졸업논문.PDF

Similar documents
슬라이드 제목 없음

00....

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

KAERIAR hwp

untitled

e hwp

농학석사학위논문 폴리페닐렌설파이드복합재료의기계적및열적 특성에영향을미치는유리섬유 환원된 그래핀옥사이드복합보강재에관한연구 The combined effect of glass fiber/reduced graphene oxide reinforcement on the mecha

한약재품질표준화연구사업단 단삼 ( 丹參 ) Salviae Miltiorrhizae Radix 생약연구과

한약재품질표준화연구사업단 작약 ( 芍藥 ) Paeoniae Radix 생약연구과

歯김유성.PDF

Introduction Capillarity( ) (flow ceased) Capillary effect ( ) surface and colloid science, coalescence process,

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

untitled

<C7D1BDC4BFAC20B1E8B5BFBCF6B9DABBE7B4D4676C75636F20C3D6C1BE5B315D2E687770>


Vertical Probe Card Technology Pin Technology 1) Probe Pin Testable Pitch:03 (Matrix) Minimum Pin Length:2.67 High Speed Test Application:Test Socket

14.fm

12(4) 10.fm

< C6AFC1FD28B1C7C7F5C1DF292E687770>

한약재품질표준화연구사업단 금은화 ( 金銀花 ) Lonicerae Flos 생약연구과


Alloy Group Material Al 1000,,, Cu Mg 2000 ( 2219 ) Rivet, Mn 3000 Al,,, Si 4000 Mg 5000 Mg Si 6000, Zn 7000, Mg Table 2 Al (%

Æ÷Àå½Ã¼³94š

(2) : :, α. α (3)., (3). α α (4) (4). (3). (1) (2) Antoine. (5) (6) 80, α =181.08kPa, =47.38kPa.. Figure 1.

12.2 Molecular Spectroscopy ( 분자분광학 ) 분자에전자기복사선을쪼여주면분자가낮은에너지상태에서높은에너지상태로이동하게되며, 이때특정흡수진동수를이용하여분자의구조를알아낼수있다. Figure 12.1 : Absorption of energy in elec

歯140김광락.PDF

(

Development of culture technic for practical cultivation under structure in Gastrodia elate Blume

The Top Ten Moulding Problems

유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

한약재품질표준화연구사업단 강활 ( 羌活 ) Osterici seu Notopterygii Radix et Rhizoma 생약연구과

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

(13-068).fm

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

歯1.PDF

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

page 1end

전용]

08원재호( )


09È«¼®¿µ 5~152s

푸른21탄소중립행사내지확정

82-01.fm

03이경미(237~248)ok

untitled

DBPIA-NURIMEDIA

(Vacuum) Vacuum)? `Vacua` (1 ) Gas molecular/cm 3

한약재품질표준화연구사업단 고삼 ( 苦參 ) Sophorae Radix 생약연구과

( )-123.fm

fm

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]

50(6)-09.fm

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

Abstract Background : Most hospitalized children will experience physical pain as well as psychological distress. Painful procedure can increase anxie


歯신호측정

67~81.HWP

<31332EBEC6C6AEB8B6C4C9C6C3C0BB20C8B0BFEBC7D120C6D0C5B0C1F6B5F0C0DAC0CE20BFACB1B82E687770>

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

12.077~081(A12_이종국).fm

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

Journal of Educational Innovation Research 2016, Vol. 26, No. 3, pp DOI: * The Grounds and Cons

OR MS와 응용-03장

1 Nov-03 CST MICROWAVE STUDIO Microstrip Parameter sweeping Tutorial Computer Simulation Technology

Subject : 귀사의 일익번창하심을 진심으로 기원합니다.

10(3)-10.fm

untitled

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

08.hwp

342 Sei Young Choi / Elastomers and Composites Vol. 49, No. 4, pp. 341~345 (December 2014) 불구하고 광촉매는 400 nm 이하의 파장을 갖는 자외선이 조사 되어야만 활성을 나타내는 단점을 갖고 있어

<30365F28BFCFB7E129BEC8BAB4C5C22E687770>

산선생의 집입니다. 환영해요

歯기구학

본문.PDF

서론 34 2

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

012임수진

Microsoft Word - Shield form gasket.doc

15(4장1절 P).PDF

Slide 1

Product A4

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

16(5)-03(56).fm

[ 영어영문학 ] 제 55 권 4 호 (2010) ( ) ( ) ( ) 1) Kyuchul Yoon, Ji-Yeon Oh & Sang-Cheol Ahn. Teaching English prosody through English poems with clon

18(3)-10(33).fm


PDF

Preliminary spec(K93,K62_Chip_081118).xls

Theoretical foundation for the ethics of coaching sport Sungjoo Park* Kookmin University [Purpose] [Methods] [Results] [Conclusions] Key words:


DBPIA-NURIMEDIA

Chapter4.hwp

#Ȳ¿ë¼®

16(5)-04(61).fm

歯안주엽홍서연원고.PDF


untitled

2015 경제ㆍ재정수첩

DBPIA-NURIMEDIA

Transcription:

Hard Segment Polyurethane (Effect of Cross-Linking Agent On Thermal and Mechanical Stability of Polyurethanes) 2000 2 1

Hard Segment Polyurethane (Effect of Cross-Linking Agent On Thermal and Mechanical Stability of Polyurethanes) 2000 2 2

2000 2 ( ) ( ) ( ) 3

polyurethane, hard segment. hard segment. polyurethane diisocyanate 4,4`diphenylmethane diisocyanate chain extender 1,4-butanediol hard segment. soft segment polytetramethylene glycol (PTMG MW=1000g/mol). PTMG (MW=1000g/mol) MDI end capping free isocyanate group. allophanate polyurethane 200 ~220 melt blending free isocyanate group hard segment urethane group N-H. polyurethane weight percent 0%, 10%, 15%, 20% 4. stress-strain curves, hysteresis, DSC ATR FT-IR segmental. Small Angle X-ray Scattering (SAXS) domain. mechanical properties hard domain thermal stability. 4

Abstract In this study, chemical cross-linkings between hard segments in thermoplastic elatomers have been introduced to increase the mechanical and thermal stabilities of polyurethanes. The effect of the amount of cross-linking agent on internal structure and mechanical properties have been also investigated. The polyurethane used in this work consists of 4,4 -diphenylmethane diisocyanate(mdi) and 1,4 butanediol as hard segments and polytetramethylene glycol (PTMG MW=1000 g/mol) as soft segments. Cross-linking agent having free isocyanate functional groups at both ends were synthesized by end-capping each mole of PTMG (MW=1000 g/mol) with two moles of MDI. Melt blending of polyurethanes with the cross-linking agent at 200-220C was expected to form allophanate linkage through the chemical reaction between N- H in urethane group and free isocyanate group. Four different samples containing 0, 10, 15, 20% (wt/wt) of cross-linking agent were prepared. The effect of cross-linking agent on mechanical properties of polyurethane were studied through stress-strain curves and hysteresis. Effect on degree of phase separation and segmental thermal stability were also investigated with DSC and FTIR-ATR methods. The themal stability of micro-phase separated domain structure was also analyzed with synchrotron small angle X-ray scattering method. As amount of cross-linking agent content in polyurethane increased, the mechanical properties was improved, while thermal stability was found to be lowered. 5

Abstract Hard segment polyurethane 1. 2. Material 3. Experiment 3.1 Density Measurement 3.2 ATR FT-IR 3.3 Small Angle X-ray Scattering (SAXS) 3.4 Mechanical Properties Test 4. Result and Dicussion 5. Conclusion 6. Reference 6

Hard Segment Polyurethane 1. Segmented polyurethane elastomers T g rigid hard segment T g flexible soft segment. 1 hard domain hard segment van der waals force 2~4. van der waals force. melting point cooling. hard segment van der waals force. polyurethane... polyurethane. polyurethane 7

, polyurethane. g -radiation, ultra-violet radiation polymerization. 5~7 polyurethane urethane isocyanate allophanate chain. diol isocyanate urethane. Allophanae polyurethane,. 8~14 polyurethane soft segment tri multifunctional polyol, tri higher functional chain extender. 15~16 Z. Petrovic et al 17 soft segment diol triol, mechanical properties. hard segment, hard segment crystal thermal stability melting flow. Chang et al. 18 33% hard segment polyester urethane chain extender butane diol trimethylopropane (TMP) hard segment density butane diol trimethylopropane ratio. 8

compression hardness loss resistance. system polytetramethylene oxide polyol diacetylene hard segment irradiation morphology, modulus breaking point elongation. 19 polyurethane triol irradiation. triol irradiation PTMG (MW=1000) MDI isocyanate allophanate group hard segment. Polyurethane hydrogen group isocyanate group urethane linkage,, isocyanate carbamic acid urea group biuret. isocyanate urethane linkage allophanate group, isocyanate isocyanurate.5,6,21 polyurethane, isocyanate polyol molar ratio,,,. Allophanate group 100 ~ 140 without catalyst system.20 polyurethane extruder 200 ~220 polyurethane 9

melt blending vacuum 80. 0%, 10%, 15%, 20% stressstrain curves hysteresis. DSC, ATR FT-IR small angle x-ray scattering (SAXS) hard segment structure. 2. Material polyurethane hard segment MDI BD soft segment PTMG (MW=1000) Table 1. Samples of Designation Cross-Linking Agent Content [wt%] Cpu00% 0% Cpu10% 10% Cpu15% 15% Cpu20% 20% Cpu00% => Hard Segment:Soft Segment = 43 : 57 [wt%] Table 1. Designation of Samples 10

ON HO ON HO [ OCN CH 2 NCO (CH 2 ) 4 OCN CH 2 NCO ] [(CH 2 ) 4 O m Hard Segment (a) Polyurethane Soft Segment OCN CH 2 NC [ OCH 2 ] OCN CH 2 NCO n (b) Cross-linking Agent Urethane group O C N C O H N Cross Linking Agent (c) Allophanate Figure 1. Chemical structure of Polyurethane,Cross-Linking Agent, and Allophanate 11

PTMG(MW=1000) MDI free isocyanate. Polyurethane weight percent 00%, 10%, 15%, 20% 4 200 ~ 220 1.14g/min extruder blending. melt press vacuum 80 annealing. Extruder 3 zone mixer part. zone 190, 220, 220 zone 220 setting blending. Polyurethane, allophanate Figure 1. 3. Experiment 3.1 Density Measurement Density solvent, toluene (0.8669g/cm 3 ) carbon tetrachloride (1.594g/cm 3 ) density gradient column.. sample density 85cm column density 1.10g/cm 3 ~ 1.18g/cm 3 broad solution, column 23. 4 standard bead ( 1.00, 1.05. 1.10, 1.15g/cm 3 ) calibration density linear. 12

3.2 ATR FT-IR Nicolet 520 FT-IR resolution 4cm -1, scan 32 data. FT-IR spectrum 10µm melt press sample ATR. heating cell ATR crystal KBR-5 sample heating segmental. heating rate 10 /min equilibrium time 5, 10 IR spectrum. 3.3 Small Angle X-ray Scattering (SAXS) hard segment structure SAXS white beam line 1B2 (wavelength=1.55ao). sample 1mm 5min equilibrium time. polymer scattering intensity exposure time 3min, sample detector 125.6cm. Detector 2D CCD camera(1242x1152 pixels, 27.5x25.9mm, Princeton Instrument Inc) image analysis PV-Wave 6.21 program. 13

3.4 Mechanical Properties Test hard segment structure SAXS white beam line 1B2 (wavelength=1.55å). sample 1mm 5min equilibrium time. polymer scattering intensity exposure time 3min, sample detector 125.6cm. Detector 2D CCD camera(1242x1152 pixels, 27.5x25.9mm, Princeton Instrument Inc) image analysis PV-Wave 6.21 program. 4. Results and Discussion Urethane group, molar ratio. metal allophanate, allophanate group 100 o C. polyurethane isocyanate allophanate.11 FT-IR isocyanate allophanate. 10,14,23 14

Figure 2 sample polyurethane good solvent tetrahydrofuran (THF) 1, 2 swelling 1. data swelling. 1mm 10mm, 0.3g. Figure 2 sample. swelling allophanate. 100 80 1 hour 2 hours Weight Loss [%] 60 40 20 0 0 5 10 15 20 Cross-Linking Agent Contents Figure 2. Weight loss with cross-linking content in THF 15

4 2 0 Cpu00% Cpu10% Cpu15% Cpu20% mw -2-4 -6-150 -100-50 0 50 100 150 200 250 300 Temperature [ o C] Figure 3. DSC thermograms for cross linking agent content Figure 3 DSC thermogram -100 ~ 200, sample data. 100 peak annealing hard segment short range order peak, 100 broad peak hard domain order disorder.24~26 enthalpy of fusion Figure 4 100 peak enthalpy of fusion plot. enthalpy of fusion.., hard segment 16

J/g 10 9 8 7 6 5 4 3 2 0 5 10 15 20 C.A. Contents Figure 4. Enthalpy of Fusion for Cross-linking agent content. Rigid hard segment hard segment hard segment packing. hard segment hard segment hard domain. hard segment hard domain domain packing density. enthalpy of fusion. Figure 5 density. density. 17

1.148 1.147 1.146 1.145 g/cm 3 1.144 1.143 1.142 1.141 1.140 1.139 0 5 10 15 20 C.A. Contents Figure 5. Density values for cross-linking agent content at room temperature Density DSC enthalpy of fusion. hard segment hard domain soft matrix hard domain packing density. solvent, DSC, density allophanate,. 18

mechanical property stress-strain hysteresis. Figure 6 stress-strain curve. initial modulus. soft segment PTMG, hard segment soft segment content soft segment content, hard segment packing density initial modulus. draw ratio 2.0 stress. hard segment soft segment hard segment. Hard segment draw ratio hard segment rigid hard segment stress draw ratio 2.0 stress hysteresis. Hysteresis plastic deformation energy deformation energy. hysteresis 0 hysteresis. Figure 7 (1) hysteresis A Hysteresis [%] = 100 (1) A+ B draw ratio hysteresis 19

4 3 Cpu00% Cpu10% Cpu15% Cpu20% Stress [kgf/mm 2 ] 2 1 0 1 2 3 4 5 Draw Ratio Figure 6. Stress-Strain Curves for cross linking agent content and initial modulus draw ratio. hysteresis.., creep,. 2. 20

70 60 50 Hysteresis [%] 40 30 20 10 Stress A 0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 B Strain Draw Ratio Cpu00% Cpu10% Cpu15% Cpu20% Figure 7. Hysteresis for cross-linking agent having different draw ratio.. Polyurethane, segment,. segment,,, annealing. 20 polyurethane. 21

ATR FT-IR spectrum. IR spectrum urethane carbonly C=O bond hard segment C=O bond hard segment hard domain soft matrix 1730cm -1 hard domain hard segment wavenumber shift 1700cm -1 2 peak. 27 Urethane (2) absorbance A. A H bond Freebond C=O C=O absorbance. hard segment urethane C=O absorbance C=O absorbance. H bond A A Freebond A SP. IR spectrum C=O absorbance. A SP = A H-bond A + A H-bond Freebond (2) Figure 8 ATR FT-IR spectrum. spectrum 1750cm -1 1670cm -1 baseline, spectrum carbonyl absorbance. Figure 8 1730cm -1 carbonyl peak absorbance 22

1.2 1.0 0.8 Cpu00% Cpu10% Cpu15% Cpu20% Absorbance 0.6 0.4 0.2 0.0 1750 1740 1730 1720 1710 1700 1690 1680 1670 Wavenumber [cm -1 ] Figure 8. ATR FT-IR spectra showing the carbonyl absorbance region for cross-linking agent content,. hard segment hard segment hard segment packing hard domain. Hard domain hard segment soft matrix. Figure 9 Figure 11 ATR FT-IR Heating. 23

Absorbance Ratio 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 H-bond C=O Free C=O -2-3 -4-5 -6 Endo mw 0.30-7 20 40 60 80 100 120 140 160 180 200 Temperature [ o C] Figure 9. Carbonyl stretching peak absorbance ratio of Cpu00% as a function of temperature and solid line is DSC thermogram FT-IR spectrum urethane group carbonyl absorbance phase segmental mixing. carbonyl peak absorbance. hard domain hard segment chain mobility, soft segment. 24

Absorbance Ratio 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 H-bond C=O Free C=O 1 0-1 -2-3 mw Endo 0.30-4 20 40 60 80 100 120 140 160 180 200 Temperature [ o C] Figure 10. Carbonyl stretching peak absorbance ratio of Cpu10% as a function of temperature and solid line is DSC thermogram carbonyl absorbance ratio carbonyl absorbance ratio hard segment order-disorder transition temperature(t ODT ). DSC curve. Figure 9 absorbance ratio carbonyl absorbance ratio. Figure 9 11 ATR FT-IR heating DSC thermogram. 25

Absorbance Ratio 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 H-bond C=O Free C=O 1 0-1 -2-3 Endo mw 0.30-4 20 40 60 80 100 120 140 160 180 200 Temperature [ o C] Figure 11. Carbonyl stretching peak absorbance ratio of Cpu20% as a function of temperature and solid line is DSC thermogram carbonyl absorbance ratio. Figure 9 Figure 10 carbonyl peak absorbance ratio 140 ~150. Figure 11 Cpu20% 100 absorbance ratio. ATR FT-IR Heating segmental mixing Cpu00% T ODT 140, Cpu20% 100 T ODT.. 26

packing density, hard domain. conventional X-ray intensity X-ray scattering data exposure time. intensity synchrotron real time segmented block copolymer domain. 28,29 Small angle x-ray scattering (SAXS) scattering scattering intensity. Two-phase model parameter invariant. Invariant (Q) (2). 1 2 Q = I( q )q dq (2) 2 p 0 invariant. Q 2 Dr (3) Q F F 1 2 ( r 1 2 2 - r ) (4) I (q): X-ray intensity q : Scattering Vector q = 4πsin θ λ Φ i, ρ i : i volume fraction electron density θ: Scattering angle λ: X-ray wavelengh 27

(4) 1, 2 phase volume fraction electron density invariant electron density invariant. invariant domain. 30 Bragg law domain long period. 31 2p d = (5) q m q m: intensity scattering vector SAXS parameter Porod Constant interface thickness. Scattering vector (q) I(q)q 4 Porod constant,. thermal density fluctuation diffuse phase boundary (6). hard segment soft segment Porod (7). 32~34 lim I( q ) = q-> q Kp 4 q (6) lim I( q ) @ q-> Kp (1-4 q 2 E q 12 2 ) (7) 28

E. scattering vector I(q)q 4 q 2, E Porod constant. 35 Figure 12 Cpu10% 2D image profile. Figure 12 scattering ring pattern homogeneous 360 O ring pattern ring pattern scattering vector. soft segment, hard domain long period. hard domain soft matrix mixing scattering. SAXS scatterig pattern 2D image merdian 1D data Figure 13. Figure 12 data intensity scattering vector. domain domain domain long period. long period Cpu10%, 20% Cpu00%. domain Figure 14 long period. Long period y 0.5 data shift. long period, 29

110 o C 200 o C 80 o C 170 o C 60 o C 150 o C 25 o C 130 o C Figure 12. Isointensity plots of the two-dimensional SAXS data of Cpu10% as function of temperature 30

150 125 Intensity 100 75 Temperature Increases 50 25 0 0.00 0.04 0.08 0.12 0.16 Temperature [ o C] Figure 13. Cpu00% SAXS heating Exp t 1D data profiles as function of temperature Cpu00% long period 140 Cpu10%, 15% 100 long period. Cpu20% 80 long period. Figure 14 long period long period hard domain thermal stability. 31

Relative Long Period 5.0 4.5 4.0 3.5 3.0 2.5 2.0 Cpu00% Cpu10% Cpu15% Cpu20% 1.5 1.0 40 60 80 100 120 140 160 180 Temperature [ o C] Figure 14. The change of long period values for cross-linking agent content as function of temperature invariant interface thickness. Figure 15 Figure 16 Cpu00, 20% invariant. Invariant Cpu00% 140 invariant, Cpu20% 100 invariant. Figure 17 interface thickness interface thickness.. Long period, invariant, interface thickness 32

0.020 0.018 0.016 Invariant 0.014 0.012 0.010 0.008 0.006 20 40 60 80 100 120 140 160 180 Temperature [ o C] Figure 15. Invariant of Cpu00% as a function of temperature 33

0.020 0.018 0.016 Invariant 0.014 0.012 0.010 0.008 0.006 20 40 60 80 100 120 140 160 180 Temperature [ o C] Figure 16. Invariant of Cpu20% as a function of temperature 34

Relative Interfacial Thickness 2.2 2.0 1.8 1.6 1.4 1.2 1.0 Cpu20% Cpu10% Cpu00% 40 60 80 100 120 140 160 180 Temperature [ o C] Figure 17. Relative interface thickness as function of temperature order-disorder transition temperature(t ODT ) IR Heating segmental mixing long period, invariant. 35

hard segment hard domain soft matrix hard segment, hard domain packing density. 36

5. Conclusion Polyurethane allophanate group mechanical property. Polyurethane good solvent THF weight loss weight loss. DSC enthalpy of fusion density. stressstrain curve hysteresis. Stress-strain curve initial modulus draw ratio 2.0 stress. hard segment hard segment packing density soft segment initial modulus. soft segment hard segment hard segment hard segment, domain draw ratio hard segment interconnected point hard domain stress. hysteresis. 37

,, creep,. 2.. ATR FT-IR, hard segment hard domain soft matrix. ATR FT-IR heating segmental mixing Cpu00% 140 order-disorder transition(t ODT ) Cpu20% 100 T ODT. domain SAXS heating, long period invariant, interface thickness Cpu00% 140 domain. domain Cpu20% 80 domain. ATR FT- IR Heating segmental mixing SAXS domain, Cpu00%. 38

hard segment packing hard domain soft matrix, hard domain packing density. mechanical properties 39

6. Reference 1. M. F. Mark, N. M. Bikales, C. G. Overberger and G. Menges, Encyclopedia of Polymer Science and Enginnering, 2 nd Ed. Vol 13, Jonh wiley & Sons, (1988) 2. G. M. Estes, S. L. Cooper and A. V. Tobolsky, J. Macromol. Sci., Rev. Macromol. Chem., C4(1), 167, (1970) 3. J. A. Koutsky, N. V. Hien and S. L. Cooper, J. Polym. Sci., Part B, 8, 353, (1970) 4. S. B. Clough, N. S. Schneider and A. O. King, J. Macromol. Sci., Phys., B2, 641, (1968) 5. E. M. Barrall, T. C. Clarke, A. R. Greggers, J. Polym. Sci., Phys. Ed., 16, 1355, (1978) 6. T. N. Bowmer, J. H. O Donnell, J> Polym. Sci., Chem. Ed., 19, 1167, (1981) 7. R. H. Baughman., J. Appl. Phys., 43, 4363, (1972) 8. C. Hepburn, Polyurethane Elastomers, 2 nd Ed., Elsevia, London, (1991) 9. K. Recker, Polyurethane Handbook, 2 nd Ed, G. Oertel, Ed., Hanser, New York, (1993) 10. Karel Busek, Polymer Bulletin, 17, 481, (1987) 11. Hiroshi Okuto, Die Makro. Chemie., 98, 148, (1966) 12. A. Sebenik, U. Osredkar, and I. Vieovisek, J. Macromol. Sci., Chem., A23(3), 369, (1986) 13. M. Spirkova, M. Kobin, and K. Dusek, 1151, (1986) 14. M.Ilavsky, K. Bouchal, and K. Dusek, Polymer Bulletin, 14, 295, (1985) 15. Zoran S. Petrovic, Ivan Javni, Vladimir Divjakovic, Journal of 40

Polymer Sci., Part B; Polym. Phys., Vol36, 221, (1998) 16. Zoran S. Petrovic, Ivan Javni, Gyorgy Banhegy, Vol 36, 237, (1998) 17. Z. Petrovic, M> Zlavsky, K. Dusek, M. Vidakovic, I. Javni, and B. Banjanin, J. Appl. Polym. Sci., 42, 391, (1991) 18. W. Chang, T. Baranowski, and T. Karalis, J. Appl. Polym. Sci., 51, 1077, (1994) 19. L. J. Buckley, P. T. Hammond, and T. Karalis, J. Appl. Polym. Sci., 51, 1077, (1994) 20. I. C. Kogon, Ibid., 24, 83, (1959) 21. K. C. Frisch and L. P. Rumao, J. Macromol. Sci-Rev. Macromol. Chem, C5, 103, (1970) 22. C. Li and S. L. Cooper, Polymer, 31, 2, (1990) 23. K. Dusek, M. Ilavsky and L. Matejka, Polym. Bull., 12, 33, (1984) 24. T. R. Hesketh, J. W. C. Van Bogart, S. L. Cooper, Polym. Eng. Sci., 20, 190, (1990) 25. J. W. C. Van Bogart, D. A. Bluemke, S. L. Cooper, Polymer, 22, 1428, (1981) 26. C. M. F. Vrousenrates, Polym. Prepr., 13(1), 529, (1972) 27. J. Blackwell, J. R. Quay, M. R. Nagarajan, L. Born, H. Hespe, J. Polym.Sci. Polym. Phys., 195, 2855, (1994) 28. Y. Li. T. Gao, J. Siu, K. Linliu, C. R. Desper, B. Chu, Macromolecules, 25, 7365, (1992) 29. T. P. Russell, J. T. Koberstein, J. Polym. Sci., Polym. Phys., 24, 1109, (1985) 30. K. N> Kruger, H. G. Zachmann, Mocromolecules, 26, 5202, (1993) 31. B. D. Cullity, Eelments of X-ray Diffraction, 2 nd, Addision wiley Pub., (1978) 32. J. T. Koberstein, B. Morra, R. S. Stein, J. Appl. Crystallogr., 13, 34, (1980) 41

33. J. T. Koberstein, R. S. Stein, J. Polym. Sci. Polym. Phys. Ed., 21, 2181, (1983) 34. W. Ruland, J. Appl. Crystallogr., 4, 70, (1971) 35. B. Goderis, H. Reynaer, M. H. J. Koch, V. B. F. Mathot., Journal of Polym. Sci; Part B. Polym. Phys., 37, 1715, (1999) 42