+,PSFO4P&OWJSPO&OH _ Technical Information IUUQTEPJPSH,4&& *44/F*44/ oýyosf vh Comparison of Steel Slag and Activated Carbon for Phosphate Removal from Aqueous Solution by Adsorption j Ò m Seung-Han Lee Chang-Kyu Kim Jung-Geun Park ong-kwang Choi Johng-Hwa Ahn fs vw}s} epartment of Environmental Engineering, Kangwon National University (Received February 27, 2016; Revised January 24, 2017; Accepted March 24, 2017) Abstract : This study investigated the potential use of steel slag (SS) (0.5~2.0 g/200 ml) for the removal of phosphate from wastewater compared with activated carbon (AC) (3.0~6.0 g/200 ml). The adsorption equilibrium data were best represented by Langmuir isotherm and its calculated maximum adsorption capacity was 91 mg/g for SS, 27 mg/g for AC. The adsorption kinetics was found to follow the pseudo-second order kinetics model and its rate constant was 0.0232~0.1357 g/mg min for SS, 0.0247~0.1221 g/mg min for AC. The overall uptake for the SS and AC was maximum at ph 2. Therefore, it can be concluded that steel slag could play an effective role in reducing phosphate concentration compared with activated carbon. Key Words : Activated Carbon, Adsorption Isotherm Model, Kinetics, Phosphorus, Steel Slag. ²vmÑnjº. v²0.5~2.0 g/200 ml, m 3.0~6.0 g/200 mljplkjº. vôñn60l47~99%, m 240l81~98%º. pîj LangmuirÅjjvm p³j, ¼p(Q 0)v91 mg/g, m27 mg/gº. j в2ôÐ(k 2)²v0.023~0.136 g/mg.min, m0.025~0.122 g/mg.min, flp(q e)va10.8~18.4 mg/g, m3.30~5.49 mg/gº. ph ph 2vmÞa Ñn º. ôf Ñvam kjº.. m, pî, Ð,, v 1. ík²j ¼h m lº. f (, î)aùîj majº. jf² غaa ÐØj¼j jº. jmznma Ùºm²Åíjº. oa², aøððaj a bk ² ä º. j¾îº jíoºjm jº. 1) Ѳmj, j mj Ñ a, jmõ qjñmjº º. 2) m mj jð a Ù m j º j º. 3) m¼,, fîjíø² n p 4) º hh a k, ÐîpÑj ²pº. jô Øm²mº Åpº. v²m zºd hj pñaa³j, 5) CaO kñjº. j²v²e660, 6) d,, Ð, îm غ. vñmj m n äº. ô²vmj Corresponding author E-mail: johnghwa@kangwon.ac.kr Tel: 033-250-6357 Fax: 033-254-6357
304 +,PSFO4P&OWJSPO&OH j Ò m v p a³ jº. klangmuir Freundlich pî, 12Ð îjñn, j º. 2. 2.1. l l j p KH 2PO 4(¼m, ¼j )j, p ㄱ v Æì Norit m(è: Hydrodarco) jº. v² l j (, ¼j)jjn, hj jº. Ùp² va0.125~0.15 mm (100~120 mesh), m0.045 mm (325 mesh) v ( ㄱ ) CaO 39.5 wt%, total Fe 21.12 wt%, SiO 2 10.5 wt% î º(Table 1). 3. 3.1. pôñn 3.1.1. v v(0.5~2.0 g/200 ml)ºjeô Ñn f, 2.0 g, e 10 Ñ99%ÑÐÑna º. e60, v0.5 g 42%, 1.0 g68%, 1.5 g93%ñ º(Fig. 1(a)). jk 8), ml Ð 11.40 mg P/L, 2 g/50 ml, Õ 120, 200 rpm (25 ) Õ Ðj jlõñ76%ðn º. a p k ¼Ñn 0.22 mg P/g slag, ² 9.9 mg P/g slag¼ñn 45 º. k²1~2 2.2. l KH 2PO 4 aj jf(100 mg P/L) j l jº. jf 200 ml bj 250 ml, v 0.5~2.0 g/200 ml, m3.0~6.0 g/200 mljplkj º. evpn, 10 ²2e, 1060²10e j, mpn, 60 ²10e, 60240²60e jº. phôñnm jkph2, 4, 6, 8m v e 60, m e 240 pl kj, ph j k0.1 N HCl0.1 N NaOHjº. pl k(()j, VS-8480 SF, ¼j) 25, 200 rpm Õjº. j fijgf/c (0.45 µm) jn Standard MethodAscorbic Acid Methodj jº. 7) l(scanning electron microscope, SEM)/Š l X (energy dispersive X-ray spectroscopy, ES) (Hitachi, S-4800, )jj f(100 mg P/L)2.0 g/200 ml60 kjpjh jº. Fig. 1. 1IPTQIUF SFNPWM FGGJJFOZ PG TUFFM TMH OE UJWUFE SCPO C U WSJPVT CTPSCFOU EPTFT Table 1. $IFNJM PNQPTJUJPO PG TUFFM TMH 8wpxpy S fw9p 4w H 6fH FrH FyH RtH Gf H H I H 6 R 6 y py ˆ $ &!!&! " " # $ % Journal of KSEE Vol.39, No.5 May, 2017
+,PSFO4P&OWJSPO&OH f pñjvm 305 mmlj²0.12~0.15 mm7v n º. 3.1.2. m m(3.0~6.0 g/200 ml)ºjeô Ñnf, m6.0 g, e60ñ96%ae Ñ º. e240, m3.0 g 81%, 4.0 g 91%, 5.0 g 96% Ñ º(Fig. 1(b)). a p ¼Ñnva9.9 mg P/g, m3.2 mg P/gv3 íº. m 0.045 mmv(0.125~0.15 mm)k a eð 240 v(60) k 4a Ð ¼ Ñn Å ä v Ñ ³ m k jº. 3.2. pî pîðpfl p Ð ² º. p³pîík, k 2,9,10) zfreundlichlangmuir pîjvmp³ jº. pplùn j²p Ðj1jj, Freundlich Langmuir pî jº. Table 2. -OHNVJSOE'SFVOEMJIJTPUIFSNPOTUOUTOEPS SFMUJPO PFGGJJFOUT GPS QIPTQIUF ETPSQUJPO POUP TUFFM TMH OE UJWUFE SCPO, ' 'SFVOEMJI CO 3, - -NH -OHNVJS E 2 4UFFMTMH "UJWUFE SCPO.YJNVNETPSQUJPOQJUZPG'SFVOEMJIJTPUIFSNNPEFM C "ETPSQUJPOJOUFOTJUZ -OHNVJSPOTUOU E.YJNVNETPSQUJPOQJUZPG-OHNVJSJTPUIFSNNPEFM, q e²pº¼pùp(mg/g), C e² fl Ð(mg/L) jº. K F² p p³(mg/g) ¼j Ð p³ mjj, npò º. Fig. 2(a) K Fv 58.9 mg/g, m 13.9 mg/g va 4.2 º. n Ð v 14.1, m 4.27 va 3.3 º(Table 2). k 8) ² 2 mm K Fa0.088 mg/g, n1.117²è 3 á Þœ à œ ß (1), q e : pflpº g¼pùp (mg/g) C 0 : p Ð(mg/L) C e : pfl n p fl Ð(mg/L) V : j(l) W : p (g) 3.2.1. Freundlich pî Freundlich pî Langmuir pî p hçðôqùº² ÐjÐÙppزp вq e = K F C e 1/nØ j 1 lj º. 11) Ž á Ž Ÿ â Î Žœ (2) Fig. 2. 'SFVOEMJI OE -OHNVJS C JTPUIFSNT GPS QIPTQIUF ETPSQUJPO XJUI UIF TUFFM TMH OE UJWUFE SCPO ¼jmjm 395m 20175
306 +,PSFO4P&OWJSPO&OH j Ò m ² p³ a j ädºjº. 3.2.1. Langmuir pî Langmuir pî 12) ºÞ p jj²äù²p ²º²ÈjÐÙ Langmuir p ºpº. 11) œ Î Î á œ â ª ª, Q 0²p¼p(mg/g), K L²Langmuir, C e²flp Ð(mg/L) º. Fig. 2(b) º. R 2 ()²m jð ²Ð, 1aaÈ jjº² ä º. Freundlich Langmuir pî j R 2 jvm ÑdÈÅjjmjº. FreundlichR 2s0.779~0.979, Langmuir² 0.964~0.999 Langmuir pî Èlºjº º. vq 0a89.3 mg/gèk, k 9) ² Q 0a 5.3 mg/g p ¼p17 º. mq 0a29.8 mg/g va 3 º. (3) 3.88~6.68 mg/g, m1.18~1.86 mg/g, R 2 ² v 0.944~0.997, m 0.917~0.991 º(Table 3, Fig. 3). Table 3. 1TFVEPGJSTU OE QTFVEPTFPOE PSEFS POTUOUT OE 4UFFMTMH "UJWUFE SCPO PSSFMUJPO PFGGJJFOUT GPS QIPTQIUF ETPSQUJPO POUP TUFFM TMH OE UJWUFE SCPO U WSJPVT ETPSCFOU EPTFT "ETPSCFOU EPTF HN- 1TFVEPGJSTUPSEFS L NJO C R F 3 1TFVEPTFPOEPSEFS L HNH NJO R F 1TFVEPGJSTUPSEFSSUFPOTUOU C "ETPSQUJPOQJUZ 1TFVEPTFPOEPSEFSSUFPOTUOU 3 3.3. pð vmñðjj 1Ð 2Ðjí, jº. 3.3.1. 1Ð 1мjLagergrenkk ÐØHoMcKayk Ùl º. 13,14) 1Ð(4)z, á Î Þ à ß (4) (4) (5) z º. Þ à ßá à Î (5), k 1² 1 Ð(min -1 ), q t² e t p(mg/g), q e² fl p(mg/g) º. k 1v0.050~0.553 min -1, m 0.016~0.026 min -1, q e² v Fig. 3. 1TFVEPGJSTU PSEFS LJOFUJT PG QIPTQIUF POUP TUFFM TMH OE UJWUFE SCPO C U WSJPVT ETPSCFOU EPTFT Journal of KSEE Vol.39, No.5 May, 2017
+,PSFO4P&OWJSPO&OH f pñjvm 307 3.3.2. 2Ð 2ÐHoMcKayk Ù l (6) z º. 13) á Ï Þ à ß Ï (6) (6) (7) zmjº. q e²v 3jº. ²v amºjpdw v (Al 3+, Ca 2+, Mg 2+ ) Ðj äùº. 15) jv 2 g q e²10.8 mg/gls9.9 mg/g js º. am6 g 2s q e²3.3 mg/gls3.2 mg/gj² R a2åjjº²ä º. Î Ï áï Î â (7) k 2²2Ð(g/mg min), q tq e² 1Òjº. k 2²v0.023~0.136 g/mg min, m 0.025~0.122 g/mg min º. q e²v10.8~18.4 mg/g, m 3.30~5.49 mg/g, R 2 ²v0.992~0.999, m 0.999 º(Table 3, Fig. 4). 2s R 1º2Å í² vmñj 2È Åjjº²ä º. 2 q e k 2j, k 2² 3.4. phôñn pñn phaajôqj²äº (Fig. 5). v²ph 2Ñ n47% (0.5 g)99% (1.5 g), qjph 8²Ñn42% (0.5 g)95% (1.5 g)qjº. mð ph 2 Ñn 97% (6 g) 85% (3 g), qjph 8² Ñn 91% (6 g) 80% (3 g) qj º. ²v²pHaôhj jø¼jmaj, pha ôphåjaoíø Fig. 4. 1TFVEPTFPOE PSEFS LJOFUJT PG QIPTQIUF POUP TUFFM TMH OE UJWUFE SCPO C U WSJPVT ETPSCFOU EPTFT Fig. 5. 1IPTQIUF SFNPWM FGGJJFOZ PG TUFFM TMH OE UJWUFE SCPO C XJUI JOJUJM Q) U WSJPVT ETPSCFOU EPTFT ¼jmjm 395m 20175
308 J. Korean Soc. Environ. Eng. 이승한 김창규 박정근 최동광 안종화 Fig. 6. Fig. 7. Scanning electron microscope images for steel slag before (a) and after (b) phosphate adsorption. Scanning electron microscopy coupled to energy dispersive spectrometry analysis of smooth (a) and rough (b) surfaces of steel slag after phosphate adsorption. 산염과의 반발력이 증가하기 때문인 것으로 추정된다. 반 면에 정석반응은 비교적 높은 ph를 요구하기 때문에 본 실 험에서 사용된 인 제거 기작은 정석반응보다는 흡착반응에 더 가깝다고 볼 수 있다. 15) 16) 3.5. 현미경 분석 인 제거효율이 99% 이상의 실험조건에서 제강슬래그의 흡착반응 전, 후 입자의 표면을 분석한 결과 반응전의 표면 ( ( ))보다 반응후의 표면( ( ))이 거칠어짐을 확인 하였다. 제강슬래그를 이용한 인 흡착반응 후 슬래그의 매 끈한 표면( ( ))에서는 인이 검출되지 않았지만 거친 부 분( ( ))에서는 인이 검출되었다. 이는 슬래그 표면에 인이 부착되면서 표면이 거칠어진 것으로 추정된다. Fig. 6 a Fig. 6 b Fig. 7 a Fig. 7 b 본 연구는 폐수 중에 존재하는 인산염을 제거하기 위하여 제강슬래그와 활성탄을 이용하여 투입 양 변화, 폐수의 초 기 ph의 변화에 따른 인산염의 제거특성과 반응속도상수 와의 관계를 회분식 실험을 통하여 분석하였다. 활성탄의 경우 질량당 인 제거량이 3.2 mg P/g로 제강슬래그(9.9 mg P/g slag)보다 약 3배 낮은 값을 나타내어 제강슬래그의 인 KSEE Acknowledgement 본 연구는 환경부의 환경정책기반공공기술개발사업에서 지원받았습니다. References 4. 결 론 Journal of 흡착 성능이 활성탄에 비해 우수하였다. 제강슬래그와 활성 탄 모두 Langmuir 흡착등온식과 유사 2차식에 더 적합하였 다. 초기 ph의 변화에 따른 인 제거효율을 비교하였을 때 ph 2~8 범위에서 제강슬래그와 활성탄이 초기 ph가 낮아 질수록 제거효율이 증가하였다. Vol.39, No.5 May, 2017 1. Song, M. Y., Jeon, M. S., Lee, H.. and Jeong,. S., A study on the traveling route and control method of eutrophication sources in Han river basin, Gyeonggi Research Institute(2015). 2. Lee, S. H. and Jang, J. H., Preliminary study on the development of phosphorous removal process by converter and furnace slags,, 18(2), J. Korean Soc. Water Wastewater
+,PSFO4P&OWJSPO&OH f pñjvm 309 137~144(2004). 3. Kim, H. Y. and Kim,. S., The adsorption treatment features of wastewater containing alizarin red S dye employing granular activated carbon as adsorbent, J. Korean Soc. Water Sci. Technol., 22(5), 119~130(2014). 4. Martin, M. J., Artola, A., alaguer, M.. and Rigola, M., Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions, Chem. Eng. J., 94, 231~239(2003). 5. Park, J. H., Kim, J. H., Jung, J., Jun, S. J. and Park, H.., The application plans of slag to prevent non-point source pollutants flowing into the retention pond, J. Wetlands Res., 12(2), 67~73(2010). 6. Statistics Korea Home Page, http://kostat.go.kr(2014). 7. APHA. Standard method for the examination of water & wastewater, 22nd ed, American Public Health Association, Washington. C., USA(2012). 8. Xiong, J., Hea, Z., Mahmooda, Q., Liu,., Yang, X. and Islam, E., Phosphate removal from solution using steel slag through magnetic separation, J. Hazard. Mater., 152, 211~ 215(2008). 9. Lee, S. H. and Hwang, J. J., Phosphate removal efficiency and the removal rate constant by particle sizes of converter slag and conditions of the wastewater, J. Korean Soc. Water Wastewater, 26(6), 841~849(2012). 10. Ragheb, S. M., Phosphate removal from aqueous solution using slag and fly ash, HRC J., 9(3), 270~275(2013). 11. Na, C. K., Han, M. Y. and Park, H. J., Applicability of theoretical adsorption models for studies on adsorption properties of adsorbents(1), J. Korean Soc. Environ. Eng., 33 (8), 606~616(2011). 12. Langmuir, I., The adsorption of gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40, 1361~ 1403(1918). 13. Ho, Y. S. and Mckay, G., Pseudo-second order model for sorption processes, Process iochem., 34, 451~465(1999). 14. Simonin, J. P., On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics, Chem. Eng. J., 300, 254~263(2016). 15. Xue, Y., Houa, H. and Zhu, S., Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag, J. Hazard. Mater., 162, 973~980(2009). 16. Kim, E. Ho., Yim, S.., Jung, H. C. amd Lee, E. J., Hydroxyapatite crystallization from a highly concentrated phosphate solution using powdered converter slag as a seed material, J. Hazard. Mater., 136, 690~697(2006). ¼jmjm 395m 20175