82 제 1 발표장 (2 일금 ) 이남훈 1*, 류태광 2 NUMERICAL VERIFICATION OF SHAKE TABLE TEST FOR THE LIQUID STORAGE TANK N. Lee and T. Yoo 1.,.,,,.,. Baek et al.[1]. CFD FLUENT LS-DYNA. 2. 2.1 CFD FLUENT, LS-DYNA. FLUENT, VOF(Volume of Fluid). LS-DYNA, (Lagrangian) SPH(Smoothed Particle Hydrodynamics). Corresponding author E-mail: namhun.lee@hanwha.com 2.2 3.. 1.5m, 0.8m 3, 1.0m, 1.5m, 2.0m., ACI 350.3[2] convective mode.. (1) tanh. (2) Table. 1 Convective mode frequency (Hz) Case Convective mode frequency Case 1 (S1) 0.578 Case 2 (S2) 0.699 Case 3 (S3) 0.881 (1) (2),,. (1) convective mode Table 1.
(2 일금 ) 제 1 발표장 83. [1] 2mm,, 20mm. 2.3 1~3 Convective mode frequency Case 1 (S1). [1],. 2. Fig. 1 Free surface response (t/t=0.25). 3..., FLUENT LS-DYNA 3.. Fig. 2 Free surface response (t/t=5.25) [1] 2017,, 4, DB,, 27 5, pp.545-554. [2] 2006, ACI Committee 350, Seismic Design of Liquid-containing Concrete Structures and Commentary, American Concrete Institute, Farmington Hills. Fig. 3 Free surface response (t/t=10.25)
84 제 1 발표장 (2 일금 ) 박익규 1*, 윤한영, 이승준, 조윤제, 이재룡 DEVELOPMENT AND VALIDATION OF CUPID REACTOR VESSEL MODULE AND A THREE-DIMENSIONAL LBLOCA CALCULATION I, K. Park, H. Y. Yoon, S. J. Lee, Y. J. Cho, J. R. Lee 1. ATHLET, CATHARE-3, MARS, RELAP, SPACE, TRACE 1. 1 200 (LOCA) 1. 2 2. 3 3. ATHLET RELAP 1 3. TRACE CATHARE-3, 3., SPACE 3. 3 MARS Corresponding author E-mail: gosu@kaeri.re.kr CUPID.,,,. CUPID. 2. 2.1 CUPID CUPID 2 2. 2.1.1 CUPID,,. k (g) (l). r ( a r ) + Ñ ( a r u ) = W t k k k k k k r r r ( ak rkuk ) + Ñ ( ak rkukuk ) = -a kñ P + Ñ ( akmk, eff Ñuk ) t uur uur uur - uur uur + a r g + M + M + M + M + M k k ( a r e ) mass drag non drag VM WF k k k k k r (1) r (2) k k k r a r r k + Ñ = - - Ñ + Ñ t t P æ P - Ps ö é ( ) ù ç P ë û è P ø ( ) ( ak rkekuk ) P P ( akuk ) ( a gqg ) + H T Ps - Tk * + G vhk ± H Tg - Tl + q" Ak s s ik gf k- f - f T r = Ñ + t f f k Tf S f (4) CUPID,, 3. (3)
(2 일금 ) 제 1 발표장 85.,,,,,,,,, 2. 2,. 1 2.. 100, Decay.,. (PCT). Fig. 3 Configuration of boundary conditions to simulate LBLOCA: steady state, blow down, reflood. Fig. 1 Vertical flow regime map of CUPID RV module (quench front) ( )..., CMFD. 2.2 FLECHT-SEASET 31701 RBHT. UPTF,. Fig. 2 Calculated wall temperature of FLECHT-SEASET 31701 and RBHT 1196 2.3 3 Fig. 3 Decay heat, break flow, SI flows, PCT of LBLOCA calculation. 3. CUPID,. CUPID 3. 2018 ( ) ( No. 2017M2A8A4015005, No. 1305011). [1] 2018, Park, I.K., Yoon, H.Y., Lee, S.J., Cho, Y.J., Lee, J.R., Development and Validation of CUPID Reactor Vessel Module," Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 17-18, 2018.
86 제 1 발표장 (2 일금 ) 이경세 1* EVALUATION OF THE EFFECT ON FLOW COEFFICIENT BY A DISK PROTECTOR DESIGNED FOR ANTI-EROSION OF A BUTTERFLY VALVE K.S. Lee 1.,.... [1] [2]. - -,. 2. 2.1 350mm 190mm... Fig. 1 Butterfly Valve(350A) Corresponding author E-mail: kslee@pomia.or.kr Fig. 2 Disk Protector and Installation
(2 일금 ) 제 1 발표장 87 2.2 ANSYS 18. 7 Ansys meshing 490. 30m/s. 1 Spalart-Allmaras 10%. Fig. 6 Streamline Plot when Disk Angle 30 and 45 Table. 1 Pressure drop when inlet velocity 30m/s Fig. 3 Valve and Protector Installation with Pipe Extension disk angle pressure drop(pa) disk drag(n) protector drag(n) 0 174 2.81 3.07 30 1175 99.1 1.08 45 4428 405 1.08 60 18885 1777 1.48 75 97189 9255 1.84 3. Fig. 4 Mesh Generation( 4.9 million tetra cell ) 2.3..... 2016 [C0398526] [1] 1995, T. Kimura, T. Tanaka, K. Fujimoto, et al., Hydrodynamic characteristics of a butterfly valve-prediction of pressure loss characteristic, ISA Trans., Vol.34-4, pp.319-326. [2] 2017, B. Liu, J. Zhao and J. Qian, Numerical analysis of cavitation erosion and particle erosion in butterfly valve, Engineering Failure Analysis, Vol.80, pp.312-324. Fig. 5 Velocity Plot when Disk Angle 0 and 30
88 제 1 발표장 (2 일금 ) 서재원 1*, 이동곤 1, 이정우 1 PERFORMANCE IMPROVEMENT OF HEAVY-DUTY GAS TURBINE COMBUSTOR USING CFD ANALYSIS J.W. Seo, D. Lee, and J.W. Lee 1.,.,,.,.,,., Turbine Inlet Temperature(TIT), NOx, CO... Computational Aided Engineering (CAE). Can-annular type Computational Fluid Dynamics (CFD). Corresponding author E-mail: jaewon1.seo@doosan.com 2. 2.1 ANSYS-CFX 17.2[1] 3 RANS(Reynolds-averaged Navier-Stokes). Inflation layer,. κ-ω Shear Stress Transport (SST)model[2]. Eddy Dissipation and Finite Rate Chemistry model. (CH4), Rotational Periodic. 2.2. Fig. 1. Fig. 2 Can-annular type counter flow -...
(2 일금 ) 제 1 발표장 89 Fig. 1 Computational Domain of Single Can Combustor Fig. 3 Pressure loss in a single can combustor Table. 1 Geometrical Variables of Sub-Nozzle Fuel Nozzles Fuel Holes on a Nozzle Number of Nozzles Location of Nozzles Size of Nozzles Number of Holes Location of Holes 3. Fig. 2 Computational Domain of Simplified Single Can Combustor 2.2 Fig. 3 CFD..,.. -, Fig. 2 CFD. Table. 1 CFD Case study. Case study - Emission. CFD TIT,. - CFD Case study,. (MOTIE) (KETEP). (No. 2013101010170A) [1] 2016, Ansys CFX-17.2 Inc. [2] 1994, Menter, F. R, Two-equation eddy viscosity turbulence models for engineering applications, AIAA J., Vol.32-8, pp. 1598-1605