Korean Journal of Environmental Agriculture Korean J Environ Agric. 2014;33(2):111-120. Korean Online ISSN: 2233-4173 Published online 2014 April 16. http://dx.doi.org/10.5338/kjea.2014.33.2.111 Print ISSN: 1225-3537 Research Article Open Access 인천지역유통과일중잔류농약모니터링및위해성평가 정세진, 1* 김혜영, 1 김지형, 1 염미숙, 1 조중희, 1 이수연 1 1 인천광역시보건환경연구원농산물검사소 Monitoring of Pesticide Residues and Risk Assessment in Some on the Market in Incheon, Korea Se Jin Chung, 1* Hye Young Kim, 1 Ji Hyeung Kim, 1 Mi Suk Yeom, 1 Joong Hee Cho 1 and Soo Yeon Lee 1 ( 1 Department of Agricultural Products Inspection, Incheon Institute of Public Health and Environment Research, Incheon, 403-861, Korea) Received: 14 January 2014 / Revised: 7 March 2014 / Accepted: 16 April 2014 Copyright c 2014 The Korean Society of Environmental Agriculture This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract BACKGROUND: This study was conducted to investigate the levels of pesticide residues in fruits and to assess their risk to human health. METHODS AND RESULTS: Monitoring of 215 samples of fruits collected from local markets in incheon during 2013 was performed. 259 pesticides were analyzed by multi-residue method and Quick, Easy, Cheap, Effective, Rugged, and safe/mass/mass(quechers/ms/ms) method using Gas Chromatography-Electron Capture Detector/Nitrogen Phosphorus Detector(GC-ECD/NPD), GC-MS, LC(Liquid Chromatography-Mass/Mass(LC-MS/MS) and High Performance Liquid Chromatography-Photodiode Array/ Fluorescence Detector(HPLC-PDA/FLD). In 56.3% of the samples detected pesticide residues and were not found to exceed Maximum Residue Limits(MRL). The highest detected samples were found in citrus fruits(83.9%). Among the detected compounds, carbendazim(13.1%), imazalil (11.7%), thiabendazole(10.7%) and fludioxonil(9.8%) were frequently found in fruits. A risk assessment of pesticide * 교신저자 (corresponding author): Se Jin Chung Phone: +82-32-440-5607; Fax: +82-32-440-5619; E-mail: sejin47@korea.kr residues in fruits was performed by calculating Estimated Daily Intake(EDI) and Acceptable Daily Intake(ADI). Also, we were evaluated removal efficiency of pesticide residues by washing and peeling. The removal efficiency of pesticide residues in citrus and tropical fruits by peeling processes were 91.6%. After the washing process, the removal rates were 43.1%(Cherry, Grape, Blueberry). CONCLUSION: The level of pesticide residues in fruits was within the MRL. The range of %ADI values was from 0.00011 to 0.98795%. The process of washing or peeling reduces the level of pesticide residues. The results of this research concluded that the detected pesticides are not harmful to human being. Key words:, Incheon city, Monitoring, Pesticide residues, Risk assessment, %ADI 서론 경제발전에따른생활수준의향상 고령화로인하여현대인들은건강에대한관심이매우높아졌다. 식품선택의기준도단순히맛, 가격, 영양소이외에기능성및안전성도식품소비에큰영향을미치고있다. 과일류는항암효과, 항산화효과, 피부미용및다이어트등에도움이된다고알려지면서 111
112 CHUNG et al. (Bao, M.J., et al., 2013; Lee et al., 2011; Zhouk and Raffoul, J.J., 2012) 과일소비는매년꾸준히증가하고있다 (FIS 식품산업주요지표, 2011). 수입과일의종류와양도크게 증가하고있는데, 이는기상악화에따른국내과일작황저조시수급조절을위한수입, 시장개방, 다양해지고고급화된소비 자들의취향변화로인한수요증가가그원인이다 ( 관세청, 2013). 최근몇년간시중에유통되고있는수입과일류에기준치 를초과한농약이검출되었다는언론보도 ( 소비자시민모임, 2012) 와대부분조리과정을거치지않고섭취하는과일류의특성상소비자들이가지는잔류농약에대한불안감은높을수밖에없다. 하지만, 기후및농업환경이다변화하면서세계각국에서다양한농약사용이불가피한것이사실이다. 실제로농약을사용하지않는다면농산물생산량이 20 75% 까지감소될수있고더많은노동력과경작지를필요로한다고한다 (Darby, W.J., 1964; Ridgway, R.L., 1978). 각나라별재배환경, 발생하는병충해종류가다르므로방제하는농약의종류와양도달라서각국가별로최대잔류농약허용기준 (Maximum residue Limits, MRL) 및농약안전사용기준을설정하여관리하고있다. 나라마다다른 MRL과농약안전사용기준은수입농산물안전성관리에문제를야기할수있다. 따라서각국은자국의농산물안전성확보를위해기준이설정되지않은농약이 0.01 mg/kg 이상잔류하는농산물의판매등을금지하는 Positive list, 자국에허용기준이설정되어있지않은농약에대해서불검출을원칙으로하는 Zero tolerance 등을도입하여자국내유통되는농산물의안전성확보에주력하고있다. 국내의경우해당농산물의기준이설정되어있지않은농산물의경우 Codex 기준적용및유사농산물최저기준을적용하고있다. 국내수입농산물의경우최초수입, 무작위표본검사, 부적합이력이있는식품에대해서만잔류농약을포함한정밀검 사가실시되고 ( 식품의약품안전처수입식품등검사연보, 2011) 있으며, 수입농 임산물대비정밀검사 ( 무작위표본검사포함 ) 가시행되고있는비율은전체수입농 임산물에 16.7% 에불과한것으로조사되었다 ( 수입식품등검사연보, 2012). 급증하는수입식품의양에비해농 임산물의정밀검사비율은가공식품 31.9%, 건강기능식품 34.0%, 식품첨가물 27.8% 에비해낮다. 따라서유통되고있는수입농산물에대한좀더적극적이고지속적인잔류농약안전성조사가필요할것이다. 본연구에서는인천시에서유통되는수입과일류 ( 오렌지, 레몬, 자몽, 키위, 바나나, 망고, 체리, 블루베리, 포도 ) 9종 144건, 국내산과일류 ( 감귤, 레몬, 키위, 망고, 체리, 블루베리, 포도 ) 7종 71건을대상으로잔류농약모니터링을실시하였고, 검출빈도가높고해당농산물에대한잔류허용기준이설정되어있지않은농약성분에대한위해성평가를실시하였다. 또한실제소비자들이섭취하는형태인과피제거, 물을이용한세척후농약잔류량변화를비교하여실제섭취되는잔류농약의양을조사하였다. 재료및방법 시료및분석농약 2013년 1월부터 11월까지인천시내대형마트, 재래시장, 도매시장에서유통되고있는과일류를대상으로하였으며, 시료별수거현황및원산지는 Table 1과같다. 분석농약은식품공전다종농약다성분분석법제 2법기체크로마토그래피 (Gas chromatography, GC) 와액체크로마토그래피 (Liquid chromatography, LC) 로분석가능한잔류농약을대상으로하였으며 ( 식품공전, 2012), 소비자시민모임보도자료 ( 소비자시민모임, 2012) 및수입과실류잔류농약실태조사결과 Table 1. The list of collected sample number by commodity and country Groups Commodity Country Orange(16 1) ) Chile(4 1) ), Republic of South Africa(2 1) ), USA(10 1) ) Citrus Mandarin(15 1) ) Korea(15 1) ) Lemon(22 1) ) Chile(4 1) ), Local area(4 1) ), USA(14 1) ) Grapefruit(3 1) ) USA(3 1) ) Kiwi(34 1) ) Chile(5 1) ), Italy(2 1) ), Korea(14 1) ), New Zealand(13 1) ) Tropical Banana(23 1) ) Peru(3 1) ), Philippines(20 1) ) Mango(21 1) ) Local area(2 1) ), Philippine(8 1) ), Taiwan(2 1) ), Thailand(9 1) ) Stone Cherry(13 1) ) Korea(2 1) ), USA(11 1) ) Berries Blueberry(24 1) ) Chile(1 1) ), Korea(12 1) ), USA(11 1) ) Grape(44 1) ) Chile(10 1) ), Local area(22 1) ), Peru(2 1) )), USA(10 1) ) Total 215 1) 1) Number of sample
Monitoring of Pesticide Residues and Risk Assessment in Some on the Market in Incheon, Korea 113 (Cho et al., 2013; 서울특별시보건환경연구원보, 2005; Yang et al., 2006) 다수의잔류이력이보고되었으나, 다종농약다 성분분석법으로분석불가능한 carbendazim, thiabendazole, imidacloprid, propiconazole, thamethoxam, bitertanol, tebuconazole, imazalil, acetamiprid 에대해서는국립농산물품질관리원잔류농약분석법다성분동시분석 2법 Quick, Easy, Cheap, Effective, Rugged, and safe(quechers)/ MS(Mass)/MS(Mass) 법 ( 국립농산물품질관리원, 2012) 을이용하였다. 표준품및분석용시약잔류농약분석용표준품은 Dr. Ehrenstorfer GmbH (Augsburg, Bayern, Germany) 에서구입하여사용하였고, 주로사용되는추출용매 acetonitrile과전처리에필요한 hexane, acetone, dichloromethane, methanol 등은 J. T Baker (Phillipsburg, Montana, USA) 의 High Performance Liquid Chromatography(HLPC) 급을사용했으며, NaCl 은 Junsei사 (Osaka, Japan) 을사용하였다. GC, HPLC 분석을위한정제카트리지는 Agilent사 (Lake Forest, Califonia, USA) 의 Florisil cartridge (1,000mg, 6nL) 와 NH 2 cartridge (1,000mg, 6mL) 을각각사용하였다. QuEChERS 시약은 QuEChERS Extract EN method kit (Agilent, Lake Forest, Califonia, USA) 를사용하였다. 와 Gas Chromatography-Nitrogen Phosphorus Detector (GC-NPD) 는 Agilent 6890N, 6890 (Agilent, Santa clara, Califonia, USA) 와 HPLC System(SIT, Tokyo, Japan) 을사용하였다. 주요기기분석조건은 GC-ECD/NPD, GC-MS 를이용하여 171종, High Performance Liquid Chromatography-Photodiode Array/Fluorescence Detector(HPLC-PDA/ FLD), LC/MS/MS 를이용하여 79 종을정량및정성확인하였으며, QuEChERS 방법에의한전처리시료는 LC/MS/ MS를이용하여 9종의잔류농약을분석하였다. 상세한기기분석조건은 Table 2,3,4,5와같다. 전처리방법감귤류, 열대과일류는과실전체와과피를제거한가식부위인과육부분으로구분하여전처리하였고, 핵과류와장과류는세척전후로구분하여식품공전다종농약다성분제2법 ( 식품공전 ) 시료전처리방법을따랐다. carbendazim 외 9건은 QuEChERS(Lehotay et al., 2005) 분석법및국립농산물품질관리원잔류농약분석법다성분동시분석 2법 ( 국립농산물품질관리원, 2012) 에따라전처리하였다. 세척방법은수돗물 3 L에시료 300 500 g을넣고 1분간침지후, 같은양의수돗물로 30초동안손으로저어주면서 2 회헹군다음, 2시간동안자연건조하였다 ( 식품의약품안전처, 2010; You et al., 2011). 분석기기분석기기는정성분석을위해 Gas Chromatography/ Mass Selective Detector (GC/MSD) 는 Agilent 6890 및 7890A GC에연결된 Agilent 5973, 5975 Mass Selective Detector(Agilent, Santa clara, Califonia, USA) 와 TOFMASS Detector(LECO, St. Joseph, Michigen, USA) 를사용하였고, Liquid Chromatograph/Mass/Mass(LC/MS/MS) 는 TSQ Quantum Ultras(Thermo Fisher, San Jose, Califonia, USA) 를사용하였다. 정량분석을위해 Gas Chromatography-Electron Capture Detector(GC-ECD) 위해성평가검출된잔류농약의위해성평가는 1일섭취허용량 (Acceptable Daily Intake, ADI) 대비식이섭취율을계산하여산출하였다 (kim et al., 2013; Ahn et al., 2012). 검출된농약의평균값으로부터구한 1일추정섭취량 (Estimated Daily Intake, EDI) 을 ADI으로나누어구한 % 값으로평가하였다. 한국인성인평균체중은국내 MRL 설정할때사용하는 55 kg을적용하였고, ADI는 MFDS 잔류농약데이터베이스값을적용하였다. 일일식품섭취량은국민영양조사보고서 ( 보건복지부국민영양조사보고서, 2006) 를사용하였다. Table 2. Operating condition of Gas Chromatography/Mass Selective Detector Part HP-6890GC + 5975MSD HP-6890GC + TOF Column Agilent DB-5MS(30.0 m 250 μm 0.25 μm ) Restek RTX-5MS(30.0 m 250 μm 0.25 μm ) Carrier gas flow He, 1.5 ml/min He, 1.75 ml/min Injector temp. 260 250 Split mode splitless splitless Oven temp 100 (2 min) 10 /min 280 (15 min) 70 (1.5 min) 20 `/min 180 (1 min) 10 /min 265 (1 min) 5 /min 300 (4.5 min) Scan range 40-550 50-550 MS source temp. 230 230 MS quad temp. 150 260 Injection volume 1 ul 1 ul MSD, Mass Selective Detector; TOF, Time of Fight
114 CHUNG et al. Table 3. Operating condition of Liquid Chromatograph/Mass/Mass Part Mass/Mass Detector TSQ Quantum ultra, U. S. A Column Thermo Hypersil gold (2.1 mm 100 mm, 3 μm ) Runtime 20 min Injection volume 5 μl Column temp. 40 Mobile phase A: 0.1% formic acid, 5mM ammonium formate in water B: 0.1% formic acid, 5mM ammonium formate in methanol Multi-residue method QuEChERS Time (min) A B Flow ( μl ) Time (min) A B Flow ( μl ) 0 95 5 300 0.0 20 80 300 1.0 95 5 300 Gradient condition 1.5 45 55 300 3.0 20 80 300 12.0 10 90 300 8.0 90 10 300 12.1 2 98 300 14.0 90 10 300 15.0 2 98 300 15.1 95 5 300 16.0 20 80 300 20.0 95 5 300 20.0 20 80 300 TSQ, Triple Stage Quadrupole; QuEChERS, Quick, Easy, Cheap, Effective, Rugged, and safe/mass/mass Table 4. Operating condition of Gas Chromatography-Electron Capture Detector / Nitrogen Phosphorus Detector Parts Electron Capture Detector Nitrogen Phosphorus Detector Column Agilent DB5(30.0 m 250 μm 0.25 μm ) Agilent DB5(30.0 m 250 μm 0.25 μm ) Carrier gas flow N 2, 1.0 ml/min N 2, 1.0 ml/min Injector temp. 260 270 Detector temp. 280 300 Split mode split(50.0:1) splitless 100 (2 min) 10 /min 180 (5 min) 10 120 (2 min) 10 /min 160 (2 min) 10 Oven temp /min 220 (3 min) 10 /min 240 (2 /min 200 (10 min) 10 /min 300 (5 min) min) 10 /min 300 (8 min) Table 5. Operating condition of High Performance Liquid Chromatography-Photodiode Array Detector/Fluorescence Detector Parts Photodiode Array(PDA) Fluorescence Detector(FLD) Detector Photodiode Array detector, ThermoFisher Fluorescence detector, Shiseido Column SP pak C18, MG (4.6 mm 250 mm, 5 μm ) SP column C18, MGⅡ (4.6 mm 250 mm, 5 μm ) Wavelength 230 nm, 254 nm, 310 nm Ex : 330 nm, Em : 446 nm Post reactor - Soma S-3810, Japan Reactor temp - 100 Post reactor Pump - Runtime 50 min 40 min Gradient condition (A: ACN, B: DW) pump1 : sodium hydroxide reagent (0.05 ml/min) pump2 : o-phthalaldehyde reagent (0.05 ml/min) Time(min) A B Flow(mL) Time(min) A B Flow(mL) 0 25 75 1.0 0 30 70 1.0 2 25 75 1.0 2 30 70 1.0 32 75 25 1.0 20 60 40 1.0 35 75 25 1.0 25 70 30 1.0 40 75 25 1.0 33 90 10 1.0 41 90 10 1.0 37 90 10 1.0 46 90 10 1.0 37.5 30 70 1.0 47 25 75 1.0 40 30 70 1.0
Monitoring of Pesticide Residues and Risk Assessment in Some on the Market in Incheon, Korea 115 Table 6. Recovery and limit of detection(mg/kg) by multi-residue method in lemon Pesticide Compounds Fortification level (mg/kg) Recovery 4) ±RSD LOD(mg/kg) 5) 0.2 85.3±2.4 Procymidone 1) 2.0 76.6±8.5 0.007 0.2 109.0±17.0 Iprodione 1) 1.0 89.2±3.5 0.022 0.2 72.5±2.8 Phenthoate 1) 1.0 81.1±1.4 0.023 0.1 116.3±0.8 α-endosulfan 1) 0.5 90.6±1.6 0.002 0.1 114.5±3.4 β-endosulfan 1) 0.5 102.1±2.1 0.002 0.1 96.2±1.5 Endosulfan-sulfate 1) 0.5 87.3±0.7 0.005 0.2 102.5±0.3 Cyprodinil 2) 1.0 91.6±1.5 0.010 0.2 90.1±1.0 Fludioxonil 2) 1.0 89.2±4.6 0.013 0.1 79.8±1.9 Chlorpyrifos 2) 0.5 77.5±0.4 0.005 0.2 102.7±2.1 Boscalid 3) 1.0 96.8±2.2 0.008 0.2 84.3±1.1 Azoxystrobin 3) 1.0 90.8±0.9 0.016 1) Detection to GC-ECD; 2) Detection to GC-NPD; 3) Detection to HPLC-UVD; 4) Mean Values of Samples(n=3); 5) LOD, Limit Of Detection; RSD, Recovery and Limit of Detection; GC-ECD, Gas Chromatography-Electron Capture Detector/Nitrogen Phosphorus Detector; GC-NPD, Gas Chromatography-Electron Capture Detector/Nitrogen Phosphorus Detector; HPLC-UVD, High-performance liquid chromatography-ultra Violet Detector 회수율및정량한계 결과및고찰 식품공전동시다성분분석법제 2 법농약성분의회수율은농약이검출되지않은시료에 0.1 2.0 mg/kg 범위내의농약표 준용액을첨가한후, 각분석법에따라 3 회반복한결과회수율 은 72 116%, 상대표준편차 (Relative Standard Deviation, RSD%) 는 0.3 17.0% 를나타냈다 (Table 6). 분석농약의시험방 법검출한계는 0.005 0.023 mg/kg 수준이었다. 국립농산물품 관리원잔류농약분석법다성분동시분석 2 법 QuEChERS/ MS/MS 법을이용한회수율은시험결과는 Table 7 과같다. 이결과는국내에서허용되는회수율범위 70 120%, 상대 표준편차 20% 이하로본연구의실험수행에적합하다고판단하였다. imazalil, acetamiprid 의경우식품공전동시다성 분분석법제 2 법에회수율이범위내에포함되지못해국립농 산물품질관리원 QuEChERS/MS/MS 법으로측정하였다. 잔류농약모니터링결과 인천시내유통중인과일류 215 건을대상으로잔류농약을분석한결과는 Table 8 과같이총 121 건에서잔류농약이검 출되어 56.3% 의검출률을나타냈으며, 식품의약품안전처에서 고시한잔류농약허용기준에따라초과여부를판정하였다. 해 당농산물의잔류허용기준에정해지지않은농산물에대하여는 Codex기준, 유사농산물최저치를적용하여적 부판정하였다. 그결과농약잔류허용기준을초과한과일은없었다. 국내산과수입산잔류농약검출빈도는각각 45.1, 60.8% 로키위를제외하고수입과일류의잔류농약검출률이높게나타났다. Do 등 (2012) 이경기도유통수입과실류잔류농약검출률 14.5% 및 2005년수입과일잔류농약검출률 32.5%( 서울특별시보건환경연구원보, 2005) 에비해높은검출률을보이고있다. 이결과는근래소비자단체에서보도한시중에유통되는수입과일의잔류농약검사결과 ( 소비자시민모임, 2012) 및최근보고된과일류의잔류농약실태조사문헌 (Choi et al., 2013; 서울특별시보건환경연구원보, 2005; Yang et al., 2006) 에서높은검출률을보였지만식품공전의동시다성분분석법으로분석불가능한 carbendazim, imidacloprid 등 8개농약성분을추가검사에따른결과로보인다. 수거한 34건의키위중 10건에서잔류농약이검출되었으며, 검출된농약성분은 carbendazim 0.05 0.2 mg/kg ( 기준 3.0 mg/kg) 7건, iprodione 0.1 1.1 mg/kg ( 기준 5.0 mg/kg) 4건, procymidone 0.3 1.1 mg/kg ( 기준 7.0 mg/kg) 3건이검출되었다. 그외에 chlorpyrifos, chlorothalonil, fenitrothion, phenthoate이각각 1건이검출되었다. 키위에서검출빈도가높은 carbendazim은잿빛곰팡이병과과실무
116 CHUNG et al. Table 7. Recovery and limit of detection(mg/kg) by QuEChERS/MS/MS method in lemon Pesticide Compounds Fortification level (mg/kg) Recovery 1) ±RSD LOD(mg/kg) 2) Bitertanol 0.1 106.2±12.1 0.5 89.0±2.5 0.004 Imidacloprid 0.1 96.7±15.3 0.5 108.3±7.7 0.005 Carbendazim 0.1 83.7±9.2 0.5 76.6±6.4 0.003 Thiabendazole 0.1 80.8±7.8 0.5 81.5±5.1 0.005 Thiamethoxam 0.1 117.9±7.2 0.5 85.7±8.1 0.002 Tebuconazole 0.1 94.2±5.5 0.5 84.9±2.7 0.002 Acetamiprid 0.1 98.1±18.6 0.5 96.4±5.1 0.004 Propiconazole 0.1 113.0±1.8 0.5 93.6±6.0 0.005 Butachlor 0.1 100.9±9.3 0.5 92.5±9.8 0.004 Imazalil 0.5 84.8±6.0 2.0 84.7±13.0 0.003 1) Mean Values of Samples(n=3); 2) LOD, Limit Of Detection; QuEChERS/MS/MS, Quick, Easy, Cheap, Effective, Rugged, and safe/mass/mass; RSD, Recovery and Limit of Detection Table 8. Analyzed sample number and detection rate of pesticide residues in fruits Type Citrus Tropical Stone Berries Item No. of analysis Imported Domestic Total No. of detection No. of analysis No. of detection No. of detection Orange 16 16 - - 16(100.0 1) ) Mandarin - - 15 10 10(66.7 1) ) Lemon 18 17 4 1 18(81.8 1) ) Grapefruit 3 3 - - 3(100.0 1) ) Total 37 36(97.3 1) ) 19 11(57.9 1) ) 47(83.9 1) ) Kiwi 20 1 14 9 10(29.4 1) ) Banana 23 12 - - 12(52.2 1) ) Mango 19 10 2 2 12(57.1 1) ) Total 62 23(37.1 1) ) 16 11(68.8 1) ) 34(45.9 1) ) Cherry 11 7 2 0 7(53.8 1) ) Blueberry 12 10 12 1 11(45.8 1) ) Grape 22 13 22 9 22(50.0 1) ) Total 34 23(67.6 1) ) 34 10(29.4 1) ) 33(48.5 1) ) Total 144 89(60.8 1) ) 71 32(45.1 1) ) 121(56.3 1) ) 1) Percentage of detection = No. of detection/ No. of analysis 100 름병방제를위해많이사용되는약제로키위가생육하는동안감염을일으켜잠복되어있다가수확후후숙과정에서발생하는과실부패를방지하기위하여사용되는농약이다 (Kim et al., 2013). Iprodione 역시키위에서발생할수있는저장병방제를위하여베노밀수화제와같이널리사용되고있다 (Koh et al., 2003).
Monitoring of Pesticide Residues and Risk Assessment in Some on the Market in Incheon, Korea 117 블루베리의경우 24 건중 11 건에서잔류농약이검출되었다. 이중국내에서재배되는블루베리는 12 건중 1 건에서만 농약이검출되어서검출률은 8.3% 로 83.3% 를나타낸수입 블루베리생과에비해현저히낮은수준을보였다. 이는현재국내재배블루베리가대부분친환경재배기술도입 ( 농촌진 흥청농업기술, 2012) 을통한경쟁력확보에주력하고있기 때문으로보인다. 블루베리에서 boscalid 0.04 0.48 mg/kg ( 기준 5.0 mg/kg) 8 건, azoxystrobin 0.13 0.57 mg/kg ( 기준 1.0 mg/kg) 6 건이검출되었으며, 그외에 iprodione, cyprodinil, chlorothalonil, pyraclostrobin, cypermethrin, malathion 이각각 1건씩검출되었다. 블루베리의경우별도로설정된잔류농약허용기준이없어, 유사농산물최저기준을적용하여적부판단을하였다. 포도는 44건중 22건에서기준이내잔류농약이검출되었다. 검출농약의종류는 procymidone 0.02 0.06 mg/kg ( 기준 5.0 mg/kg) 5건, boscalid 0.02 0.30 mg/kg ( 기준 1.0 mg/kg) 5건, cyprodinil 0.01 0.13 mg/kg ( 기준 5.0 mg/kg) 4건, iprodione 0.08 0.27 mg/kg ( 기준 10.0 mg/kg) 3건, imidacloprid 0.06 0.65 mg/kg ( 기준 1.0 mg/kg) 2건, dimethomorph, azoxystrobin, kresoxim-methyl, bifenthrin, spirodiclofen, trifloxystrobin, fludioxonil, pyraclostrobin, fenhexamide, myclobutanil, methoxyfenozide, pyrimethanil 등 17종농약이검출되었다. procymidone은포도, 딸기, 토마토등에잿빛곰팡이방제에널리사용되는살균제로국내유통되는농산물에많이검출되는농약중하나이다 (Ahn et al., 2012; jang et al., 2010; Do et al., 2012). azoxystrobin과 kresoxim-methyl은넓은항균범위를가진살균제로근래사용이증가되고있는농약이다. Boscalid는생물체에대해선택적으로작용하여, 병원성곰팡이에게는높은살균효과를나타내며포유동물에게는안전한저독성농약으로주로, 포도의잿빛곰팡이방제에사용되는농약이다. 부산지역수입농산물잔류농약실태조사결과 ( 부산광역시보건환경연구원보, 2012) 포도에서 boscalid, cyprodinil 이높게검출된결과와유사하다. 품목별농약검출률을보면감귤류가 83.9% 로가장높게나타났다. 그중에도수입오렌지와레몬, 자몽은 90% 이상농약이검출되었다 (Table 8). 이러한결과는 Choi 등 (2013) 보고한감귤류의살균제분석결과와유사한결과를보였다. 감귤류의경우에수확후저장유통과정에서부패가발생하여최적의저장조건에서도상품가치가떨어지는특성이있다. 따라서감귤류의수확직전또는수확후살균제를처리하기때문에꾸준한안전성관리가필요하다. 수입감귤류의경우대표적인 Post-harvest 살균제인 imazalil 0.07 4.13 mg/kg ( 기준 5.0 mg/kg), thiabendazole 0.05 1.58 mg/kg ( 기준 10.0 mg/kg), fludioxonil 0.06 2.50 mg/kg ( 기준 5.0 mg/kg) 및살충제인 chlorpyrifos 0.05 0.27 mg/kg ( 기준 0.3 mg/kg) 이 2종이상동시에검출되었다. 반면국내산감귤과레몬은수확전해충방제를위해살포하는 phenthoate와 carbendazim 등이검출되었다. 열대과일류는총 74건중 34건에서잔류농약이검출되어 45.9% 의검출률을나타내었다 (Table 8). 바나나는 52.2% 에서잔류농약이검출되었으며, carbendazim 0.02 0.19 mg/kg ( 기준 5.0 mg/kg) 이 23건중 9건, chlorpyrifos 0.02 0.03 mg/kg ( 기준 0.3mg/kg) 3건, azoxystrobin 0.10 0.18 mg/kg ( 기준 2.0 mg/kg) 2건, fenhexamide, iprodione, bifenthrin 이각각 1건씩기준이내로검출되었다. 망고는 21건중 12건에서잔류농약이검출 (57.1%) 되었고, carbendazim 0.06 0.91 mg/kg ( 기준 5.0 mg/kg) 9 건, azoxystrobin 0.01 0.55 mg/kg ( 기준 0.7 mg/kg) 5 건검출되었다. 그외에 endosulfan 0.13 0.34 mg/kg ( 기준 0.5mg/kg) 2건, diazinon, imidacloprid, procymidone, boscalid, fenitrothion 이각각 1건씩검출되었다. 체리는 13건중 7건에서잔류농약이검출 (53.8%) 되었으며 fenpropathrin 0.06 0.33 mg/kg ( 기준 5.0 mg/kg) 3 건, trifloxystrobin 0.01 0.02 mg/kg ( 기준 2.0mg/kg) 2 건, iprodione, cyhalothrin, imidacloprid, acetamiprid, boscalid, fludioxonil, triflumizole 이각각 1건씩검출되어총 9종의잔류농약이검출되었다. Fenpropathrin은과실의나방및진딧물방제에널리쓰이는살충제로 2010로소비자시민모임조사결과수입체리에서기준치가초과되어검출되었던농약이다. 당시체리고유의잔류농약허용기준이설정되어있지않아유사농산물최저기준인딸기의 0.5 mg/kg 기준이적용되었고, 2011년잔류농약허용기준에 fenpropathrin 체리허용기준은 5.0 mg/kg 으로추가되었다 ( 식품의약품안전처고시 2012-1호 ). 블루베리이외에도유통과일에별도의기준이정해지지않은잔류농약이많이검출되었다. 키위에서검출된 chlorothalonil, phenthoate, 바나나에서검출된 carbendazim, fenhexamide, iprodione, bifenthrin, 망고의 carbendazim, azoxystrobin, endosulfan, imidacloprid, procymidone, boscalid 등은해당품목에별도의잔류농약허용기준이설정되어있지않았다. 이러한미등록농약은현재국내에서는 농산물의잔류농약잠정기준 적용에따라, Codex 기준과유사농산물최저치를적용하고있다. 이는농약잔류허용기준에적합한농산물이라고해도안전하다고확신할순없을것이다. 이는소비자에게는막연한불안감을조성하며농민들의농약사용에도혼선을유발하고있다. 따라서안전성확보를위해농민들에게미등록농약사용을못하도록농약사용교육과홍보가철저하게이루어져야겠다. 또한과일에서자주검출되는농약에대한위해평가를통한 MRL 설정등대책마련이필요할것으로보인다. 나아가 Positive list, Zero tolerance와같은안전관리시스템도입으로잔류농약에대한안전성평가가이루어지지않은농산물유통을금지시키는등보다엄격한농약잔류허용기준에대한관리가필요할것으로생각된다. 사용성분별잔류농약검출결과농약성분별검출빈도는수입과일의경우 imazalil(15.4%), thiabendazole(14.2%), fludioxonil(13.0%), carbendazim
118 CHUNG et al. Table 9. Risk assessment of pesticides detected from fruits Commodity Detected pesticide No. of detected sample Average conc. 1) (mg/kg) Daily food intake(g) MRL (mg/kg) EDI 2) (mg/man/ day) ADI (mg/man/ day) 55kg % ADI 3) kiwi Carbendazim 7 0.06 0.5 3.0 0.00003 1.65 0.00193 Procymidone 3 0.16 0.5 7.0 0.00008 5.5 0.00145 Iprodione 4 0.45 0.5 5.0 0.00023 3.3 0.00683 Blueberry Boscalid 8 0.17 0.05 5.0 4) 0.00001 2.2 0.00039 Azoxystrobin 6 0.24 0.05 1.0 4) 0.00001 11 0.00011 Cyprodinil 2 0.38 0.05 1.0 4) 0.00002 1.65 0.00114 Grape Boscalid 5 0.18 1.2 1.0 0.00022 2.2 0.00992 Procymidone 5 0.13 1.2 5.0 0.00016 5.5 0.00287 Cyprodinil 4 0.67 1.2 5.0 0.00080 1.65 0.04861 Iprodione 3 0.57 1.2 10.0 0.00068 3.3 0.02074 Imidacloprid 2 0.12 1.2 1.0 0.00015 3.3 0.00440 Orange Imazalil 14 1.09 15 5.0 0.01630 1.65 0.98795 Thiabendazole 12 0.57 15 10.0 0.00852 5.5 0.15494 Chlorpyrifos 4 0.07 15 0.3 0.00111 0.55 0.20114 Fludioxonil 2 0.15 15 5.0 0.00221 22 0.01004 Mandarin Phenthoate 4 0.15 2.2 1.0 4) 0.00032 0.165 0.19600 Carbendazim 4 0.09 2.2 5.0 0.00020 1.65 0.01233 Lemon Fludioxonil 16 0.46 0.054 5.0 0.00002 22 0.00011 Thiabendazole 9 0.26 0.054 10.0 0.00001 5.5 0.00026 Imazalil 8 0.37 0.054 5.0 0.00002 1.65 0.00122 Chlorpyrifos 2 0.06 0.054 0.3 0.00000 0.55 0.00055 Grapefruit Thiabendazole 2 0.39 0.02 10.0 0.00001 5.5 0.00014 Imazalil 3 0.78 0.02 5.0 0.00002 1.65 0.00094 Banana Carbendazim 9 0.05 7.4 0.2 5) 0.00038 1.65 0.02326 Chlorpyrifos 3 0.06 7.4 0.3 0.00042 0.55 0.07663 Azoxystrobin 2 0.19 7.4 2.0 5) 0.00138 11 0.01254 Mango Carbendazim 7 0.10 0.8 5.0 5) 0.00008 1.65 0.00469 Azoxystrobin 5 0.19 0.8 0.7 5) 0.00015 11 0.00136 Endosulfan 2 0.07 0.8 0.5 5) 0.00005 0.33 0.01648 1) {(Number of sample below LOD 1/2 LOD) + (detected concentration)}/ number of total sample; 2) Detected average concentration(mg/kg) Daily food intake(g)/1,000; 3) (EDI/ADI) 100; 4) MRL of similar agricultural product; 5) MRL of Codex; EDI, Estimated Daily Intake; ADI, Acceptable Daily Intake; MRL, Maximum residue limit; EDI, Estimated Daily Intake; ADI, Acceptable Daily Intake (9.3%) 의순으로, 국내산과일은 carbendazim(25.0%), procymidone (17.3%), phenthoate(11.5%), iprodione(7.7%) 순으로나 타났다. 수입과일에는대표적인 Post-harvest 농약인 imazalil, thiabendazole 등이높은검출률을나타낸것을확인할수있었다 (Kruve et al., 2007). 반면국내산과일류에서가장높은검출 빈도를보인 carbendazim 은 benomyl, thiophanate-methyl, thiabendazole 이함께 benzimidazole 계침투성농약이다. 또한 benomyl 은살포후 carbendazim 으로변환되어살균 작용을보인다고알려져있다. benomyl 의경우과일병충해 에다양하게이용되며, Lee 등 (2013) 동향분석에의하면, 지 난 5 년간국내농식품중다검출농약성분중하나로조사되었다. Carbendazim 은국내뿐만아니라수입과일에서운송 중방역용으로빈번히사용되는 post-harvest 살균제로수입 과일에서도높은검출률을나타냈다. 위해성평가 본연구의잔류농약모니터링결과품목별 2 회이상검출된농약 15 종에대한위해성을평가하였다 (Table 9). 검출농약의 %ADI 를살펴보면오렌지에서검출된 imazalil 이 0.98795%, chlorpyrifos 0.20114% 로상대적으로높은 %ADI 를나타냈
Monitoring of Pesticide Residues and Risk Assessment in Some on the Market in Incheon, Korea 119 으나, 오렌지의경우껍질을제거하고섭취하기때문에실제섭취하는과육부분의유해성은상당히낮아질것으로추정된다. 그외검출된다른성분들은매우낮은수준의 %ADI 값을나타내고있다. 블루베리, 망고, 바나나에서검출된잔류농약의경우해당품목의잔류농약허용기준이설정되지않아 Codex, 유사농산물최저기준을적용한품목에대한위해성평가결과역시 0.00011 0.19600% 로낮은 %ADI 값을보여위해성수준은낮은것으로판단된다. 하지만, 과일류의잔류농약검출률은상당히높은수준이고, 해당과일에별도의잔류허용기준이설정되어있지않는농약이높은빈도로검출되었기때문에다빈도검출농약에대한 MRL 신설및미등록농약사용금지에대한철저한현장교육등이요구되며, 지속적인잔류농약모니터링을통한안전한관리가이루어지도록노력해야할것이다. 과피제거및세척에의한잔류농약경감효과잔류농약분석법에의한시료채취는과피를포함한과실전체를대상으로한다. 그러나, 실제오렌지, 레몬, 감귤, 키위, 바나나, 망고와같은과일류는대부분과피를제거하고과육만을섭취하고있다. 따라서본연구에서는과피를제거한과육에서잔류농약을검사하여과피제거전후에따른잔류농약제거효과를살펴보았다 (Fig. 1). 그결과감귤류는평균 91.6% 잔류농약제거효율을나타내었다. 품목별제거효과는감귤이 98.6% 의가장큰잔류농약제거율을보였다. 하지만, 과피의두께및농약의침투성에따른농약의잔류성에대한차이는뚜렷하게나타나지않았다. Lee와 Lee(1997) 등의연구에의하면, 과일껍질벗기기에의한유기인계농약의제거효과는평균 91% 의제거율을나타낸것과유사한결과를보였다. 과일재배에농약사용이불가피한현실에서, 농약안전사용기준을준수하여농약을사용한다면소비자가실제로섭취하는과육부분의농약은 90% 이상제거되므로안전하다고할수있겠다. 하지만, 감귤이나레몬의경우진피부분을포함하여사용할경우에는세심한주의가필요하겠다. Lemon Mandarin Orange Mango Kiwi Banana 84.7 85.8 75 80 85 90 95 100 90.7 90.3 93.4 98.6 Removal Efficiency Fig. 1. Removal efficiency of pesticides by being peeled. 과피를제거하지않고섭취하는과일은대부분의경우세제나물에의한세척과정을통하여섭취하게된다. 세척방법에따른잔류농약제거효과에대한다양한연구가이루어졌는데, 근래에는채소및과일중잔류농약 물 세제 세척차이가없다고알려져있다 ( 생활과농약, 2006). 본연구에서블루베리, 체리, 포도를수돗물침지후세척하였을때잔류농약제거율을확인하였다 (Fig. 2). 잔류농약제거율은체리, 포도, 블루베리의순으로나타났으며, 잔류농약평균제거율은 43.1% 이었다. 농약의물에대한용해도가높을수록제거효과가증가하고 (Ko et al., 1996), 살균제의세척율이살충제에비해높다고 ( 농업기술원환경농업연구, 2007) 보고되었으나본연구에서는이들간의상관관계를나타내지않았다. Blueberries Cherry Grape 28.3 45.5 55.5 Remoxal Efficiency 0 20 40 60 80 100 Fig. 2. Removal efficiency of pesticides by washing. 요약 인천시내에유통되는오렌지, 키위등 215건의과일에대하여분석대상농약 259종에대한잔류농약모니터링을실시하였다. 전체수거과일의 56.3% 에서기준이내농약이검출되었으며, 이중수입과일은 60.8%, 국내산과일은 45.1% 의검출률을나타내었으나농약잔류허용기준을초과한품목은없었다. 그중감귤류의농약검출률은 83.9% 로상당히높은수준으로나타났다. 농약성분별검출빈도는 carbendazim(13.1%), imazalil(11.7%), thiabendazole(10.7%), fludioxonil(9.8%) 순으로, 검출된농약의위해성평가결과해당농산물섭취에따른인체유입농약의일일섭취추정량 ADI% 는 0.00011 0.98795% 수준으로위해성은낮은것으로추정된다. 또한, 감귤류와같은과피를제거하고섭취하는과일은과피제거로 91.6% 의잔류농약경감효과를나타내었으며, 세척후섭취하는형태인포도나체리등은수돗물침지후세척법에의해서평균 43.1% 의잔류농약감소를보여, 과일섭취에따른위해성역시상당부분감소할것으로보인다. References Ahn, J.W., Jeon, Y.H., Hwang, J.I., Kim, H.Y., Kim, J.H., Chung, D.H., Kim, J.E., 2012. Monitoring of pesticide residues and risk assessment for fruit vegetables and root vegetables of environment-friendly certified and general agricultural products, Korean J. Environ Agric. 31, 164-169. Bao, M.J., Shen, J., Jia, Y.L., Li, F.F., Ma, W.J., Shen, H.J., Shen, L.L., Lin, X.X., Zhang, L.H., Dong, X.W., Xie, Y.C., Zhao, Y.Q., Xie, Q.M., 2013, Apple polyphenol protects against cigarette smoke-induced acute lung injury. Nutrition 29, 235-243. Cho, Y.S., Kang, J.B., Kim, Y.H., Jeong, J.A., Huh, J.W.,
120 CHUNG et al. Lee, S.H., Lim, Y.S., Bae, H.J., Kang, H.G., Lee, J.H., Jung, E.S., Lee, B.H., Park, Y.B., Lee, J.B., 2012, A survey on pesticide residues of imported fruits circulated in Gyeonggido. Korean J. pesticide sci. 16, 195-201. Choi, S.J., Kim, E.J., Lee, J.I., Cho, I.S., Park, W.H., Hwang, I.S., Kim, M.S., Kim, G.H., 2013. Determination of post-harvest fungicide in citrus f using LC-MS, Korean J. Food Sci. Technol. 45, 409-415. Darby, W.J., 1964. Pesticides: a contribution to agriculture and nutrition. Am. J. Public Health Nations Health. 54, 18-23 Do, Y.S., Kim, J.B., Kang, S.H., Kim, N.Y., Um, M.N., Park, Y.B., Oh, M.S., Yoon, M.H., 2012, Risk assessment of pesticide residues in fruits collected in Gyeonggi-do, Korea from 2006 to 2010. Korean J. pesticide sci. 16, 85-97. Han, S.H., Park, S.K., Kim, O.H., Choi, Y.H., Seoung, H.J., Lee, Y.J., Jung, J.K., Kim, Y.H., Yu, I.S., Kim, Y.K., Han, K.Y., Chae, Y.Z., 2012. Monitoring of pesticide residues in commercial agricultural products in the northern area of Seoul, Korean J. pesticide sci. 16, 109-120. Jang, M.R., Moon, H.K., Kim, T.R., Yuk, D.H., Kim, J.H., Park, S.G., 2010. Dietary risk assessment for pesticide residues of vesgetales in Seoul, Korea. Korean. J. Nutr. 43, 404-412. Kim, G.H., Lee, Y.S., Jung, J.S., Hur, J.,S., Koh, Y., F., 2013, Optimal spray time, interval and number of preventive fungicides for the ccontrol of fruit rots of green and gold Kiwifruit cultivar. Res, Plant Dis. 19, 1-6. Kim, Y.H., Lee, S.Y., Kim, C.G., Choi, E.J., Jo, N.G., Lee, J. M., Kim, Y.H., 2013, A survey on the pesticide residues and risk assessment for agricultural products on the markets in Incheon area from 2010 to 2012. Korean J Environ Agric. 32, 61-69 Ko, B.S., Jeon, T.H., Jung, K.S., Lee, S.K., 1996, Removal effects of oranic-phosphorus pesticide residue in lettuce by washing method, Korean J. Rural Med. 21, 159-171. Koh, Y.J., Lee, J.G., Hur, J.S., Park, D.M., Jung, S.J., Yu, Y.,M., 2003, Optimum spray program of preventive fungicides for the control of postharvest fruit rots of Kiwifruit, Res, Plant Dis. 9, 205-208. Kwon, O.K., Hang, S.M., Choi, D.D., Park, C.W., Song, B.H., Ryu, G.H., Oh, B.Y., 2001, Survey on pesticide usage for the development of pesticide use indicator in fruit vegetable, Korean J. pesticide sci. 5, 40-44. Lee, M.H., Kim, M.S., Shin, H.G., Sohn, H.Y., 2011, Evaluation of antimicrobial, antioxidant, and antithrombin activity of domestic fruit and vegetable juice. Korean J. Microbiol. Biotechnol. 39, 146-152. Lee, J.B., Moon, B.C., Jin, Y.D., Kwon, H.Y., Im, G.J., Hong, M.K., Kang, K.Y., 2011, Trend Analysis of Hazard Substances in/on Agricultural Products Reported. Korean J. pesticide sci. 15, 434-440 Lee, M.G., Lee, S.R., 1997. Reduction fector and risk assessment of organophosphoros pesticide in Korea food, Korean J. Food Sci. Technol. 29, 240-248. Kruve, A., Lamos, L., Kirillova, J., Heodes, K., 2007. Pesticide residues in commercially available orange and evaluation of potential washing methods. Proc. Estonian Acad. Sci. Chem. 56, 3, 134-141. Ridgway, R.L., Tinney, J.C., MacGregor, T.J., Starler, N.J., 1978, Pesticide use in agriculture. Environ. Health Perspect. 27, 103-112. Lehotay, S.J., de Kok, A., Hiemstra, M., Van, B.P., 2005. Validation of a fast and easy method for the determination of residues from 229 resticides in fruits and vegetables using gas and liguid chromatographu and mass spectromrtric detection. J. AOAC Int. 88, 595-614. Yang, Y.S., Seo, J.M., Kim, J.P., Oh, M.S., Chung, J.K., Kim, E.S., 2006, A survey on pesticide residues of imported agricultural products circulated in Gwangju. J. Food Hyg. Safety 21(2), 52-59. You, Y.H., Lee, Y.S., Kwon, H.J., 2011, Reduction factors of pesticides with different physicochemical properties under washing and cooking conditions. Korean J. Food Sci. Techlol. 43, 537-543. Zhouk, Raffoul, J.J., 2012, Potential anticancer properties of grape antioxidants. J. Oncol. 803294, 1-8.