과는특정한세균을이용하여식물이자라는분토양에접종하면 VOCs의제거효과를증진시킬수있음을가르쳐주었다. 특히, 스킨010은모든가스에대하여제거효과가뛰어나분식물을이용한공기정화시트뎀에아주효율적으로사용될수있음을제시하여주었다. Wood (2002) 등은 potting 혼합물을사용하여미생물에의한벤젠과 hexane 의제거효과를연구하였는데 25 ppm의벤젠을 5일만에 5 ppm이하로감소시켰다고보고하였다. 또한, Howea 식물의배양토인 vermiculite를 Tryptic soy broth에현탁시켜배양하여미생물에의한벤젠의제거효과를조사하였는데 25 ppm의벤젠이 4일만에 5 ppm이하로감소되었다고보고하였다 (Wood et al., 2002). 식물과토양미생물에의하여포름알데하이드, xylene, 암모니아등이제거될수있음에대하여는 Wolverton and Wolverton (1993) 등이보고하였다. 또한, Radwan 등은 (1998) 쿠웨이트사막의기름제거에있어서탄화수소를이용하는근권미생물에의한잠재적인공헌이있다고보고하였다. 대기중의톨루엔과 xylene 등에대하여 biofilter를이용할수있는가능성은 Marek 등 (2000) 에의하여제시되었다. 식물체가없는 hydroball은 benzene, toluene, m,p-xylene, o-xylene 모두적은농도를흡착하는경향을나타냈으며, 미생물을접종했을시벤젠, 톨루엔은접종하지않았을때보다제거효과가뚜렷하게나타났으며, m,p-xylene, o-xylene 등에접종 1시간에서 6시간까지접종초기에제거효과가있었으며시간이지남 - 369 -
에따라제거효과기능을상실하고있었다 ( 그림 1). 식물체의유무에따른 BTX 제거효과에있어서는식물체가있을때 BTX 모두 2~3배이상의제거효과가있었으며, 식물중에서는인도고무나무가 BTX 제거에가장효과적이었다 ( 그림 1). 파키라의토양미생물을접종시킨 24시간후에 BTX 제거효과를살펴보면 benzene과 toluene 모두토양미생물을접종시키는것이 BTX 제거효과가있는것으로나타났으며, 특히싱고니움이가장효과적이었다. 그러나, m,p-xylene과 o-xylene에는식물체가없는 hydroball 및식물간에도미생물접종에따른 BTX 제거효과에는별다른차이를나타내지않았다 ( 그림 1). 식물의근권을통과한공기에서의인체위해세균은일반실험실에검출되는수준과통계적으로유의차가없었다 ( 표 2) (Dunnett's control vs all others, P=0.05). 살모넬라, 포도상구균은실험실대조구에서는발생되지않고 10 1 수준에서분식물통과공기에서발견되었지만통계적으로유의성이없었으며또한, 인체에위해한수준도아니었다 (HACCP 기준 ). 또한, 식물체에세균을접종한후균체의수는접종전에비하여현저히증가하였는데이는인위적인접종에의하여전체세균이증가하였음보여주는것으로세균을접종할때가 VOCs, 특히벤젠과톨루엔의제거효과현저함을보여주는그림 1의결과와일치한다고하겠다. 초 록 식물의배양토근권에서배양한전체세균집단에서단코로니의세균을분리하였고이분리된균주들에대하여각각 VOCs의제거효과가있는지조사하였다. 각균주의세균현탁액을직경이 81mm, 높이 170mm이고, 600cc인 Tryptic soy agar (TSA) 가들은유리병에세균현탁액을접종하고벤젠 (1.8ppm), 톨루엔 (0.9ppm), m,p-자일렌 4.88ppm, o-자일렌 (2.845ppm) 이들은 VOCs 가스를주입하고초기농도를바로측정한후 28 o C에 24시간배양후최종가스농도를측정하여세균의가스제거효과를조사하였다. 각세균들은가스종류에따른제거능력이다르게나타났다. 예를들면, 스킨010 균주는모든가스를현저히제거하였으나, 히데56, 히데15, 히데11 등의세균은어떠한가스의제거효과도 - 370 -
보여주지못하였다. 결론적으로, 스킨 010은모든가스에대한제거능력이탁월하여공기정화분식물시스템에적용가능함을제시하여주었다. 벤젠, 톨루엔등의제거에효과가있었던파기라세균집단의현탁액을파키라, 인도고무나무, 싱고니움등에접종하여분식물에서미생물단독에의한가스제거효과가있는지를조사한결과벤젠과톨루엔에대하여뚜렷한감소효과를 12시간측정기간동안볼수있었다. 또한, m,p-자일렌과 o-자일렌은접종후초기 1-6시간후부분적으로감소효과를보여주었으나시간이경과함에따라서제거효과가사라짐을보여주었다. 또한, 분식물시스템을통과한공기는인체에유해한세균을일반실험실과비교시유사한수준, 즉거의미미한수준으로가지고있어서분식물시스템으로인한인체위해미생물의방출은전혀우려할수준이아님을가르쳐주었다. - 371 -
인용문헌 Abbritti, M.C. and Muzi, G. (1995). Indoor air quality and health effects in office buildings. In: Proceedings of Healthy Buildings '95, An International Conference on Healthy Buildings in a Mild Climate. (Maroni, M., Ed.). Univerisity of Milano and International Center for Pesiticide Safety, Milan, Italy, Vol. 1, 185-195. Brasche, S., Bullinger, M., Gebhardt, H., Herzog, V., Hornung, P., Kruppa, B., Meyer, E., Morfield, M., Schwab, R., Mackensen, S., Winkens, A., and Bischof, W. 1999. Factors determining different symptom patterns of sick building syndrome-results from a mutivariate analysis. In: Proceedings of Indoor Air '99, The 8th International Conference on indoor air quality and climate, Edinburgh, UK, 5, 402-407. Burge, S., Hedge, A., Wilson, S., Harris, B.J. and Robertson, A. 1987. Sick building syndrom: a study of 4373 office workers. Annals of Occupational Hygiene, 31, 493-504. Carpenter, D. O. 1998. Human health effects of environmental pollutants: New insights. Environmental monitoring and Assessment, 53, 245-258. Carrer, P., Alcini, D., Cavallo, D., Visigalli, F., Bollini, D. and Maroni, M, 1999. Home and work place complaints and symptoms in office workers and correlation with indoor air polution. In: Proceedings of Indoor Air '99, The 8th International Conference on indoor air quality and climate, Edinburgh, UK, 1, 129-134. Li, G., Huang, A., Lerner, D. N. and Zhang, X. 2000. Enrichment of degrading microbes and bioremediation of petrochemical contaminants in polluted soil. Water Research, 34, 3845-3853. Marek, J., Paca, J. and Gerrard, A. M. 2000. Dynamic responses of biofilters to changes in the operating conditions in the process of removing toluene and xylene from air. Acta Biotechnologica 20, 17-29. Mendell, M.J. and Smith, A.H. 1990. Consistant pattern of elevated symptoms - 372 -
in air-conditioned office buildings: A re-analysis of epidemiological studies. Amercan Journal of Public Health, 80, 1193-1199. Radwan, S.S., AL-Awadhi, H., Sorkhoh, N.A. and EL-Nemr, I.M. 1998. Rhizospheric hydrocarbon utilizing microorganisms as potential contributors to phytoremediation for the oily Kwaiti desert. Microbiology Research, 153, 247-251. Siciliano, S.D. and Germida, J.J. 1998a. Mechanisms of phytoremediation: Biochemical and ecological interactions between plants and bacteria. Environmental Review, 6, 65-79. Siciliano, S.D. and Germida, J.J. 1998b. Biolog analysis and fatty acid methyl ester profiles indicate that pseudomonad inoculants that promote phytoremediation alter the root-associated microbial community of Bromus biebersteinii. Soil Biology and Biochemistry, 31, 299-305. Weschler, C.J. and Shields, H.C. 1997. Potential reactions among indoor air pollutants. Atmospheric Environment 31, 3487-3495. Wolkoff, P. 1995. Volatile organic compounds - Sources, measurements, emissions and the impact on indoor air quality. Indoor air. Suppl. No. 3. Wolverton, B.C. and Wolverton, J.D. 1993. Plants and soil microorganisms - removal of formaldehyde, xylene and ammonia from the indoor environment. Journal of the Mississippi Academy sciences, 38 (2), 11-15. Wood, R. A., Orwell, R.L, Tarran, J. Torpy, F. and Burchett, M. 2002. Potted-plant/growth media interactions and capacities for removal of volatiles from indoor air. Journal of Horticultural Science & Biotechnology 77, 120-129. - 373 -
표 1. 세균균주의 VOCs 제거효과 균주 (strain) Benzene (ppm) Toluene (ppm) 초기최종감소율 ( 평균 ±SEM) 초기최종감소율 ( 평균 ±SEM) 디펜002 0.911 0.420 0.564±0.114 0.962 0.227 0.758±0.034* 디펜023 0.823 1.065 n/a 1.020 3.218 n/a 디펜046 1.579 0.753 0.495±0.223 1.667 1.622 0.355±0.094 디펜024 2.419 1.498 0.343±0.074 1.294 2.041 n/a 싱고058 3.095 2.162 0.297±0.067 1.703 8.905 n/a 히데056 2.604 1.992 0.238±0.048 1.348 1.030 0.240±0.046 히데015 2.879 2.547 0.113±0.052 2.067 2.244 n/a 히데052 1.674 1.317 0.206±0.067 1.751 1.256 0.276±0.024 히데011 1.083 0.756 0.302±0.032 0.943 0.635 0.321±0.042 히데018 1.734 0.854 0.467±0.184 0.765 0.480 0.395±0.146 싱고037 1.247 0.919 0.307±0.223 1.247 1.006 0.190±0.055 스킨010 1.361 0.327 0.751±0.025* 2.006 0.379 0.808±0.070* 그킨013 1.308 0.299 0.753±0.093* 1.252 0.753 0.350±0.193 스킨021 0.626 0.217 0.583±0.298 0.608 0.251 0.448±0.181 네프005 0.975 0.351 0.622±0.142* 1.061 0.381 0.630±0.130 control 1.534 1.083 0.282±0.172 1.369 0.736 0.446±0.139 *Denotes that the concentration of benzene at the final measurement significantly reduced by these strains. n/a indicates that not applicable. ( 표계속됨 ) 균주 (strain) m,p-xylene(ppm) o-xylene(ppm) 초기최종감소율 ( 평균 ±SEM) 초기최종감소율 ( 평균 ±SEM) 디펜002 0.696 0.176 0.718±0.082* 0.587 0.553 0.085±0.095 디펜023 1.712 0.344 0.787±0.072* 0.890 0.164 0.809±0.058* 디펜046 1.134 0.298 0.585±0.143* 0.572 0.400 0.634±0.212 디펜024 3.494 0.490 0.854±0.019* 1.713 0.225 0.863±0.019* 싱고058 4.684 1.066 0.773±0.009* 2.303 0.248 0.892±0.009* 히데056 2.296 1.711 0.269±0.112 2.030 1.809 0.109±0.054 히데015 2.210 2.130 0.036±0.033 1.499 1.856 0.214±0.030 히데052 1.767 1.203 0.315±0.028 0.870 0.577 0.330±0.072 히데011 1.852 1.254 0.316±0.093 0.777 0.515 0.347±0.119 히데018 0.784 0.490 0.389±0.154 0.791 0.680 0.105±0.102 싱고037 0.963 0.608 0.403±0.103* 1.496 1.028 0.308±0.058 스킨010 1.058 0.233 0.772±0.029* 1.274 0.233 0.827±0.053* 스킨013 0.734 0.361 0.111±0.243 1.515 0.296 0.790±0.080* 스킨021 0.757 0.012 0.989±0.006* 0.353 0.002 0.969±0.031* 네프005 0.936 0.276 0.180±0.261 0.259 0.567 n/a control 1.030 0.709 0.315±0.043 0.636 0.324 0.466±0.106 *Denotes that the concentration at the final measurement significantly reduced by these strains.n/a indicates that not applicable. - 374 -
( 표계속됨 ) BTX(ppm) 균주 (strain) 초기 최종 감소율 ( 평균 ±SEM) 디펜002 3.156 1.375 0.566±0.086* 디펜023 4.445 4.792 n/a 디펜046 4.952 3.073 0.373±0.057 디펜024 8.920 4.254 0.504±0.048* 싱고058 11.785 12.381 0.055±0.009 히데056 8.278 6.543 0.214±0.056 히데015 8.655 8.777 0.013±0.008 히데052 6.062 4.353 0.283±0.019 히데011 4.655 3.160 0.325±0.046 히데018 4.075 2.504 0.383±0.117 싱고037 4.954 3.561 0.280±0.037 스킨010 5.700 1.172 0.792±0.030* 스킨013 4.809 1.709 0.638±0.049* 스킨021 2.343 0.481 0.760±0.077* 네프005 3.231 1.575 0.501±0.073* control 4.569 2.853 0.376±0.036 n/a indicates that not applicable. *Denotes that the concentration at the final measurement significantly reduced by these strains. - 375 -
0.3 0 0.2 5 con m 2.5 2.0 Benzene (ppm) 0.2 0 0.1 5 0.1 0 0.0 5 Toluene (ppm) 1.5 1.0 0.5 0.0 0 0.0 0 1 2 4 6 8 1 0 1 2 0 1 2 4 6 8 1 0 1 2 0.2 5 0.2 5 0.2 0 0.2 0 m-xylene (ppm) 0.1 5 0.1 0 0.0 5 o-xylene (ppm) 0.1 5 0.1 0 0.0 5 0.0 0 0.0 0 0 1 2 4 6 8 1 0 1 2 0 1 2 4 6 8 1 0 1 2 T im e ( h r s ) T im e (h rs ) Fig. 1. Effects of pots on the removal of mixture of BTX exposed in the chamber. Con and m denotes pot without inoculation of bacteria into medium and pot with inoculation of bacterial suspension into medium, respectively. Initial concentrations of mixture of BTX were 0.5ppm benzene, 3ppm toluene, 0.25ppm m,p-xylene, and 0.25ppm o-xylene, respectively. The concentration of BTX at the intial time was converted into 0 values and the accumulated concentration reduced from the initial concentration was positively expressed. 0.30 0.25 con m 2.5 2.0 Benzene (ppm) 0.20 0.15 0.10 0.05 Toluene (ppm) 1.5 1.0 0.5 0.00 0.0 0 1 2 4 6 8 1 0 1 2 0 1 2 4 6 8 1 0 1 2 0.25 0.25 0.20 0.20 m-xylene (ppm) 0.15 0.10 0.05 o-xylene (ppm) 0.15 0.10 0.05 0.00 0.00 0 1 2 4 6 8 1 0 1 2 T im e ( h r s ) 0 1 2 4 6 8 1 0 1 2 T im e (h rs ) Fig. 2. Effect of inoculation of total bacterial population isolated from rhizosphere of Pachira aquatica into plant pot on the removal of mixed BTX exposed in the chamber. See Fig. 1 for details. - 376 -
0.3 0 0.2 5 con m 2.5 2.0 Benzene (ppm) 0.2 0 0.1 5 0.1 0 0.0 5 Toluene (ppm) 1.5 1.0 0.5 0.0 0 0.0 0 1 2 4 6 8 1 0 1 2 0 1 2 4 6 8 1 0 1 2 0.2 5 0.25 0.2 0 0.20 m-xylene (ppm) 0.1 5 0.1 0 0.0 5 o-xylene (ppm) 0.15 0.10 0.05 0.0 0 0.00 0 1 2 4 6 8 1 0 1 2 T im e (h rs ) 0 1 2 4 6 8 1 0 1 2 T im e (h rs ) Fig. 3. Effect of inoculation of total bacterial population isolated from rhizosphere of Ficus elastica into plant pot on the removal of mixed BTX exposed in the chamber. See Fig. 1 for details. Benzene (ppm) 0.3 0 0.2 5 0.2 0 0.1 5 0.1 0 0.0 5 con m Toluene (ppm) 2.5 2.0 1.5 1.0 0.5 0.0 0 0.0 0 1 2 4 6 8 1 0 1 2 0 1 2 4 6 8 1 0 1 2 0.2 5 0.2 5 0.2 0 0.2 0 m-xylene (ppm) 0.1 5 0.1 0 0.0 5 o-xylene (ppm) 0.1 5 0.1 0 0.0 5 0.0 0 0.0 0 0 1 2 4 6 8 1 0 1 2 T im e (h rs ) 0 1 2 4 6 8 1 0 1 2 T im e (h rs ) Fig. 4. Effect of inoculation of total bacterial population isolated from rhizosphere of Syngonium podophyllum into plant pot on the removal of mixed BTX exposed in the chamber. See Fig. 1 for details. - 377 -
표 2. 공기정화시스템에사용되는분식물의근권을통과한공기의인체위해세균의검출조사 배양토 CFU/min a 식물종류 E.coli & Salmonella Staphylococcus LH, LC Coliform spp. spp. 스파티필름 LH 0.000 0.000 0.333 LC 0.000 0.000 0.000 아이비 LH 0.000 0.000 0.000 LC 0.000 0.000 0.667 인도고무나무 LH 0.000 0.000 0.000 LC 0.000 0.333 0.000 산세베리아 LH 0.333 0.000 1.000 LC 0.000 0.000 1.000 싱고니엄 LH 1.000 0.000 0.000 LC 0.000 0.000 0.333 파키라 LH 0.000 0.000 1.000 LC 0.000 0.000 0.000 네프로네피스 LH 0.000 0.000 0.667 LC 0.000 0.000 0.000 관음죽 LH 0.000 0.000 0.333 LC 0.000 0.000 0.667 드라세나 LH 0.000 0.000 0.000 LC 0.000 0.000 0.000 벤자민고무나무 LH 0.000 0.000 0.000 LC 0.000 0.000 0.333 Control1 LH 0.000 0.000 0.000 ( 배양토 ) LC 0.000 0.000 0.000 Control2(206 호 ) n/a 0.333 0.000 0.000 Control3(208 호 ) n/a 0.667 0.000 0.000 Control4(114 호 ) n/a 0.333 0.000 0.000 a There was no significant difference in the mean of CFU(colony forming unit) per min. passed through the apparatus of plant removal system for VOCs(Dunnett's Control vs all others, P=0.05) - 378 -
표 3. P. aquatica의전체세균집단접종의균체의밀도변화 CFU(x10 5 )/ml of inoculated 식물종류 Inoculation bacterial population from Pachira aquatica 하이드로볼 Before 60 After 470* 인도고무나무 Before 11 After 172* 싱고니엄 Before 3 After 1,217* 파키라 Before 24 After 2,885* *denotes that there is significant increase in the mean of CFU(colony forming unit) after inoculation into the apparatus of plant removal system for VOCs (T-test, P=0.05) - 379 -
4. 식물 / 배지 / 토양미생물을이용한공기정화시스템의성능실험 류명화ㆍ권윤정 윤지원 이은숙 손기철 * 건국대학교원예과학과 Performance test of air purification system using plant/medium/soil microorganism Myung Hwa YooㆍYoun Jung Kwon Jee Won Yoon Eun Sook Lee Ki-Cheol Son* Dept. of Horticultural Science, Konkuk Univ., Seoul 143-701, Korea (* Corresponding author) Abstracts. This study selected two rooms in the same size and used Ficus benjamina, Syngonium podophyllum, Pachira aquatica and Chrysalidocarpus lutescens for two minutes each to examine the indoor luminosity, temperature, humidity and carbon dioxide concentration depending on existence of plants of 4% in the rooms. The temperature of room with the plants of 4% was higher during the day and lower at night. Its humidity became increased at least over 5% both during the day and at night. Moreover, the carbon dioxide concentration kept lower about 20 to 30 ppm in the room with plants during the day and at night than the room without plants. Meanwhile, for the performance test of air filtering system using plant and soil microorganism, the indoor air monitory system, PM10 and TVOCs meter were installed 120m above the floor in the room(11m 2.8m 2.5m=L W H). Then, the indoor TVOCs, formaldehyde, toluene, m-xylene, PM10 and number intensify by 0.5μm and 1.0μm particle were examined. The measuring conditions were the empty room(e), the room with paints in an empty - 380 -
bottle(ep), the room with plants equivalent to 2% of the room size in its volume(two Ficus benjamina, four Syngonium podophyllum)(pp), the room with system(sp) and the room with air purifier(ap). VOCs source was measured for four hours after pouring 10ml of paint containing 5% thinner on the B5 sized hardboard and keeping it in a room. According to the results from measuring TVOCs, formaldehyde, toluene and m-xylene, they were gradually increased from the initial values in the experimental group with the paints as times went by. In the experimental group with plants, those factors were increased at the beginning but dropped after four hours. The system and air purifier effectively removed the formaldehyde, TVOCs, toluene and m-xylene and in particular, it was found that the system removed toluene and m-xylene within two hours. The number intensify per PM10 and 0.5μm particle was the most effective in removing the plants of 2%. For the removal of 1.0μm particles, while the air purifier showed the higher removal efficiency than other experimental groups, the dust particles were rather increased after three hours. Therefore, the air filtering system using the plants/media/soil microorganism proved the remarkable removal efficiency of plants related to the contaminants in a room, formaldehyde, TVOCs, benzene, toluene and CO 2. In particular, it is estimated that the air filtering system using soil is superior to other air filtering systems in terms of removal efficiency of contaminants. 서 언 현대도시인들은하루중 80~95% 에이르는시간을실내에서보내고있다 (Jenkins 등, 1992; Shin 등, 1993; Shiotsu와 Ikeda, 1998). 한편대부분의건물들은에너지효율을높이기위해밀폐형구조로변화되었으며, 이에따라외기도입량이최소화됨으로써실내의공기질 (Indoor Air Quality: IAQ) 은더욱더악화 - 381 -
되었다. 실내공기질의악화는빌딩증후군 (Sick Building Syndrome: SBS) 및복합화학물질과민증 (Multi-Chemical Sensitivity: MCS) 등을유발시켜인간의건강에해로운영향을끼치며 (Ingrosso, 2002; Hayashi 등, 2004; Jones, 1999), 더나아가서는인간의삶의질 (Quality of Life: QOL) 에큰영향을미친다. 실내의오염물질은재실자의활동과흡연, 연소기구, 건축자재, 각종생활용품등에서발생하는분진, 환경담배연기, 이산화질소, 일산화탄소, 포름알데히드, 라돈, 휘발성유기화학물질등으로나눌수있으며 (Kim, 1994; Yoon과 Spengler, 1995), 이러한실내오염물질에장시간노출됨에따라일시적또는만성적으로걸리는코, 눈, 목의건조나통증, 두통, 구역질및현기증, 호흡기질환에서심하게는암발생을유발시키기도한다 (Hines 등, 1993; Hong, 2000; Kim 등, 1997; Shin 등, 1993). 현재실내공기질개선을위한다양한기기적인방법이사용되고있지만, 적용장소의제한및고가의장비가필요하며, 오히려실내공기를오염시키거나새로운오염물질을창출시킨다는단점들을지니고있다 (Sohn과 Yoon, 1995; Wolverton, 1997). 한편, 식물은광합성, 호흡, 증산등의가스교환시잎의기공을통해오염물질을흡수하여공기중의오염물질을정화하는것으로밝혀졌으며 (Darrall, 1989; Park 등, 1997; Shemel, 1980), 식물이실내에서발생하는다양한오염물질의제거에대한연구도이미여러차례보고되었다 (Han, 2001; Hong, 2000; Lohr와 Pearson-Mims, 1996; Park, 1998; Son 등, 2000; Woleverton, 1997; Wood, 2002). 또한, 최근에는단지식물뿐만아니라배양토내미생물도실내공기정화에영향을미치는것으로밝혀졌다 (Son 등, 2000; Wolverton, 1989; Wood 등, 2002). 그러나, 이러한식물의대기정화능만으로는실내공기질을개선하는데는시간적으로오래걸리며, 실내공간과식물의도입량과녹시율을고려할때지나치게많은식물들이요구되어져야한다. 현재까지발표된식물의오염물질제거능에대한실험들은대부분이소형챔버를이용한실험에국한되어있으며, 식물-배지와연계된실제적인실험은매우부족한실정이다. 따라서, 실내식물뿐만이아니라배지, 그리고배지내토양 - 382 -
미생물을이용한공기정화기술을개발함으로서단순히식물만을이용하는것보다는더효율적으로실내공기를정화시킬수있으며, 실내공기질개선을위한기기적인방법보다는에너지소비량, 폐기물발생, 저비용의설치비, 실내온열환경의개선 (Asaumi 등, 1991; Asaumi 등, 1995; Son과 Kim, 1998; Synder, 1990) 및원예치료적효과 (Lee와 Son, 1999; Son 등, 1998; Song, 2004) 등의측면에서탁월한방법이라고판단된다. 따라서, 본연구는실험실에서자체제작한식물-배지-미생물을이용한공기정화시스템을이용하여실제공간에서실내오염물질인 TVOCs, toluene, m-xylene, 포름알데히드와미세분진의제거효과를조사하기위하여실시하였다. 재료및방법 식물재료본실험의공시재료는실내에서많이이용하고있는벤자민고무나무 (Ficus benjamina), 싱고니움 (Syngonium podophyllum), 파키라 (Pachira aquatica) 와황야자 (Chrysalidocarpus lutescens) 로하였다. 모든식물들은경기도일대에서일괄구입하여, 직경 15cm정화분 (Luwasa hydroculture, Switzerland) 에활성탄이 60% 가함유된 hydroball(luwasa hydroculture, Switzerland) 을 3/4정도채워넣었다. 식물은구입한즉시 10μmol m -2 s -1 의광과온도 25±5, 습도 50±10% 를유지시킨실내에서 1달이상순화시켰다. 관수는 hydroball 수경재배전용액비 Complete Fertilizer PROFI를 500배희석액으로 2~3일에한번씩주었다. 식물 / 배지 / 토양미생물을이용한공기정화시스템식물 / 배지 / 토양미생물을이용한공기정화시스템은크게 1) 15cm의정화분 3 개를동시에넣을수있는분과팬이설치된부분, 2) 물공급및냉각소자를이용한적절한온도와습도로유지시키는장치 3) 전자제어컨트롤박스 ( 냉각기조절, 팬조절, UV light, system on/off 타이머, 자동관수장치 ) 3가지부분으로구성되어있다. 연속적으로작동되는팬으로인하여식물에게무리를주지않게하기위해서 1) 부분을 2유니트로하여타이머로팬작동간격을설정하여번갈아 - 383 -
시스템이작동되도록하였다 (Fig. 1). Fig. 1. A air purification system using plant/medium/soil-microorganism used in this experiment. 실내공간의 CO 2, 온도와습도변화서울송파구에위치한사무공간을임대하였으며, 두방모두남서향창이있는동일한크기의나란히붙어있다 ( 각방크기 : 부피는 31.65m3, 바닥넓이는 13.86m3로두방이동일함 ). 각방의정중앙지점에실내환경측정기 (BABUC A, LSI, Italy) 를바닥에서부터 120cm 위지점에설치한후, 식물이없는공간과 4% 식물 ( 황야자 2분, 벤자민고무나무 2분, 파키라 2분 ) 이있는경우에실내공간의 CO 2, 광, 온도, 습도의변화를조사하였다. 실험전에는실의모든문을개방하고 30분이상환기시켰다. 환기후외부공기에접한창, 문등은모두닫고측정기기를설치한후밀폐상태를유지하여일정한초기값을유지할수있도록하였다. 또한, 공기의실내외이동을막고동일한상태에서측정하기위해서측정기간동안문을열지않았다. 한편, 급격한온열환경의변동을피하기위해창문은닫아놓은상태로두었으나커튼은열어둔채두어낮동안의자연광은차단하지않았다. 광은타이머를이용하여주간 / 야간이 14시간 /10시간으로하였다. 포름알데히드, TVOCs, benzene, toleuen, 분진측정식물 / 배지 / 토양미생물을이용한공기정화시스템의성능실험을하기위해서, - 384 -
실내공간 (11m 2.8m 2.5m=L W H) 에관련측정기를바닥에서부터 120cm 위지점에설치한후, 실내의 TVOCs, 포름알데히드, toluene, m-xylene, PM10, 0.5 μm와 1.0μm 입경별개수농도를조사하였다. 측정조건은빈방 (E), 빈방에페인트를칠한 B4 사이즈의하드보드지를넣은경우 (Ep), 실내공간의 2% 부피의식물 ( 벤자민고무나무 2개, 싱고니움 4개 ) 이있는시스템이작동되지않는경우 (Pp), Pb의시스템이작동하는경우 (Sp), 시판되고있는공기청정기 (Ap) 가있는경우로하였다. 포름알데히드는포름알데하이드측정기를이용하여오염물질발생원주입전과 4시간후에측정하였다. 또한 toluene, m-xylene, 입경별분진개수측정은 1.5m의 teflon 호스를측정공간의바닥으로부터 120cm 위지점으로부터문입구쪽으로뺀후, 미니펌프를이용하여실내공기를밖으로배출시켰다. Toluene과 m-xylene은 1lL/min 의미니펌프를사용하였고, gas-tight syringe 로 0.5ml를취하여 capillary column(vb-624a, 0.32nn 1.8μm 30m) 이연결된 gas chromatography (Shimadzu G-14A, FID, 100 oven temp., 200 Inj. temp., 270 det. temp., 1~2ml/min flow rate, N 2 carrier gas) 로분석하였다. 입경별분진개수농도는 3L/min의미니펌프를이용하였고, particle counter(gt-521, SIBATA, Japan) 와 PM10 측정기를사용하여측정하였다. 5% 의신나 (thinner) 가함유된 10ml의페인트를칠한 B5 크기의하드보드지를실험을위한 VOCs 발생원으로사용되었으며, 분진발생은폴라폴리스재질인천 (150 200cm) 을이용하였다. 한편, 실내환경종합측정기를사용하여실험기간동안실내환경을모니터링하였다. 데이터분석방법포름알데히드, TVOCs, benzene과 toluene의데이터값은평균 ± 표준오차로나타내었다. 분진제거율은동일농도에서비교하기위해측정된값을 curve fitting function의 ape함수 (y= 분진농도, x= 측정시간 ) 로이용해서유리다항식 (SigmaPlot 2000, USA) 을만든다음초기분진농도를동일하게맞추었다. 결과및고찰 - 385 -
실내식물의유무에따른실내광도, 온도, 습도와이산화탄소농도의변화를조사하기위하여, 벤자민고무나무 (Ficus benjamina), 싱고니움 (Syngonium podophyllum), 파키라 (Pachira aquatica) 와황야자 (Chrysalidocarpus lutescens) 의식물을각두분씩을동일한크기의방 2개중하나에두었다 ( 총방볼륨의 4%). 식물이있는방의광은식물을창측에배치했기때문에차광이되어방가운데로들어오는광이빈방에비해서낮았다. 식물이있는방의온도는주간은높고, 야간에는낮았으며, 습도는주간과야간모두식물이있는방이최소 5% 이상높아졌다 (Fig. 2). 또한, 이산화탄소농도에서는주간과야간모두식물이있는방이빈방에비해약 20~30ppm정도낮게유지되었다 (Fig. 2). 따라서, 실내공간에식물을두면서얻을수있는효과는실내의고농도이산화탄소를감소시킴과동시에실내의온열환경을변화시킴으로서 (Son 등, 1998; 정과박, 1999) 실내환경을개선시킬수있다고생각된다. 또한, 식물이심겨있는시스템을가동시킬경우보다효과적으로실내환경을변화시킬수있을것이다. 한편, 식물 / 배지 / 토양미생물을이용한공기정화시스템의성능실험을하기위해서, 4가기처리를비교한실험결과는다음과같다. 포름알데히드의결과를살펴보면, E 처리구 ( 오염발생원을두지않은빈방 ) 는초기에 0.03ppm의포름알데히드가검출되었으며, 4시간후에는약 3.6배의농도인 0.11ppm이검출되었다 (Fig. 3). 한편, Ep 처리구 ( 빈방에오염발생원을둔상태 ) 는초기농도에비해 16 배의농도로검출되었다. 또한, Pp ( 식물이들어있으나팬을작동시키지않은시스템을실내에둔상태 ) 처리구는오염물질을넣기전보다 3.6배정도증가하였다. 그러나, Sp ( 식물이들어있고팬을작동시킨시스템을실내에둔상태 ) 와 Ap ( 판대되는공기청정기를실내에둔상태 ) 처리구는초기농도 0.12ppm에서각각 0.05ppm과 0.01ppm으로감소하는것으로나타났다 (Fig. 3). 한편, TVOCs를측정한결과, E 처리구는초기에 0.23ppm정도검출되었으나 4시간후에는검출되지않았으며, Ep처리구는초기치 0.78ppm에서 4시간후에는 3.41ppm으로증가하였다. Pp 처리구는다른처리구보다초기농도가높게나왔지만, 4시간후에는 7배정도감소된 1.14ppm이검출되었다. Sp와 Ap처리구는초기농도에서각각 5.9배와 6.5배로감소되었다 (Fig. 4). - 386 -
실내에 5% 의신나가포함된페인트를주입한후실내공기를 PID 측정기대신에 GC로측정한결과, toluene과 m-xylene은검출되었으나 benzene은검출되지않았다 (Fig. 5, 6). E 처리구에서는 0.02ppm의 toluene이검출되었으나, m-xylene은검출되지않았으며, Ep 처리구에서는시간이지날수록 toluene과 m-xylene 농도가증가하였고 4시간후에는각각 0.16ppm과 0.20ppm이검출되었다. Pp 처리구에서는 toluene이초기 0.1ppm에서 1시간후에는 0.13ppm으로증가하였으나, 4시간후에는 0.05ppm으로감소되었으며, m-xylene도초기 0.02ppm에서 1시간후에는 0.15ppm으로증가하였으나 4시간후에는검출되지않았다. Sp 처리구의경우, toluene은초기에는 0.04ppm이검출되었으나 2시간후에는검출되지않았으며, m-xylene은초기부터전혀검출되지않았다. Ap 처리의경우, toluene은초기농도 0.07ppm에서 4시간후에는 0.02ppm으로감소되었으며, m-xylene은 2시간까지농도가증가하였으나, 4시간경과후에는 0ppm 으로감소하였다 (Fig. 5, 6). 이전실험결과와더불어이러한실험결과는식물및배지의 VOCs 제거효과는확실하며 (Han, 2001; Hong, 2000, Wood, 2002), 더욱이기기적인시스템과함께작동할때는포름알데히드, TVOCs, toluene과 m-xylene 제거가매우탁월한것으로밝혀졌다. 한편, PM10 제거에는 E 처리구가초기농도보다 6.6% 정도감소한반면, Pp 처리구에서는 19.7% 가감소하였다. 그러나 Sp와 Ap 처리구에서는초기농도보다각각 4.6% 와 2.8% 정도로 Pp 처리구보다적게감소하였다 (Fig. 7). 한편, 0.5μm 입경의미세먼지감소의경우, Pp 처리구와 Ap 처리구가초기농도보다각각 85.1% 와 27.3% 로감소하였으나 (Fig. 8), Sp 처리구에서는거의제거효과가나타나지않았다. 반면에 1.0μm 입경미세먼지감소의경우, Ap 처리구가다른처리구에비해제거효과가가장좋았으나 3시간째부터는오히려증가하는경향을나타내었다 (Fig. 9). 한편, Pp 처리구에서는 35.1% 의제거효과가나타났으나, Sp 처리구에서는다른처리구에비해제거효과가낮게나타났다. 이러한결과를통하여두가지사실을예상할수있다. 첫번째는시스템의작동없이식물과배지만으로도실내의미세분진을효과적으로제거한다는것을확인할수있었다는것이다. 이러한결과는실내공간에식물이있는공간이없는공간에비해 20% - 387 -
의분진감소율을보였다는 Lohr와 Pearson(1996) 의결과도일치하였다. 일반적으로대기중의부유하는성질을지닌 1.0μm이하의미세분진은호흡으로인해폐포에침착되는등기기관지에침착율이높아져인체에악영향을미치는데 (Battarbee 등, 1997; Kim 등, 1998), 본실험의결과, 1.0μm이하미세분진의제거에있어서는식물의효과가뛰어난것으로나타났다. 그러나, 두번째로예상치못한결과는식물 / 배지 / 토양미생물을이용한공기정화시스템은분진을거의제거하지못하였다는사실이다. 실제로식물의배지로사용된하이드로볼은다공성이며수분을함유할경우입자주위에피막을형성하여강제적으로공기를순환시킬경우효율적인필터로서작용할것으로판단되었다. 현재로서는완전한해석이불가능하여보다정밀한재실험이요구된다. 결과적으로, 식물 / 배지 / 토양미생물을이용한공기정화시스템은실내에존재하는오염물질인포름알데히드, TVOCs, benzene, toluene과 CO 2 의제거또는감소에있어서매우효과적이었으며, 기존의시판되는공기청정기효과와동일한성능을나타내는것으로판단되었다. 다만, 본실험실에서제작한 prototype 시스템의팬용량이기존의공기청정기의것보다적었기때문에, 이부분은차후에제품제작에들어갈때팬용량에따른추가비교실험이필요하며, 실내공간의크기에따라존재하는오염물질을제거하는데필요로하는시스템의성능실험도더이루어져야된다고생각된다. 초 록 실내식물의유무에따른실내광도, 온도, 습도와이산화탄소농도의변화를조사하기위하여, 벤자민고무나무 (Ficus benjamina), 싱고니움 (Syngonium podophyllum), 파키라 (Pachira aquatica) 와황야자 (Chrysalidocarpus lutescens) 의식물을각두분씩을동일한크기의방 2개중하나에두었다 ( 총방볼륨의 4%). 식물이있는방의온도는주간은높고, 야간에는낮았으며, 습도는주간과야간모두최소 5% 이상높아졌다. 또한, 이산화탄소농도에서는주간과야간모두식물이있는방이빈방에비해약 20~30ppm정도낮게유지되었다. - 388 -
한편, 식물 / 배지 / 토양미생물을이용한공기정화시스템의성능실험을하기위해서, 실내공간 (11m 2.8m 2.5m=L W H) 에실내환경종합측정기, TSP, PM10 측정기를바닥에서부터 120cm 위지점에설치한후, 실내의 TVOCs, 포름알데히드, toluene, m-xylene, PM10, 0.5μm와 1.0μm 입경별개수농도를조사하였다. 측정조건은빈방 (E), 빈방에페인트를칠한하드보드지를넣은경우 (Ep), 실내공간의 2% 부피의식물 ( 벤자민고무나무 2개, 싱고니움 4개 ) 이있는시스템이작동되지않는경우 (Pp), Pb의시스템이작동하는경우 (Sp), 시판되고있는공기청정기 (Ap) 가있는경우로하였다. 5% 의신나가함유된 10ml의페인트를칠한 B5크기의하드보드지가실험을위한 VOCs 발생원으로사용되었다. TVOCs, 포름알데히드, toluene과 m-xylene을 4시간동안측정한결과, 빈방에 VOC발생원을넣은처리구 (Ep) 는시간이증가할수록휘발성물질이초기값보다증가하였으며, Pp 처리구는초기에는증가하나 4시간후에는감소하였고, Sp와 Ap 처리구는포름알데히드, TVOCs, toluene과 m-xylene을 4시간동안효과적으로제거하였다. 특히 Sp 처리구에서는 toluene과 m-xylene이 2시간이내에제거되는것으로나타났다. 한편, PM10 제거와 0.5μm입경미세먼지의감소에는 Pp 처리구가가장좋았으며, 1.0μm 입경미세먼지의감소에는 Ap 처리구가다른처리구에비해효과가가장좋았으나 3시간째부터는오히려증가하는경향을나타내었다. 결과적으로, 식물 / 배지 / 토양미생물을이용한공기정화시스템은실내에존재하는오염물질인포름알데히드, TVOCs, benzene, toluene과 CO 2 의제거또는감소에있어서매우효과적이었으며, 기존의시판되는공기청정기효과와동일한성능을나타내는것으로판단되었다. 인용문헌 Battarbee, J.L., N.L. Rose, and X. Long, 1997. A continuous, high resolution record of urban airborne particulates suitable for retrospective microscopical analysis. Atmos. environ. 31:171-181. Darrall, N.M. 1989. The effect of air pollutants on physiological processes in - 389 -
plants. Plant Cell and Environ 12:1-30. 장재구. 2003. 다중이용시설의실내공기질관리대책. 한국대기환경학회. Han, S.W. 2001. Removal efficiency of indoor air pollutant gases using orientgal orchids. PhD thesis. Seoul University, Seoul Women's University, Seoul. Hines, A.L., T.K. Ghosh., S.K. Loyalka., and R.C. Warder, Jr. 1993. Indoor air: quality and control. p.277-278, PTR Prentice Hall. Englewood Cliffs, NJ. Hong, J. 2000. Benzene and formaldehyde removal by indoor foliage plants. Ph D. thesis. Korea University, Seoul. Jenkins, P.L. Phillips, T.J., Mulberg, E.J. and Hui, S.P. 1992. Activity patterns of Californians: use of and proximity to indoor pollutant sources. Atmospheric Environment 26A:2141-2148. Kim, M.G., C.O. Park, Y.J. Kwon, Y.K. Lee, and D.W. Lee. 1997. Variations of Concentration levels of volatile organic compounds in the indoor air due to floor waxing. J. KAPPA 13(3):221-229. Kim, M.K., Y.R. Jung, and Y.S. Lim. 1998. Personal exposure to PM 10 and its concentration in public facilities. J. of the Korean Environmental Sciences Society. 7:185-190. Kim, Y.S. 1994. Indoor environmental science. Minumsa Pub. Co., Seoul. Lohr, V.I. and C.H Pearson-mims. 1996. Particulate matter accumulation on horizontal surfaces in interiors: influence of foliage plants. Atmospheric Environment. 30:2565-2568. Park, S.H., Y.Y. Lee, G.Y. Bae, and Y.B. Lee. 1998. Comparison of absorption ability by difference of physiological in three foliage plants exposed to O 3 and SO 2 singly and in combination. J. KAPRK. 14(1):35-42. Shin, H.S., Y.S. Kim, and G.S. Heo. 1993. Measurements of indoor and outdoor volatile organic compounds(vocs) concentrations in ambient air. J. KAPPA 9(4):310-319. Shiotsu, Mika and Ikeda, Koichi Yoshizawa. 1998. Survey on human activity - 390 -
patterns according to time and place: Basic research on the exposure dose to indoor air pollutants Part 1. Transactions of AIJ. 511:45-52. 손장열, 윤동원. 1995. 실내공기환경에서휘발성유기화학물질 (VOCs) 의특성과제어방법. 공기조화냉동공학 24(1): 44-55. Son, K.C., S.H. Lee, S.G. Seo, and J.E. Song. 2000. Effects of foliage plants and potting soil on the absorption and adsorption of indoor air pollutants. J. Kor. Soc. Hort. Sci. 41:305-310. Wolverton, B.C. 1997. How to grow fresh air. Penguin Books USA. Wood, R.A, R.L. Orwell, J. Tarran, F. Torry, and M. Burchett. 2002. Potted-plant/growth media interactions and capacities for removal of volatiles from indoor air. J. of Hort. Sci. & Bio. 77(1):120-120. Yoon, D.W. and J.D. Spengler. 1995. Standards for indoor air pollutant levels and ventilation rates. Architectural Institute of Korea. 39(6):12-18 - 391 -
Light intensity (lux) 광도 3000 2500 식물없음 식물있음 2000 1500 1000 500 0 1 50 99 148 197 246 295 344 393 Time (min) CO2 (ppm) 이산화탄소 600 550 500 450 식물없음 식물있음 400 9:00 12:00 15:00 18:00 21:00 0:00 3:00 6:00 Time (hr) Temp. (C) 온도 35 30 25 20 15 10 5 식물없음 식물있음 0 9:00 12:00 15:00 18:00 21:00 0:00 3:00 6:00 Time (hr) Humidity (%) 습도 40 35 30 25 20 15 10 5 식물없음 식물있음 0 9:00 12:00 15:00 18:00 21:00 0:00 3:00 6:00 Time (hr) Fig. 2. Changes in light intensity, CO2 concentration, temperature and relative humidity as affected by the placement of 4% plants of room volume. - 392 -
HCHO (ppm) 0.5 0.4 0.3 0.2 0.1 before after 0 E EP PP SP AP Room conditions Fig. 3. Changes in the concentration of formaldehyde at 4 hours after exposure of formaldehyde from air pollutant source according to different treatments (E: empty room without both system and air pollutant source, EP: room with exposure of air pollutant source, PP: room with the placement of idle system containing plants as well as air pollutant source, SP: room with the placement of active system containing plants as well as air pollutant source, AP: room with air cleaner on the market as well as air pollutant source, before: just after exposure of air pollutant source, after: 4hrs after exposure of air pollutant source). - 393 -
TVOCs (ppm) 10 8 6 4 2 E EP PP SP AP 0 1 2 3 4 Time (hrs) Fig. 4. Changes in the concentration of TVOCs at 4 hours after exposure of air pollutant source according to different treatments. See Fig. 3 for details of treatments. 0.50 Toluene (ppm) 0.40 0.30 0.20 0.10 E EP PP SP AP 0.00 0 1 2 3 4 Time (hrs) Fig. 5. Changes in the concentration toluene at 4 hours after exposure of air pollutant source according to different treatments. See Fig. 3 for details of treatments. - 394 -
m-xylene (ppm) 0.50 0.40 0.30 0.20 0.10 E EP PP SP AP 0.00 0 1 2 3 4 Time (hrs) Fig. 6. Changes in the concentration of m-xylene at 4 hours after exposure of air pollutant source according to different treatments. See Fig. 3 for details of treatments. 0.72 0.70 PM10 (ug/m 3 ) 0.68 0.66 0.64 0.62 0.60 0.58 0.56 EP SP PP AP 0 60 120 180 Time (min) Fig. 7. Changes in the concentration at 3 hours after exposure PM10 from air pollutant source according to different treatments. See Fig. 3 for details of treatments. - 395 -
Particle count (CPM) 10000 8000 6000 4000 2000 EP SP PP AP 0 60 120 Time (min) Fig. 8. Changes in the concentration of particulate with 0.5μm particle size at 2 hours after exposure of air pollutant source according to different treatments. See Fig. 3 for details of treatments. 500 Particle count (CPM) 400 300 200 100 EP SP PP AP 0 60 120 Time (min) Fig. 9. Changes in the concentration of particulate with 1μm particle size at 2 hours after exposure of air pollutant source according to different treatments. See Fig. 3 for details of treatments. - 396 -
제 4 장연구개발목표달성도및대외기여도 1 절. 연구개발목표달성도 1. 1 차년도 (2002. 12. 01 ~ 2003. 11. 30) 평가항목실내식물을이용한 CO 2 조절오존지표식물의선정과오존정화능조사실내식물의분진제거및흡착유무조사 비율진도표세부연구항목 (%) (%) 실내식물의광합성패턴에따른 CO 2 조절효과구명유무 7 100 주야간에따른 CO 2 조절차이구명유무 실내광도및광주기에따른최대 CO 2 조절효과구명유무 실내식물의오존피해조사유무 실내식물중오존지표식물의선정유무 실내식물의오존정화능측정및정화식물의선발 실내식물의종류에따른분진제거효과구명 분진이식물의생육에미치는영향에대한조사 유무 4 100 4 100 4 100 3 100 3 100 5 100 5 100 실내식물의 광합성패턴에따른 VOCs 제거효과구명 (BTX) 8 100 VOCs 제거효과 온도와광량에따른 VOCs 제거효과구명 (TVOCs) 7 100 실내식물분토양 실내식물의종에따른토양내미생물분포조사유무 8 100 내미생물조사 분토양종류에따른미생물의생존과번식조사유무 7 100 분토양및토양 분토양이오염물질의정화에미치는영향 4 100 미생물이실내 공기오염물질을제거하는미생물의선발 7 100 공기정화에 토양내미생물의접종을통한실내공기정화능측정 4 100 미치는영향 식물-토양실내 공기정화 공기정화시스템설계 5 100 시스템구상과 가능성있는시스템제작 15 100 설계 제작 Total 100 100-397 -
2. 2차년도 (2003. 12. 01 ~ 2005. 05. 31) 평가항목세부연구항목 하이드로볼배지의종류가식물생육, 미생물생육, 정화능에미치는영향 심지의위치및적용에따른배지내함수량비시스템제작교실험및운영시 시스템내팬의사용에따른식물생육조사식물생육에 팬을이용한강제흡입시토양밖으로방출되는미치는영향토양미생물유무및유해성조사 토양내미생물접종시식물생육및공기정화에미치는영향 시스템 1단계가실내공기정화에미치는영향시스템의 시스템 2단계가실내공기정화에미치는영향성능실험 시스템 3단계가실내의온습도에미치는영향 기종의공기청정기와의비교실험 개발된시스템내식물용기의성능실험시스템의 시스템내팬사용시, 소음감소를위한개선실험하드웨어수정 정화된공기의토양미생물살균실험및개선실험 정화된공기의온습도조절에대한실험 비율 (%) 5 5 5 5 5 15 15 10 15 5 5 5 5 진도표 (%) 25 55 15 Total 100 95 연구개발목표달성도는매우우수하였다고판단되며, 그 1차년도주내용은실내공기질개선을위한 CO 2, O 3, VOCs, 분진조절에기능성이있는식물들이다양한실험방법과실험기자재를통하여선정하여, 지하부토양의특성에따른식물의생육, 그리고배지및배지내토양미생물을이용한실내공기정화능도조사되었다. 이러한기본적실험과아울러, 식물 / 배지 / 토양미생물을이용한실내공기질개선시스템이설계 제작되었고, 현재특허출원중이다. 2년차에서는제작된시스템의운영시식물생육에미치는영향, 시스템의성능실험등이수행되 - 398 -
어시스템의효과성이입증되었다. 개발된시스템을통한성능실험의결과로, 우선공기정화시스템을통하여배지를거쳐방출된공기에는인체유해한토양미생물이없는것으로밝혀졌으며, 포름알데히드와 VOCs의경우는기존의공기청정기에필적하는효과를나타내었다. 그럼에도불구하고, 특정식물의근권부에존재하는토양미생물군이오염물질을제거하는데특이적인효과를나타내는것은밝혀내었으나아직단일미생물을동정하지는못한상태이며, 분진의시스템성능실험의경우는예상과다른결과가나타나재실험이요구된다. 또한, 아직시스템이완벽하지않기때문에, 방향성첨가, 실내온습도조절과같은부가적인실험은유니트를바꿀수있는시스템을몇가지더만들어차후실험해야할것으로판단되었다. 한편, 본연구의결과를살펴볼때당초예상하지못했던결과들을발견하였으며, 동시에가능성이있는새로운메카니즘도예상되었다. 예를들면, 식물종과더불어배지에따라실내공기정화능이매우다른것으로밝혀졌으며, 특히배지가담긴용기에식물이있을경우증산작용에의해토양과식물지상부사이에미세공기순환이일어나며, 이때배지자체의 VOCs 제거능은식물자체 ( 지상부 ) 의제거능보다훨씬능가하는것으로밝혀졌다. 따라서, 차후이분야의연구는단순히식물에만국한된것이아니라식물-배지-토양미생물과연계된실험이수행되어야할것으로판단되었다. 또한, 식물종에의한오염물질의제거능은현재까지알려진네가지 ( 잎의기공을통한흡수및대사적분해, 식물체의표면에흡착, 배지자체의흡착, 배지내토양미생물에의한대사적분해 ) 외에도식물잎에서발생되는음이온을포함한다른영향도받는것으로판단되어앞으로지속적인구명이필요하다고판단된다. - 399 -
2 절. 관련분야의기술발전에의기여도 1. VOCs 측정전용챔버제작일반상황에서 VOCs를측정하는것은어렵지않는반면밀폐된챔버내에서생물을측정하는것은매우어려운실험이다. 왜냐하면식물의경우주야간을통해서지속적으로광합성및호흡을하게됨으로실내환경이변화되기때문이다. 특히, 습도가가장큰문제로서밀폐된곳에서광합성과호흡으로인한습도가점점더증가하게된다. 본실험에서는이문제를제거하기위해서우리와비슷한실험을수행하고있는호주의실험팀을통해서챔버내저온장치를설치하여해결하였다 (VOCs 측정항목참조 ). 또한, 본실험중극미량의 VOCs를측정하기위해서수많은연구진과산업체들과의교류를통하여, VOCs와의반응을최소화시키는챔버를제작하는데성공하였다. 앞으로제작된이챔버는생물을이용한 VOCs 측정에매우유용하게사용되어질것이다. 모든부분들은 sus제작되었으며, 특히이음매부분에현재사용하고있는실리콘대신에 teflon 재질을사용하여정밀하게밀폐시켰다. 2. 고감도 VOCs 측정기기의개발한국산업기기 ( 대표 : 이종덕 ) 와협력하여챔버내에서지속적으로측정할수있는고감도 VOC측정기를개발하였다. 지금까지개발된대부분의측정기기는개방된곳에서측정하는것으로별다른문제가없었지만, 밀폐된곳에서측정시에는많은문제들이발생되었다. 특히, 센서표면에휘발성물질의부착은일회측정후기기에문제를발생시켰다. 이러한문제를해결하기위해서본실험실과한국산업기기는수십번의시행착오끝에보다정확하고정밀한기기를제작할수있었다. 실제로대부분의측정기기의감도가 100ppb인것을감안할때이번에개발된 10ppb 감도를지닌측정기개발은본연구뿐만아니라산업체의기기개발에도획기적인성과를거두었다고판단된다. 또한, 현재실내공기질측정을위해서는대부분의경우감도가 100ppb 수준인 GC를사용하고있다는것을감안하면, 측정의신속성, 편리성, 감도에있어서획기적인발전을가져올수있었다고판단된다. 3. 복합기능생물학적공기청정기개발본연구를통해서개발된 식물 / 배지 / 토양미생물을이용한공기정화시스템 은요즘사회적으로큰문제가되고있는 병든건물증후군 ( 새집증후군 ) 등을 - 400 -
고려할때실내공기정화를위한새로운대안이라고판단된다. 현재외국에서개발된유사한기술개발을보면, 실용화하기에는너무나미흡한실험용정도의기기개발이나 ( 예, 스위스 루와사 ), 혹은건물내설비를통한공기질개선 ( 예, 캐나다 Air quality solutions ) 으로실제적용에어려움이있다. 그러나본연구를통해서개발된시스템은일반가정에서자유롭게설치될수있고, 다양한기능뿐만아니라미적, 원예치료적효과까지도얻을수있어소규모신축건물내에서활용할수있는획기적인대안이라고판단된다. 특히, 개발된시스템은공기청정및온열환경조절기능까지도함께있어기술적으로뛰어나다. 이시스템의장점은하나의유니트로되어있는것이아니라, 실내면적에따라다양하게조절할수있는단위유니트로되어있어실용화가치가매우높다는것이다. 본연구를통해서개발된시스템은특허출원되었으며, 사업체를통해서실용화할예정이다. 특허출원명 : 식물-토양을이용한실내공기정화시스템 (A ROOM CLEANING SYSTEM USING PLANT AND SOIL) 4. VOCs 제거미생물의산업화가능성본과제의연구를통해서토양내미생물을이용한다양한 VOCs를제거및감소하는기술을개발할수있게되었다. 현재연구의결과로서는식물종에따른배지내미생물그룹의 VOCs 제거에대한특이성만파악하였을뿐, 단미생물은아직선발하지못하였다. 차후계속적인스크린을통하여휘발성유기물질제거에특이적인미생물을선발한다면실내오염물질을대량으로제거할수있는새로운방법으로각광받게될것이다. - 401 -
제 5 장연구개발결과의활용계획 1. 활용계획식물의실내공기정화기능에대한부분적인실험은국내에서어느정도진척되고있다고판단된다. 그러나, 식물을이용한실제적정화기술은전무한형편이다. 이러한이유는환경조절, 식물관리, 정화기술의통합적적용 (coordinated application) 이이루어지지않았기때문이라고판단된다. 본연구과제를통하여식물-토양실내공기정화시스템을개발한결과, ( 가 ) 시스템을통하여최적환경을조절할수있고, ( 나 ) 식물에게자동관수를할수있으며, ( 다 ) 식물-토양및공학적기술의접목을통하여대기정화효율을극대화할수있었다. 더욱이, 이미실내식물의원예치료적효과에대해서는일반인들에게이미알려져있기때문에, 이시스템을사용할경우원예치료적효과 + 자동식물관리효과 + 실내공기정화등의상승효과를얻을수있을것으로판단된다. 따라서, 본연구개발을기초로하여시스템을상업화한다면, 그가능한활용계획은다음과같다. 가. 실험결과의홍보를통한실내식물의기능성재평가와농업부문산업의활성화유도를할수있다. 나. 기능성식물의실내도입화를통하여기존의미적, 조경적개념의식물입화를탈피한새로운친환경적주거환경을유도할수있다. 다. 식물-인간-환경에대한새로운관계성정립을통하여새로운의학연구야를창출할수있다. 라. 저부하형실내대기정화기술개발을통하여새로운주택설계및건설개념을확산시킬수있다. 마. 가정, 사무실, 주택, 지하철, 지하상점등심각한대기오염문제를안고있는건물내에이시스템을도입함으로서병등건물증후군 (sick building syndrome), 새집증후군에대한새로운대처환경을제공. 바. System의설치및운영에관련된부대산업창출효과를꾀할수있다. - 402 -
2. 추가연구의필요성가. 실내먼지의경우, 공기정화시스템을작동하지않았을때 ( 식물만있는경우 ) 가시스템을작동시킬때보다감소되어재시험이요구된다. 나. 시스템의효율성을높이기위한구체적보완실험이필요하다고판단된다. 다. 몇가지최종실험은기존의 protype의시스템이아니라시제품의재질, 형태와관련되어있기때문에상업화될때고려되어져야한다. 3. 사업화추진방안현재의 새집증후군 및 병든건물증후군 에따른사회적여파와국민들의친환경적기기들에대한기호도를볼때, 이분야의실용화는매우중요하다고본다. 또한, 현재까지진행된연구결과들을종합해볼때사업화는충분히가능하다고본다. 특히, 식물이가지고있는공기질개선을위한기능성뿐만아니라다양한부가적인효과를고려할때사업화가반드시이루어져야한다고판단된다. 현재의판단으로는이러한목적을달성하기위해서는 원천기술개발을위한보강실험 과동시에 관련업체와의시스템제작및성능비교실험 이동시에필요하다고판단된다. 즉, 사업화를위한구체적인제시는다음과같은두가지전략이필요하다고본다. - 원천기술에대한보강실험은 1) 지금까지대부분의이분야연구는식물혹은토양미생물에국한되었을뿐식물-배지-토양미생물의연계성을가진실험은본실험이처음이라고판단된다. 2) 따라서, 우선오염물질제거메카니즘의구명, 오염물질제거능이있는단일미생물동정, 실내식물의분진제거기작등에대한추가실험이요구된다. - 실용화를위한시스템제작과이에따른실증실험은 - 403 -
1) 현재개발된시스템은고정된성능실험밖에할수없다. 따라서, 실내종류및환경에따라다양한실증실험을위해서는각부위의유니트를다양하게바꾸어서할수시스템제작이필요하다. 이러한시스템이제작된다면현재시판되는공기청정기들과다양한비교실험이가능할것이다. 2) 이러한실험후에다양한부가기능을첨부한실험이필요하다고판단된다. 예를들면, 토출구에방향성물질을첨가하거나, 냉각소자를이용한공기의온습도조절등이다. 당초에는본실험의결과를토대로하여 ( 주 ) 픽업헬스와협력하여상업화를 추진할예정이었으나, 장기간의불황으로인하여지연되고있는실정이다. 상업화를위해서는아래와같은연구및업무분담을통한협력이필요하며, 일년정도의기간이소요될것으로판단된다. - 대학측에서는 1) 챔버실험이아닌실제아파트에서의실증실험 2) 단순한검증실험이아니라사계절을통한장기실험 3) 시스템을이용한실내정원혹은실내시스템도입과같은방식으로실험 4) 어떤오염물질에대한정량적실험이아니라, 다양한오염물질에대한통합적실험 5) 시스템의성능실험뿐만아니라설치로인한인간의건강, 감정, 활동의쾌적성등을동시에조사함. - 한편, 회사측에서는 1) 다양한시스템제작 2) 시스템디자인고려및제작 3) 일반아파트주민의정확한요구내용파악 4) 홍보를담당해야함. - 404 -
제 6 장참고문헌 Abbritti, M.C. and G. Muzi 1995. Indoor air quality and health effects in office buildings. In: Proceedings of Healthy Buildings '95, An International Conference on Healthy Buildings in a Mild Climate. (Maroni, M., Ed.). University of Milano and International Center for Pesticide Safety, Milan, Italy, Vol. 1:185-195. Adams, M.B., J.M. Kelly, and N.T. Edwards. 1988. Growth of Pinus taeda L. seedlings varies with family and ozone exposure level. Water, Air and soil Pollution 38:137-150. Allen, R.J., R.A. Wadden, and E.D. Ross 1978. Characterization of potential indoor sources of ozone. Am. Ind. Associ. J. 39:466-471. Arnon D. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24:1-15. Asaumi, H., H. Nishina, N. Masui, and Y. Hasimoto. 1993. Measurement of transpiration rate, stomatal resistance and shading ratio of amenity plants. Shita Journal 4:131-138. Asaumi, H., H. Nishina, T. Fukuyama, and Y. Hashimoto. 1991. Simulative estimation for the environment inside room from the green amenity sapect. J. SHITAI 3:31-38. Bae, G.Y. and Y.B. Lee. 1996. Ethylene evolution in tomato plants by ozone in relation to leaf injury. J. Kor. Air Poll. Res. Assn. 12:333-340. Balse, S.F. 1995. The kitchen garden. Raised beds and electric chairs. Horticulture 73:34-39. Battarbee, J.L., N.L. Rose, and X. Long, 1997. A continuous, high resolution record of urban airborne particulates suitable for retrospective microscopical analysis. Atmos. environ. 31:171-181. Beardsell, D.V., D.G. Nichols, and D.L. Jones. 1979. Physical properties of nursery potting mixtures. Sci. Hort. 11:1-8. - 405 -
Bjorkman, O. and B. Demmig. 1987. Photon yield of O 2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489-504. Boubel, R.W., D.L. Fox, D.B. Turner, and A.C. Stern. 1994. The air pollution. Academic press. USA. Brasche, S., M. Bullinger, H. Gebhardt, V. Herzog, P. Hornung, B. Kruppa, E. Meyer, M. Morfield, R. Schwab, S. Mackensen, A. Winkens, and W. Bischof, 1999. Factors determining different symptom patterns of sick building syndrome-results from a mutivariate analysis. In: Proceedings of Indoor Air '99, The 8th International Conference on indoor air quality and climate, Edinburgh, UK. 5:402-407. Bunt. A.C. 1988. Media and mixes for container grown plants. Unwin Hyman. London. Burge, S., A. Hedge, S. Wilson, B.J. Harris, and A. Robertson. 1987. Sick building syndrom: a study of 4373 office workers. Annals of Occupational Hygiene. 31:493-504. Carpenter, D.O. 1998. Human health effects of environmental pollutants: New insights. Environmental monitoring and Assessment. 53:245-258. Carrer, P., D. Alcini, D. Cavallo, F. Visigalli, D. Bollini, and M. Maroni. 1999. Home and work place complaints and symptoms in office workers and correlation with indoor air polution. In: Proceedings of Indoor Air '99, The 8th International Conference on indoor air quality and climate, Edinburgh, UK. 1:129-134. Carson, E.W. 1971. The plant root and its environment. p.271-292. Univ. Press of Virginia. Charloottesville. VA. Cass, G.R. and K.C. Moon. 1992. Visibility modeling using continuous aerosol size distribution monitors. Southern California air quality study data analysis. Proceedings of international speciality conference. AWMA. 187-192. - 406 -
Chapin, R.A. 1974. Human activity patterns in the city. Wiley-interscience, New York. Choi, J.H. 1990. A study on the indoor air contamination of apartment-a case of Koduck apartment complex. Master Diss., Konkuk univ., Seoul. Choi, J.I., E.J. Hahn, and K.Y. Paek. 1999. Photosynthetic charateristics and chlorophyll content of Hedera canariensis, Pachira aquatica, and Ficus benjamina in response to photosynthetic photon fluxes and CO 2 concentrations. J. Kor. Soc. Hort. Sci. 40:627-630. Choi, J.I., J.H. Seon, K.Y. Paek, and T.J. Kim. 1998. Photosynthesis and stomatal conductance of eight foliage plant species as affected by photosynthetic photon flux density and temperature. J. Kor. Soc. Hort. Sci. 39:197-202. Choi, J.M. 1995. Changs of physical properties of feather-amended media. J. Kor. Soc. Hort. Sci. 36:707-714. Choi, J.M. and C.W. Lee. 1995. Effect of irrigation methods, nutrient concentrations and media on salt accumulation in media, growth and flowering of Easter lilles. J. Kor. Soc. Hort. Sci. 36:715-724. Chow, J.C. 1995. Measurement methods to determine compliance with ambient air quality standards for suspended particles. A & WMA. 45:320-382. Chung, Y.S., T.K. Kim, and J.S. Chung. 1992. On Relationship of low visibility to air pollution in cities. J. KAPRA. 8:1-6. Cornejo, J.J., F.G. Munoz, C.Y. MA, and A.J. Stewart. 1999. Studies on the decontamination of air by plants. Ecotoxicology 8:311-320. 淸田信, 平野高司, 石黑武. 1992. 觀葉植物のガス交換と室內ガス環境の改善. 環境情報科學 21:107-111. Darrall, N.M. 1989. The effect of air pollutants on physiological processes in plants. Plant Cell and Environ 12:1-30. Davis, D.D. and J.B. Coppolono. 1976. Ozone susceptibility of selected woody shrubs and vines. Plnsu dis, reptr. 60:876-878. - 407 -
Dennis, H. 1985. Interior landscape. Landscape Design 85:29-31. Enyedi, A.J., N.A. Eckardt, and E.J. Pell. 1992. Activity of ribulose bisphosphate carboxylase/oxygenase from potato cultivars with differential response to ozone stress. New Phytol. 122:493-500. Erasmus, L.D. 1957. Scleroderma on gold-miners on the witwatersrand with particular reference to pulmonary manifestations. S. Afr. J. Lab. Clin. Med. 3:209. Evan, H.D. and R.B. Thomas. 2000. Photosynthetic responses to CO 2 enrichment of four hardwood species in a forest understory. Oecologia 122:11-19. Evans, J.R. 1987. The dependence of quantum yield on wavelength and growth irradiance. Australian Journal of Plant Physiology 14:69-79. Evans, L.S., J.H. Adamski, and J.R. Renfro. 1996. Relationship between cellular injury, visible injury of leaves, and ozone exposure levels for several dicotyledonous plant species a great smoky mountains national park. Environmental and Experimental Botany. 36:229-237. Farage, P.K., S.P. Long, E.G. Lechner, and N.R. Baker. 1991. The sequence of change within the photosynthetic apparatus of wheat following short-term exposure to ozone. Plant Physiol. 95:529-535. Farquhar, G.D., S. von Caemmerer, and J.A. Berry. 1980. A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species. Planta 149:78-90. Francis J.R. 1983. Physical properties of container media composed of a gasifier residue in combination with sphagnum peat, bark, or sand. J. Amer. Soc. Hort. Sci. 108:186-189. Gaines, R.L. 1977. Interior plantscaping, p.182. Architecrural Record Books, N.Y. Godish, T. 1991. Indoor air pollution control. Lewis Publishers, Boca Raton. Godish, T. 1994. Sick building: definition, diagnosis, and mitigation. Lewis - 408 -
Publishers, Boca Raton. Godish, T. and C. Guindon. 1989. An assessment of botanical air purification as a formaldehyde mitigation measure under dynamic laboratory chamber conditions. Environmental pollution 61:13-20. Green, G.H. 1984. The health implications of the level of indoor air humidity. Proc. 3rd Int. Conf. on Indoor Air Quality and Climate 1:71-78. Swedish Councill for Builing Research. Stockholm. Sweden. Guidi, L., R. Di Cagno, and G.F. Soldatini. 2000. Screening of bean cultivars for their response to ozone as evaluated by visible symptoms and leaf chlorophyll fluorescence. Environmental Pollution 107:349-355. Han, S.W. 2001. Removal efficiency of indoor air pollutant gases using oriental orchids. PhD Diss. Seoul Women's University, Seoul. Han, S.W. and J.S. Lee. 2002. Purification efficiency of O 3 and SO 2 by some oriental orchids. J. Kor. Soc. Hort. Sci. 43:487-491. Hansens, D.L. 1999. Indoor air quality issues. Taylor & Francis, NY. Harazono, Y. and H. Ikeda. 1990. The effects on an indoor thermal environment with simple hydroponic cultivation on rooftops. J. Agr. Met. 46:9-17. Health, R.L. 1980. Initial events in injury to plants by air pollutants. Annual Review of Plant Physiology 31:395-431. Her, J.H., K.J. Bang, and J.H. Surl. 1999. The study on ozone response of indoor landscape plants. Interior Landscape 1:105-112. Higaki T. and R. Poole. 1978. A media and fertilizer study in Anthurium. J. Amer. Soc. Hort. Sci. 103:98-100. Hines, A.L., T.K. Ghosh., S.K. Loyalka., and R.C. Warder, Jr. 1993. Indoor air: quality and control. p.277-278, PTR Prentice Hall. Englewood Cliffs, NJ. Hiscox, J.D. and G.F. Istaelastam. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57:1332-1334. - 409 -
Hong, J. 2000. Benzene and formaldehyde removal by indoor foliage plants. Ph D. thesis. Korea University, Seoul. Hong, Y.P. and N.W. Jung. 1972. The effect of growth and flowering according to compost materials on pot-flowers. J. Kor. Soc. Hort. Sci. 12:55-59. Hur. J.S., Y.K. Hur, and C.I. Lee. 1995. Evaluation of SO 2 or O 3 exposure durations requiring foliar damage development by using bioindicating plants. Korean J. Plant Pathol. 11:107-115. Ishino, H., J. Tanimoto, and M. Yanagi. 1994. Study on the evaporation from foliage plant in indoor environment. J. Archit. Plann. Environ. Engng. 457:9-17. Jackson, W.A. and R.J. Volk. 1970. Photorespiration. Annual Review Plant Physiology 21:385-432. Jenkins, P.L., T.J. Phillips, E.J. Mulberg, and S.P. Hui. 1992. Activity patterns of Californians: use of and proximity to indoor pollutant sources. Atmospheric Environment 26A:2141-2148. Jordan, M.J. 1975. Effects of zinc smelter emissions and fire on a chestnut-oak woodland. Ecology. 56:78-91. Jung, S.H. and W.K. Sim. 1992. A basic study on the effect of plants-with special reference to the mental health. Journal of the Korean Institute of Landscape Architecture. 20:69-79. Jung, S.I. 2003. Purification efficiency and physiological responses of indoor plants exposed to ozone. MS Diss., Konkuk univ., Seoul. Jung, Y.S. and I.H. Park. 1999. The effect of plants and waterscape facilities on the thermal indoor environment. Journal of the Korean Institute of Landscape Architecture. 27:19-28. 장재구. 2003. 다중이용시설의실내공기질관리대책. 한국대기환경학회. Kang, H., B.H. Kwack, and W.K. Sim. 1990. Assessing studies on the recent use and change of indoor landscaping plants at apartment houses in Seoul. - 410 -
Journal of the Korean Institute of Landscape Architecture 18:1-8. Karlsson, M.G. and R.D. Heins. 1985. Modeling light and temperature effects on Chrysanthemum morifolium. Acta Horticulturae 174:235-240. 加藤榮, 宮地重遠, 村田吉男. 1981. 光合成硏究法. 共立出版株式會社. 東京 Keen, N.T. and O.C. Taylor. 1975. Ozone injury in soybeans isoflavonoid accumulation is related to necrosis. Plant physiology 55:731-733. Kill, M.J. 2000. Physiological changes in indoor plants spathyphyllum Clevelandii according to soil water contents. MS thesis, Konkuk Univ. Kim, H.K., D.S. Kim, S.K. Kim, Y.S. Kim, J.K. Na, J.B. Lee, I.L. Jung, and M.S. Hong. 1993. Air pollution survey. DongHwa Books. P67-89. Kim, K.S., K.W. Park, Y.J. Park, K.C. Son, J.S. Lee, C.H. Lee, Y.K. Joo, and B.J. Choi. 1999. Life and Horticulture. Hayang-mun Press. Seoul. 김강석, 이희선, 공성용, 구현정. 2001. 실내공기오염에대한국민의식조사와정책방안연구. 한국환경정책 평가연구원. Kim, M.G., C.O. Park, Y.J. Kwon, Y.K. Lee, and D.W. Lee. 1997. Variations of Concentration levels of volatile organic compounds in the indoor air due to floor waxing. J. KAPPA 13:221-229. Kim, M.J. 2004. Physiological responses and CO 2 removal efficiency of foliage plants according to indoor environment condition. Konkuk Univ., M.S. thesis, Seoul Korea. Kim, M.K., Y.R. Jung, and Y.S. Lim. 1998. Personal exposure to PM 10 and its concentration in public facilities. J. of the Korean Environmental Sciences Society. 7:185-190. Kim, P.G. and E.J. Lee. 2001. Ecophysiology of photosynthesis 1: effects of light intensity and intercellular CO 2 pressure on photosynthesis. Korean Journal of Agricultural and Forest Meteorology 3:126-133. Kim, P.G., Y.S. Yi, D.J. Chung, and S.Y. Woo. 2001. Effects of light intensity on photosynthetic activity of shade tolerant and intolerant tree species. J. Korean For. Soc. 90:476-487. - 411 -
Kim, P.S., Y.J. Kim, Y.H. Lee, S.H. Cho, and S.T. Ahn. 1986. A study on the characteristics of urban aerosol concentration in the size range of 0.01~1.0μ m. J. KAPRA. 2:41-50. Kim, Y.S. 1991. Development of standards and risk assessment of indoor and outdoor air pollutants. KOSEF 89-0705-03. Kim, Y.S. 1993. A perspective on indoor air pollution. J. Kor. Air Poll. Res. Assn. 9:33-43. Kim, Y.S. 1994. Indoor environmental science. Minumsa Pub. Co., Seoul. Kimura, K., H. Ishino, J. Tanimoto, and S. Kato. 1991a. Experimental study on the effects of evaporation from foliage on the indoor moisture environment. Part 1. Experimental method and results of orthogonal experiment, p.787-788. Summaries of technical papers of annual meeting architectural institute of Japan. Kok, B. 1948. A critical consideration of the quantum yield of chlorella-photosynthesis. Enzymologia 13:1-16. Kondo, N. and H. Saji. 1992. Tolerance of plants to air pollutants. J. Japan Soc. Air Pollut. 27:273-288. Kostiainen, R. 1995. Volatile organic compounds in the indoor air of normal and sick houses. Atmospheric Environment 29:693-702. Krupa, S., M.T. McGrath, F.L. Booker, K.O. Bukey, A.H. Chappelka, B.I. Chevone, E.J. Pell, and B.A. Zilinsks. 2001. Ambient ozone and plant health. Plant Disease. 85:4-12. Krupa, S.V. 1997. Air pollution, people and plants. American Phytopathological Society. Laisk, A., O. Kull, and H. Moldau. 1989. Ozone concentration in leaf intercellular air species is close to zero. Plant Physiology 90:1163-1167. Lee, H.C., S.H. Han, S.S. Jang, K.J. Cho, and Y.Y. Kim. 2002. Effects of ozone uptake rate on photosynthesis and antioxidant activity in the leaves of Betula species. Korean Journal of Agricultural and Forest Meteorology - 412 -
4:72-79. Lee, J.C., I.S. Kim, J.K. Yeo, and Y.B. Koo. 2001. Comparing of clonal sensitivity of Populus deltoides to atmospheric ozone with use of visible foliar injury. Jour, Korean For. Soc. 90:10-18. Lee, J.C., S.H. Han, C.S. Kim, and S.S. Jang. 2002. Visible foliar injuries and growth responses of four Betula sp. esposed to ozone. Korean Journal of Agricultural and Forest Meteorology 4:29-37. Lee, J.S. 1991. Studies on the utility of foliage plant.journal of the Korean Institute of Garden. 9:37-46. Lee, Y.G. 1998. A recent international tendency of researches on standards for indoor air quality and ventilation. Architectural Institute of Korea seminar 11-50. Lee, Y.M. 1981. Growth requirements of indoor trees. J. Kor. Ins. Land. Arch. 9:19-42. Li, G.A., D. Huang, N. Lerner, and X. Zhang. 2000. Enrichment of degrading microbes and bioremediation of petrochemical contaminants in polluted soil. Water Research 34:3845-3853. Lohr, V.I. and C.H. Pearson-mims. 1996. Particulate matter accumulation on horizontal surfaces in interiors: influence of foliage plants. Atmospheric Environment. 30:2565-2568. 池田耕一. 1992. 室內空氣汚染のメカニズム. 原出版社. 東京池田耕一. 2001. 실내공기오염의메카니즘. 동화지사. Manaker, G.H. 1981. Interior plantscapes. p.14-82. Prentice Hall, Englewood Cliffs, NJ. Marek, J., J. Paca, and A.M. Gerrard. 2000. Dynamic responses of biofilters to changes in the operating conditions in the process of removing toluene and xylene from air. Acta Biotechnologica 20:17-29. Mendell, M.J. and A.H. Smith, 1990. Consistant pattern of elevated symptoms in air-conditioned office buildings: A re-analysis of epidemiological studies. - 413 -
Amercan Journal of Public Health, 80:1193-1199. Merrill, L.E., K.C. Sanderson, J.C. Williams, and R.B. Reed. 1986. Response of Ilex cultivars root rot caused by Thilaviopsis basicola Berk & Br. Rerraris. J. Amer. Soc. Hort. Sci. 111:102-105. Ministry of Environment. 1997. Environment white paper. Ministry of Environment. Ministry of Environment. 2000. A specification guide of prevention of volatile organic compounds. Ministry of Environment, Republic of Korea. Nelson, P.V. 1991. Greenhouse operation and management. 4th ed. Prentice Hall. Englewood Cliff. N.J. Nishina, H., H. Nakamura, H. Asaumi, Y. Masui, and Y. Hashimoto. 1995. Simulation model of thermal environment and comfort in rooms where plants are placed. Environ. Control in Biol. 33:277-284. Oksanen, E., G. Amores, H. Kokko, J.M. Santamaria, and L. Karenlampi. 2001. Genotypic variation in growth and physiological responses of Finish hybrid aspen to elevated tropodoheric ozone concentration. Tree Physiology 21:1171-1181. Owen, M.K. and K.S Ensor. 1992. Airborne particle sizes and sources found in indoor air. Atmospheric Environment 26:2149-2162. Pääkkönen, E., J. Vahala, T. Holopaninen, R. Karjalainen, and L. Karenlampi. 1996. Growth responses and related biochemical and ultrastructural changes of the photosynthetic apparatus in birch saplings exposed to low concentrations of ozone. Tree Physiology 16:597-605. Park, E.H., J.K. Kim, J.C. Lee, and S.H. Han. 2002. Photosynthetic pigment concentrations and changes of SOD activites on Liana, Equisetum Arvense and Artemisia Princeps Exposured to ozone. Korean Journal of Agricultural and Forest Meteorology 4:159-163. Park, J.H., J.M. Seo, and K.C. Choi. 2003. Introduction to air pollution. GS Tech. Seoul. - 414 -
Park, S.H. 1998. Mechanism of purification of air pollutants and evolution of anion by plants. Master Diss., Univ. of Seoul., Seoul. Park, S.H. and K.K. Shim. 1989. A Study on the utilization status of the interior landscape plants in large buildings in seoul. Journal of the Korean Institute of Landscape Architecture 17:43-54. Park, S.H. and Y.B. Lee. 1997. Indoor CO 2 and NO 2 fixation in light-acclimatized foliage plants. J. Kor. Soc. Hort. Sci. 38:551-555. Park, S.H., Y.B. Lee, G.Y. Bea, and M. Kondo. 1998. Anion Evolution in plants and its involved factors. J. Kor. Soc. Hort. Sci. 39:115-118. Park, S.H., Y.Y. Lee, G.Y. Bae, and Y.B. Lee. 1998. Comparison of absorption ability by difference of physiological in three foliage plants exposed to O 3 and SO 2 singly and in combination. J. KAPRK. 14:35-42. Park, S.I. 1990. A study on indoor air pollution in office building. Master Diss., Kon-kuk univ., Seoul. Park, W.K. 2000. Effect of functional container by wick culture on the growth of foliage plant and change of indoor environmental. Konkuk Univ., M.S. thesis, Seoul Korea. Prescod, A.W. 1992. More indoor plants as air purifiers. Pappus 11:4. Radwan, S.S., H. AL-Awadhi, N.A. Sorkhoh, and I.M. EL-Nemr. 1998. Rhizospheric hydrocarbon utilizing microorganisms as potential contributors to phytoremediation for the oily Kwaiti desert. Microbiology Research, 153:247-251. Reed, D.W. 1996. Water, media, and nutrition for greenhouse crops. p. 110-111. Ball Publishing. Illinois. Reich, P.B. and R.G. Amundson. 1985. Ambient levels of ozone reduce net photosynthesis in tree and crop species. Science 230:566-570. Relf, D. and S. Dorn. 1995. Horticulture: Meeting the needs of special population. HortTechnology 5:94-103. Ro, H.M., P.G. Kim, I.B. Lee, M.S. Yiem, and S.Y. Woo. 2001. Photosynthetic - 415 -
characteristics and growth responses of dwarf apple (Malus domestica Borkh. cv. Fuji) saplings after 3 years of exposure to elevated atmospheric carbon dioxide concentration and temperature. Trees 15:195-203. Robinson, J. and W.C. Nelson. 1995. National human activity pattern survey data base. U.S. EPA. Research Triangle Park, NC. Rodgan, G.P., T.G. Benedek, T.A. Medsger, and R.J. Cammarata. 1967. The association of progressive systemic sclerosis (scleroderma) with coal miners pneumoconiosis and other forms of silicosis. Ann. Inter. Med. 66:323. Roggli, V.L. 1990. Human disease consequences of fiber exposures: A review of human lung pathology and fiber burden data. Environ. Health. persp. 88:295-303. Rotschke, M. 1937. Untersuchungen uber die meteorologie der staubatmosphare. Veroff. Geoph. I. Leipzig 11:1-78. Reported in Geiger R. (1965) The Climate Near the Ground. p.367. Harvard University Press, Cambridge, Massachusetts. Sartin, J.B. and D.S. Ingram. 1984. Influence of container mediu, lime, and nitrogen source on growth of woody ornamentals. J. Amer. Soc. Hort. Sci. 109:882-886. Sehemel, G.A. 1980. Particle and gas deposition, Atmos. Environ. 14:983-1011. Sehmel, G.A. 1980. Particle and gas deposition, Atmos. Environ. 14:983-1011. Shin, H.J., S.Y. Kim, Y.D. Park, and Y.C. Shin. 1994. A study on the utilization of plants in apartment interior space. Journal of Korea Traditional Landscape Garden Society 12:107-123. Shin, H.S., Y.S. Kim, and G.S. Heo. 1993. Measurements of indoor and outdoor volatile organic compounds (VOCs) concentrations in ambient air. J. KAPPA 9:310-319. Shiotsu, Mika and Ikeda, Koichi Yoshizawa. 1998. Survey on human activity patterns according to time and place: Basic research on the exposure dose to indoor air pollutants Part 1. Transactions of AIJ. 511:45-52. - 416 -
Siciliano, S.D. and J.J. Germida 1998b. Biolog analysis and fatty acid methyl ester profiles indicate that pseudomonad inoculants that promote phytoremediation alter the root-associated microbial community of Bromus biebersteinii. Soil Biology and Biochemistry 31:299-305. Siciliano, S.D. and J.J. Germida. 1998a. Mechanisms of phytoremediation: Biochemical and ecological interactions between plants and bacteria. Environmental Review 6:65-79. Sin, H.J., T.J. Lee, and D.S. Kim. 1996. A study on the size distribution of trace metals concentration in the ambient aerosols. J. KAPRA. 12:67-77. Singh, B.P. and U.M. Sainju. 1980. Soil physical and morphological properties and root growth. J. Amer. Soc. Hort. Sci. 105:514-517. Skärby L., E. Troeng, and C.A. Bosrtrom. 1987. Ozone uptake and effects on transpiration, net photosynthesis, and dark respiration in Scotch pine. Forest Science 33:801-808. Skelly, J.M. 1980. Photochemical oxidant impact in mediterranean and temperate forest ecosystem: real and potential effects. In: Proceedings of the symposium on effects of air pollutants in mediterranean and temperate forest ecosystems. June 22-27. Riverside, CA, 38-50. 少峯裕巳. 1992. 高氣密高斷熱住宅の空氣質に實態と基準の提案. 住宅水潗向上に伴う. 東京 Sloane C.S. 1991. Size-segregated fine particle measurements by chemical species and their impact on visibility impairment in Cenver. Atm. Env. 25A:1013-1024. Snyder, S.D. 1990. Building interior, plants and automation, p.5-29. Prentice Hall, Englewood Cliffs, NJ. Snyder, S.D. 1995. Environmental interioscapes. Whitney, NY. 손장열, 윤동원. 1995. 실내공기환경에서휘발성유기화학물질 (VOCs) 의특성과제어방법. 공기조화냉동공학 24:44-55. - 417 -
Son, K.C. and M.K. Kim. 1998. Influences of indoor light, temperature, absolute humidity, and CO 2 concentration on the changes of transpiration and photosynthesis rate of Pachira aquatica and their statistical modeling. J. Kor. Soc. Hort. Sci. 39:605-609. Son, K.C., D.K. Min, M.K. Kim, and H.J. Park. 1998. Modeling for estimation of transpiration and photosynthesis rates of Pachira according to environmental changes using neural network. J. Kor. Soc. Hort. Sci. 39:854-857. Son, K.C., M.K. Kim, S.H. Park, and M.K. Chang. 1998. Effect of foliage plant Pachira aquatica on the change of indoor temperature and humidity. Korean Journal of Horticultural & Technology. 16:377-380. Son, K.C., S.H. Lee, S.G. Seo, and J.E. Song. 2000. Effects of foliage plants and potting soil on the absorption and adsorption of indoor air pollutants. J. Kor. Soc. Hort. Sci. 41:305-310. Son, K.C., S.K. Park, H.O. Boo, G.Y. Bea, K.Y. Beak, S.H. Lee, and B.G. Heo. 1997. Horticultural therapy. 1st ed., p.35-95. Seowon Press, Seoul, Korea. 손기철. 2004. 실내식물이사람을살린다. 중앙생활사. 서울. Son, K.H. and D.Y. Yeam. 1987. Effects of light intensities and temperatures in various indoor sites on growth of certain foliage plants. J. Kor. Soc. Hort. Sci. 28:173-184. Song, C.Y., J.M. Park, J.M. Choi, C.S. Bang, and J.S. Lee. 1996. Effect of composted rice-hull on physico-chemical properties of growing media and growth of Petunia hybrida. J. Kor. Soc. Hort. Sci. 37:451-454. Suh, Y.N., J.S. Lee, C.K. Sang, and I.Z. Chi. 1991. Studies on the present status of cultivation and utilization of foliage plants. J. Kor. Soc. Hort. Sci. 32:533-544. 大政謙次, 近藤矩朗, 井上賴直. 1995. 植物の計測と診斷. 朝食書店. 東京 Traynor, G.W., J.R. Girman, M.G. Aote, and J.F. Dillworth. 1985. Indoor air - 418 -
pollution due to emissions from unvented gas-fired space heater. J. Air Poll. Cont. Assn. 33:9. Ueda, M. 1989. Climatotherapy and forest aromatic bath. Public health 53:20-23. Ugrekhelidze, D., F. Korte, and G. Kvesitadze. 1997. Uptake and Transformation of benzene and toluene by plant leaves. Ecotoxicology and environmental safety 37:24-29. Walsh, P.J., C.S. Dudney, and E.D. Copenhaver. 1984. Indoor Air Quality. CRS Press. Weschler, C.J. and H.C. Shields, 1997. Potential reactions among indoor air pollutants. Atmospheric Environment 31:3487-3495. Wolverton, B.C., A. Johnson, and K. Bounds. 1989. Interior landscape plant for indoor air pollution abatement. p.1-2. NASA Report. Wolkoff, P. 1995. Volatile organic compounds - Sources, measurements, emissions and the impact on indoor air quality. Indoor air. Suppl. No.3. Wolverton, B.C. 1997. How to grow fresh air. Penguin Books USA. Wolverton, B.C. and J.D. Wolverton. 1993. Plants and soil microorganisms - removal of formaldehyde, xylene and ammonia from the indoor environment. Journal of the Mississippi Academy sciences. 38:11-15. Wolverton, B.C., A. Johnson, and K. Bounds, 1989. Interior landscape plants for indoor air pollution abatement. NASA. USA. Wolverton, B.C., R.C. McDonald, and H.H. Mesick. 1985. Foliage plants for the indoor removal of the primary combustion gases carbon monoxide and nitrogen oxides. J. MS. Acad. Sci. 30:1-8. 牛山章子, 木忖建一, 岩下剛, 淺田紀行, 增田達哉. 1993. 觀葉植物による室內空氣質の淨化效果に關する實驗硏究. 日本建築學會 1993 年度大會學術講演槪集 645-646. Wood, R.A, R.L. Orwell, J. Tarran, F. Torry, and M. Burchett. 2002. Potted-plant/growth media interactions and capacities for removal of - 419 -
volatiles from indoor air. J. of Hort. Sci. & Bio. 77:120-120. Wood, R.A., R.L. Orwell, J. Tarran, F. Torpy, and M. Burchett 2002. Potted-plant/growth media interactions and capacities for removal of volatiles from indoor air. Journal of Horticultural Science & Biotechnology 77:120-129. Woods, J.E. 1980. Environmental implications of conservation and solar space heating. Energy Research Institute, Oowa State Univ., Ames, Iowa, BEUL 80-3. Meeting of the New York Academy of Sciences, New York, January 16. Wright, G.W. 1968. Airborne fibrous glass particles. Chest roentgenograms of persons with prolonged exposure. Arch. Environ. Health. 88:295-303. Yamazaki, T. and J. Tobioka. 1991. Studies on the evaluation of recreational functions of forests(Ⅱ). J. Jap. For. Soc. 102:679-682. Yocom, J.M., W.A. Cote, and W. Clink. 1974. A study of indoor-outdoor air pollution relationship. Nat. air Poll. Cont. Adm. 1:35-40. Yoo, B.L. 1995. Effects of the mixed media made of several organic materials on the growth of Ficus benjamina. MS Thesis., Seoul City Univ., Seoul, Korea. Yoon, D.W. 1994. The characteristics of indoor air quality and improvement of air environment. J. Arch. Inst. Kor. March. 30-37. Yoon, D.W. and J.D. Spengler. 1995. Standards for indoor air pollutant levels and ventilation rates. Architectural Institute of Korea. 39:12-18. - 420 -
부록 1. 가스상챔버제작 2. 식물 / 배지 / 미생물을이용한공기정화시스템제작 - 421 -
3. 실험에사용한식물사진 Rhapis excelsa Dracaena deremensis cv. Warneckii Compacta Syngonium podophyllum Ficus benjamina L. Pachira aquatica Chamaedorea elegans Sansevieria trifasciata Spathiphyllum Schott. Ficus elastica - 422 -
Dieffenbachia amoena Scindapsus aureus Shefflera arboricola cv. Hong Kong Cisus rhombifolia Hedera helix L. Gymnocalycium baldianum Notocactus magnificus Ritt. - 423 -