Korean Journal of Environmental Agriculture Korean J Environ Agric. 2017;36(3):154-160. Korean Online ISSN: 2233-4173 Published online 2017 September 28. https://doi.org/10.5338/kjea.2017.36.3.25 Print ISSN: 1225-3537 Research Article Open Access GC-MS를이용한하천수중 Bisphenol계화합물의동시분석및모니터링 김지현 1 2 1* 1 1, 최정희, 강태우, 강태구, 황순홍, 심재한 1, 2, 3 Simultaneous Determination and Monitoring of Bisphenols in River Water using Gas Chromatography-Mass Spectrometry Jihyun Kim 1, Jeong-Heui Choi 2, Tae-Woo Kang 1*, Taegu Kang 1, Soon-Hong Hwang 1 and Jae-Han Shim 3* ( 1 Yeongsan River Environmental Research Center, National Institute of Environmental Research, Gwangju 61011, Korea, 2 Natural Environment Research Division, National Institute of Environmental Research, Incheon 22689, Korea, 3 Division of Applied Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea) 3* Received: 5 July 2017/ Revised: 14 September 2017/ Accepted: 21 September 2017 ORCID Copyright c 2017 The Korean Society of Environmental Agriculture This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Tae-Woo Kang http://orcid.org/0000-0002-5021-2330 Jae-Han Shim http://orcid.org/0000-0002-5361-2903 Abstract BACKGROUND: This study was carried out to establish an efficient sample preparation for the simultaneous determination of bisphenols (BPs) in river water samples using gas chromatography-mass spectrometry (GC-MS). Sample preparation was examined with conventional extraction methods, such as solid-phase extraction (SPE) and liquid-liquid extraction (LLE), and their efficiency was compared with validation results, including linearity of calibration curve, method detection limit (MDL), limit of quantification (LOQ), accuracy, and precision. METHODS AND RESULTS: The BPs (bisphenol A, BPA; bisphenol B, BPB; bisphenol C, BPC; bisphenol E, BPE; bisphenol F, BPF; bisphenol S, BPS) were analyzed using GC-MS. The range of MDLs by SPE and LLE methods was *Corresponding author: Tae-Woo Kang Phone: +82-62-970-3990; Fax: +82-62-970-3999; E-mail: kangtw@korea.kr *Co-Corresponding author: Jae-Han Shim Phone: +82-62-530-2135; Fax: +82-62-530-0219; E-mail: jhshim@jnu.ac.kr 0.0005 0.0234 g/l and 0.0037 0.2034 g/l, and that of LOQs was 0.0015 0.0744 g/l and 0.0117 0.6477 g/l, respectively. The calibration curve obtained from standard solution of 0.004 4.0 g/l (SPE) and 0.016 16 g/l (LLE) showed good linearity with r 2 value of 0.9969 over. Accuracy was 93.2 108% and 97.4 120%, and precision was 1.7 4.6% and 0.7 6.5%, respectively. The values of MDL and LOQ resulted from the SPE method were higher than those from the LLE method, particularly those values of BPA were highest among the BPs. Based on the results, the SPE method was applied to determine the BPs in river water samples. Water samples were collected from mainstream, tributary and sewage wastewater treatment plants (SWTPs) in the Yeongsan river basin. The concentrationofbpb,bpc,bpe,bpfandbpswerenot detected in all sites, whereas BPA was ranged 0.0095 0.2583 g/l, which was 0.0166 0.0810 g/l for mainstreams, 0.0095 0.2583 g/l for tributaries, 0.0352 0.1217 g/l for SWTPs. CONCLUSION: From these results, the SPE method was very effective for the simultaneous determination of BPs in river water samples using GC-MS. We provided that it is a convenient, reliable and sensitive method enough to 154
Simultaneous Determination and Monitoring of Bisphenols in River Water 155 monitor and understand the fate of the BPs in aquatic ecosystems. Key words: BPA, GC-MS, Liquid-liquid extraction, Solid-phase extraction, Yeongsan River 서 Bisphenol hydroxyphenyl (Suzuki et al., 2004; Cho et al., 2016), (Park et al., 2012). bisphenol A (BPA), bisphenol AF (BPAF), bisphenol AP (BPAP), bisphenol B (BPB), bisphenol C (BPC), bisphenol E (BPE), bisphenol F (BPF), bisphenol P (BPP), bisphenol S (BPS) bisphenol Z (BPZ) (Lee et al., 2015; Wang et al., 2017). BPA 1890 1967 (epoxy resin) (polycarbonate plastic),,, (Kawaguchi et al., 2006). BPA DNA, Hunt (2003) Jin (2004) BPA.BPA 140mg/L, (Lee et al., 2003; Park et al., 2010). BPA BPB, BPC, BPF, BPS (Jin and Zhu, 2016). BPA,., (Rudel et al., 1998; Heemken et al., 2001; Helaleh et al., 2001; Kuch and Ballschmiter, 2001; Li et al., 2001; Kawaguchi et al., 2006). BPA (Liquid- Liquid Extraction, LLE), (Solid-Phase Extraction, SPE) (Molecularly Imprinted Solid- Phase Extraction, MISPE) (Li et al., 2001). LLE,. 론 SPE (Kawaguchi et al., 2006; Kim et al., 2015)., bisphenol 6 15. 재료및방법 표준물질및시약 bisphenol 6 (BPA, BPB, BPC, BPE, BPF, BPS) BPA- D16 (Bisphenol A-D16) Sigma-Aldrich (St. Louis, MO, USA), SPE Oasis Hydrophilic Lipophilic Balance (HLB, 200 mg, 6 ml) Waters (Milford, MA, USA), LLE HPLC (DCM), (MeOH) GR Burdick & Jackson (Morris Plains, NJ, USA) Junsei Chemical (Tokyo, Japan). 1% trimethylchlorosilane (TMCS) N,O-Bis (trimethylsilyl)-trifluoroacetamide (BSTFA) Sigma-Aldrich (St Louis, MO, USA), Milli-Q (Merck Millipore, Darmstadt, Germany). 1,000 mg/l, -18. 조사지점 7, 6 2 15 (Fig. 1). 2016 9,, ph, (Table 1). 4. 전처리방법 SPE LLE bisphenol 6. SPE glass microfiber filter (GF5) 500 ml 5 ml ph 10 5.0 mg/l BPA-d16 20 L. HLB,
156 Kim et al. Table 2. Instrumental conditions for the analysis of BPs using GC-MS Column HP-5MS Unit ( /min) Temp. ( ) Hold (min) Oven temp. Initial - 180 2 Ramp 1 5 280 10 Inlet temp. 250 Injection mode splitless Injection volume 2 L Transfer line temp. 250 MS source temp. 230 MS quadrupole temp. 150 Electron impact ionization 70 ev Carrier gas Helium Carrier flow 0.6 ml/min Fig. 1. Sampling sites of mainstreams, tributaries and SWTPs in the Yeongsan river basin. Table 1. Water quality levels in water samples collected from mainstreams, tributaries and SWTPs in the Yeongsan river basin Site Temp. ( ) ph DO (mg/l) EC ( S/cm) Turbidity (NTU) YS-1 25.4 7.5 7.4 775 0.6 YS-2 29.1 7.9 7.2 165 4.5 YS-3 26.6 7.3 8.0 213 3.9 YS-4 23.6 8.5 7.7 140 4.2 YS-5 26.0 7.0 6.9 584 0.8 YS-6 26.1 8.1 11.0 322 9.1 YS-7 27.9 8.1 11.3 317 4.4 YS-8 26.6 7.1 7.7 244 5.9 YS-9 28.3 8.8 12.9 270 5.1 YS-10 26.4 7.0 6.6 319 3.8 YS-11 25.9 7.8 9.3 370 10.4 YS-12 27.8 7.5 9.6 260 9.2 YS-13 28.7 7.7 7.4 267 9.3 YS-14 27.2 7.2 9.8 269 7.7 YS-15 27.0 7.4 9.2 565 18.8, 4mL ph10 5mL. HLB 7 ml/min 10, HLB 8 ml (Liu et al., 2004). LLE SPE NaCl 30 gdcm 20 ml 2 Na 2SO 4 1. 2, 10 ml (Jin et al., 2004). SPE LLE 1% TMCS BSTFA 50 L 60 40 (Gatidou et al., 2007). 200 L (PTFE-lipophilic) GC-MS 분석 GC-MS. GC-MS (Agilent 6890N, CA, USA) (Agilent 5973N, CA, USA). 30m, 0.25mm, 0.25 m HP-5MS (Agilent, CA, USA),, 0.6 ml/min, 2 L, 250. 180 2 5 /min 280 10, Table 2. (selected ion monitoring, SIM), bisphenol 6 BPA-d16 (Table 3). 유효성검증및정도관리 Bisphenol 6 SPE LLE
Simultaneous Determination and Monitoring of Bisphenols in River Water 157 Table 3. Selected ion monitoring (SIM) parameters of GC-MS Compounds Selected ions (m/z) Retention time BPA 207, 357 a), 372 12.71 BPB 191, 357, 386 14.00 BPC 221, 385, 400 13.99 BPE 193, 343, 358 12.13 BPF 179, 329, 344 11.63 BPS 182, 379, 394 16.85 BPA-d16 217, 368, 386 12.58 a) Selection of underlined ions for quantification. (Method Detection Limit, MDL), (Limit of Quantification, LOQ),,. MDL LOQ SPE 0.012 g/l (BPA, BPB, BPC, BPE, BPF) 0.06 g/l (BPS), LLE 0.048 g/l 0.24 g/l. 7 3.14 10 MDL LOQ. SPE 0.004 0.8 g/l (BPA, BPB, BPC, BPE, BPF) 0.08 4.0 g/l (BPS) LLE 0.16~3.2 g/l (BPA), 0.016~3.2 g/l (BPB, BPC, BPF), 0.032~3.2 g/l (BPE), 0.8~16.0 g/l (BPS). SPE 0.16 g/l (BPA, BPB, BPC, BPE, BPF) 0.8 g/l (BPS), LLE 0.64 g/l 3.2 g/l 5., (Relative Standard Deviation, RSD). BPA-d16 SPE LLE 0.2 g/l 0.8 g/l. 유효성검증 결과및고찰 Bisphenol 6 SPE LLE MDL, LOQ,,. SPE LLE MDL BPA 0.0009 g/l, BPB 0.0010 g/l, BPC 0.0006 g/l, BPE 0.0005 g/l, BPF 0.0006 g/l, BPS 0.0234 g/l 0.0409, 0.0040, 0.0043, 0.0091, 0.0037, 0.2034 g/l, LOQ 0.0030, 0.0032, 0.0018, 0.0015, 0.0018, 0.0744 g/l 0.1303, 0.0127, 0.0136, 0.0289, 0.0117, 0.6477 g/l. 0.004~4.0 g/l 0.016~16.0 g/l, (r 2 ) 0.9969 0.98,. 104%, 105%, 93.2%, 103%, 101%, 108% 111, 108, 120, 111, 105, 97.4%, 2.3%, 1.7%, 2.5%, 2.1%, 2.3%, 4.6% 0.7, 1.1, 0.8, 1.9, 1.9, 6.5% (Table 4). bisphenol 6 SPE LLE, MDL 0.0005 0.0234 g/l 0.0037 0.2034 g/l, LOQ 0.0015 0.0744 g/l 0.0117 0.6477 g/l, (r 2 ) 0.9969, 93.2 108% 97.4 120%, 1.7 4.6% 0.7 6.5% (NIER, 2017).LOQ,LLE Jin Zhu (2016) Stachel (2003) 0.1 g/l, SPE. SPE bisphenol 6 MDL LOQ LLE 4 45 Table 4. The MDL, LOQ, linear equation, linearity (r 2 ), accuracy and precision for the analysis of BPs using SPE and LLE methods with GC-MS MDL (ng/ml) LOQ (ng/ml) Linearity (r 2 ) Accuracy (%) Precision (%) Compounds Linear equation SPE LLE SPE LLE SPE LLE SPE LLE SPE LLE SPE LLE BPA 0.0009 0.0409 0.0030 0.1303 y=6.3970x+0.0054 y=1.4179x+0.0619 0.9986 0.9998 104 111 2.3 0.7 BPB 0.0010 0.0040 0.0032 0.0127 y=5.9754x-0.0150 y=1.6341x+0.0236 0.9981 0.9999 105 108 1.7 1.1 BPC 0.0006 0.0043 0.0018 0.0136 y=4.4635x-0.0256 y=1.1715x+0.0436 0.9969 0.9985 93.2 120 2.5 0.8 BPE 0.0005 0.0091 0.0015 0.0289 y=6.9577x-0.0104 y=1.2921x+0.0398 0.9985 0.9995 103 111 2.1 1.9 BPF 0.0006 0.0037 0.0018 0.0117 y=3.8343x-0.0181 y=0.4328x+0.0039 0.9974 0.9999 101 105 2.3 1.9 BPS 0.0234 0.2034 0.0744 0.6477 y=1.0994x-0.0696 y=0.0088x-0.0031 0.9981 0.9984 108 97.4 4.6 6.5
158 Kim et al. Fig. 2. Chromatograms of BPs analyzed by GC-MS after sample preparation with SPE; (a) field blank, (b) standard solution at 0.16 g/l, (c) one of river samples (1: BPA, 2: BPB, 3: BPC, 4: BPE, 5: BPF, 6: BPS, 7: BPA-d16). Table 5. Concentrations ( g/l) ofbpsresultedfromthe SPE-GC-MS method in water samples collected from mainstreams, tributaries and SWTPs in the Yeongsan river basin Site BPA BPB BPC BPE BPF BPS YS-1 0.0352 N.D a) N.D N.D N.D N.D YS-2 0.2583 N.D N.D N.D N.D N.D YS-3 0.0166 N.D N.D N.D N.D N.D YS-4 0.0116 N.D N.D N.D N.D N.D YS-5 0.1217 N.D N.D N.D N.D N.D YS-6 0.0277 N.D N.D N.D N.D N.D YS-7 0.0614 N.D N.D N.D N.D N.D YS-8 0.0095 N.D N.D N.D N.D N.D YS-9 0.0525 N.D N.D N.D N.D N.D YS-10 0.0810 N.D N.D N.D N.D N.D YS-11 0.0482 N.D N.D N.D N.D N.D YS-12 0.0244 N.D N.D N.D N.D N.D YS-13 0.0567 N.D N.D N.D N.D N.D YS-14 0.0485 N.D N.D N.D N.D N.D YS-15 0.0183 N.D N.D N.D N.D N.D a) Not detected, BPA 45. SPE LLE., bisphenol 6 SPE, Fig.2,0.16g/L GC-MS. Fig. 3. The distribution of BPA concentration in water samples collected from mainstreams, tributaries and SWTPs in the Yeongsan river basin. 하천수중 bisphenol계화합물 6종분석결과 15 bisphenol 6 SPE, Table 5 BPB, BPC, BPE, BPF BPS, BPA 0.0095 0.2583 g/l.bpa, 7 0.0166 0.0810 g/l,, 6 0.0095 0.2583 g/l, 2 0.0352 g/l 0.1217 g/l. Jin Zhu (2016) Stachel (2003), Jin Zhu (2016) BPA, BPB, BPC, BPF, BPS 5 LC-MS/MS BPA 0.0042 0.0140 g/l 0.0044 0.1410 g/l, BPS 0.0003 0.0670 g/l 0.0002 0.0520 g/l, 3. Stachel (2003) BPA BPF, BPA 0.0038 0.0300 g/l 0.0044 0.0920 g/l, BPF. Park (2012) Cho (2016) BPA 5.03 g/l 1.00 g/l. FŰrhacker (2000) BPA, 28 72 g/l, 2.5 50 g/l, 2.5 g/l. YS-2 BPA,,, YS-1.,. YS-2
Simultaneous Determination and Monitoring of Bisphenols in River Water 159 0.2583 g/l, YS-3 (Fig. 2). Stachel (2003) Elbe BPA,. 요 bisphenol 6 (BPA, BPB, BPC, BPE, BPF, BPS) GC-MS. SPE LLE, MDL, LOQ,. SPE LLE MDL 0.0005 0.0234 g/l 0.0037 0.2034 g/l, LOQ0.0015 0.0744 g/l 0.0117 0.6477 g/l, (r 2 ) 0.9969, 93.2 108% 97.4 120%, 1.7 4.6% 0.7 6.5%. SPE MDL LOQ LLE 4 45, BPA 45., SPE, 7, 6, 2. Bisphenol BPB, BPC, BPE, BPF BPS, BPA 0.0095 0.2583 g/l 0.0166 0.0810 g/l, 0.0095 0.2583 g/l, 0.0352 0.1217 g/l. 약 Notes The author declare no conflict of interest. References Cho,I.K.,Nam,H.S.,Jeon,Y.B.,Park,J.S.,Na,T.W., Kim, B. J., & Kan, E. (2016). Residue study for bisphenol A in agricultural reservoirs. Korean Journal of Environmental Agriculture, 35(4), 270-277. Fürhacker, M., Scharf, S., & Weber, H. (2000). Bisphenol A: emissions from point sources. Chemosphere, 41(5), 751-756. Gatidou, G., Thomaidis, N. S., Stasinakis, A. S., & Lekkas, T. D. (2007). Simultaneous determination of the endocrine disrupting compounds nonylphenol, nonylphenol ethoxylates, triclosan and bisphenol A in wastewater and sewage sludge by gas chromatographymass spectrometry. Journal of Chromatography A, 1138(1), 32-41. Heemken,O.P.,Reincke,H.,Stachel,B.,&Theobald,N. (2001). The occurrence of xenoestrogens in the Elbe river and the North Sea. Chemosphere, 45(3), 245-259. Helaleh, M. I., Fujii, S., & Korenaga, T. (2001). Column silylation method for determining endocrine disruptors from environmental water samples by solid phase micro-extraction. Talanta, 54(6), 1039-1047. Hunt,P.A.,Koehler,K.E.,Susiarjo,M.,Hodges,C.A., Ilagan,A.,Voigt,R.C.,Thomas,S.,Thomas,B.F.,& Hassold, T. J. (2003). Bisphenol A exposure causes meiotic aneuploidy in the female mouse. Current Biology, 13(7), 546-553. Jin, H., & Zhu, L. (2016). Occurrence and partitioning of bisphenol analogues in water and sediment from Liaohe River Basin and Taihu Lake, China. Water Research, 103, 343-351. Jin,X.,Jiang,G.,Huang,G.,Liu,&J.,Zhou,Q.(2004). Determination of 4-tert-octylphenol, 4-nonylphenol and bisphenol A in surface waters from the Haihe River in Tianjin by gas chromatography mass spectrometry with selected ion monitoring. Chemosphere, 56(11), 1113-1119. Kawaguchi,M.,Ito,R.,Endo,N.i,Okanouchi,N.,Sakui, N., Saito, K., & Nakazawa, H. (2006). Liquid phase microextraction with in situ derivatization for measurement of bisphenol A in river water sample by gas chromatography-mass spectrometry. Journal of Chromatography A, 1110(1), 1-5. Kim,D.W.,Chung,W.Y.,&Kye,Y.S.(2015).Liquidphase microextraction pretreatment techniques for analysis of chemical warfare agents and their degradation byproducts in environmental aqueous samples. Applied Chemistry for Engineering, 26(1), 17-22. Kuch, H. M., & Ballschmiter, K. (2001), Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range. Environmental Science & Technology, 35(15), 3201-3206. Lee, H. J., Chattopadhyay, S., Gong, E. Y., Ahn, R. S., & Lee, K. S. (2003). Antiandrogenic effects of bisphenol A and nonylphenol on the function of androgen receptor. Toxicological Sciences, 75(1), 40-46. Lee,S.G.,Liao,C.,Song,G.J.,Ra,K.T.,Kannan,K.,& Moon,H.B.(2015).Emissionofbisphenolanalogues including bisphenol A and bisphenol F from wastewater treatment plants in Korea. Chemosphere, 119, 1000-1006.
160 Kim et al. Li, D. H., Park, J. M., & Oh, J. R. (2001), Silyl derivatization of alkylphenols, chlorophenols, and bisphenol A for simultaneous GC/MS determination. Analytical Chemistry, 73(13), 3089-3095. Liu, R., Zhou, L., & Wilding, A. (2004). Simultaneous determination of endocrine disrupting phenolic compounds and steroids in water by solid-phase extraction-gas chromatography-mass spectrometry. Journal of Chromatography A, 1022(1), 179-189. Park, J. S., Yoon, Y. M., & Her, N. G. (2010). HPLC- MS/MS detection and sonodegradation of bisphenol A in water. Korea Society of Environmental Engineers, 32(6), 639-648. Park,S.I.,Chung,S.Y.,Kstsuhiko,S.,Hideto,S.,&Na, S. H. (2012). Monitoring of endocrine disruptors (bisphenol A and styrene oligomers) in the streams of Cholla-namdo province in South Korea. Journal of Korea Society on Water Environment, 28(5), 669-675. Rudel,R.A.,Melly,S.J.,Geno,P.W.,Sun,G.,&Brody, J. G. (1998). Identification of alkylphenols and other estrogenic phenolic compounds in wastewater, septage, and groundwater on Cape Cod, Massachusetts. Environmental Science & Technology, 32(7), 861-869. Stachel, B., Ehrhorn, U., Heemken, O. P., Lepom, P., Reincke, H., Sawal, G., & Theobald, N. (2003). Xenoestrogens in the River Elbe and its tributaries. Environmental Pollution, 124(3), 497-507. Suzuki, T., Nakagawa, Y., Takano, I., Yaguchi, K., & Yasuda, K. (2004). Environmental fate of bisphenol A and its biological metabolites in river water and their xeno-estrogenic activity. Environmental Science & Technology, 38(8), 2389-2396. Wang,Q.,Zhu,L.,Chen,M.C.,Ma,X.,Wang,X.,&Xia J. (2017). Simultaneously determination of bisphenol A and its alternatives in sediment by ultrasound-assisted and solid phase extractions followed by derivatization using GC-MS. Chemosphere, 169, 709-715.