B3-4 표철식 최종 업.PDF

Similar documents
歯이시홍).PDF

°í¼®ÁÖ Ãâ·Â

1217 WebTrafMon II

슬라이드 제목 없음

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

Microsoft PowerPoint ppt

PowerPoint 프레젠테이션

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]

I

- 2 -


김기남_ATDC2016_160620_[키노트].key

¼º¿øÁø Ãâ·Â-1

<붙임2> IT분야 국제표준 채택현황 일련 제안규격명 규격번호 국제문자코드-한글음절문자표 (Hangul syllables) 단방향멀티케스트전송규격 (ECTP-1: Enhanced Communication Transport Protocol-S

Microsoft Word - FS_ZigBee_Manual_V1.3.docx

untitled

PowerChute Personal Edition v3.1.0 에이전트 사용 설명서

RFID USN_K_100107

<333820B1E8C8AFBFEB2D5A B8A620C0CCBFEBC7D120BDC7BFDC20C0A7C4A1C3DFC1A42E687770>

04-다시_고속철도61~80p


歯I-3_무선통신기반차세대망-조동호.PDF

Remote UI Guide



歯4.PDF

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

<3034B1E2B9DD32302DBAB8B0EDBCAD2D DC0FCC6C4C0DABFF BAB0C3A53420C8A8B3D7C6AEBFF6C5A9292E687770>

TCP.IP.ppt

Coriolis.hwp

歯A1.1함진호.ppt

歯Cablexpert제안서.PDF

untitled

SchoolNet튜토리얼.PDF

Oracle Apps Day_SEM

0125_ 워크샵 발표자료_완성.key


MAX+plus II Getting Started - 무작정따라하기

½Éº´È¿ Ãâ·Â

±è¼ºÃ¶ Ãâ·Â-1

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

FMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

untitled

DBPIA-NURIMEDIA

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

슬라이드 1

Information Memorandum Danam Communications Inc

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1),

1

을 할 때, 결국 여러 가지 단어를 넣어서 모두 찾아야 한다는 것이다. 그 러나 가능한 모든 용어 표현을 상상하기가 쉽지 않고, 또 모두 찾기도 어 렵다. 용어를 표준화하여 한 가지 표현만 쓰도록 하여야 한다고 하지만, 말은 쉬워도 모든 표준화된 용어를 일일이 외우기는

00내지1번2번

BGP AS AS BGP AS BGP AS 65250

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

29 Ⅰ. 서론 물리학자들이 전파의 이론을 정립한 이후, 이를 기술적으로 실현함은 물론 적정 수준의 19세기 물리학자인 페러데이, 맥스웰, 헤르츠 등의 연구 결과로 인류는 전기장과 자기장의 변화 에 따른 전파를 만들어 낼 수 있게 되었고, 인류에 게 있어 없어서는 안되

À̵¿·Îº¿ÀÇ ÀÎÅͳݱâ¹Ý ¿ø°ÝÁ¦¾î½Ã ½Ã°£Áö¿¬¿¡_.hwp

02손예진_ok.hwp

Manufacturing6

歯김병철.PDF

, N-. N- DLNA(Digital Living Network Alliance).,. DLNA DLNA. DLNA,, UPnP, IPv4, HTTP DLNA. DLNA, DLNA [1]. DLNA DLNA DLNA., [2]. DLNA UPnP. DLNA DLNA.

untitled

< C6AFC1FD28B1C7C7F5C1DF292E687770>

FTTH 기술발표

PCServerMgmt7

Bluetooth


Á¦4Àå-Á¦2ÀýÀÌÅë±â±â.hwp

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1

목 차 Ⅰ. 정보기술의 환경 변화 Ⅱ. 차량-IT Convergence Ⅲ. 차량 센서 연계 서비스 Ⅳ. 차량-IT 융합 발전방향

제20회_해킹방지워크샵_(이재석)


15_3oracle

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

Service-Oriented Architecture Copyright Tmax Soft 2005

6주차.key

OP_Journalism

thesis

6.24-9년 6월

H3050(aap)

<4D F736F F D F4E464320B1E2BCFAB0FA20BCADBAF1BDBAC0C720C7F6C0E7BFCD20B9CCB7A120C0FCB8C15FBCF6C1A45F>

1.장인석-ITIL 소개.ppt

歯AG-MX70P한글매뉴얼.PDF

Microsoft PowerPoint - eSlim SV [ ]

歯DCS.PDF

untitled

F1-1(수정).ppt

슬라이드 제목 없음

목차 BUG offline replicator 에서유효하지않은로그를읽을경우비정상종료할수있다... 3 BUG 각 partition 이서로다른 tablespace 를가지고, column type 이 CLOB 이며, 해당 table 을 truncate

ecorp-프로젝트제안서작성실무(양식3)

ARMBOOT 1

06_ÀÌÀçÈÆ¿Ü0926

SRC PLUS 제어기 MANUAL

UHF-RFID Hand Held Reader개발 계획 년 5월 ㈜하이트랙스 기술부

03.Agile.key

<BDBAB8B6C6AEC6F95FBDC3C0E55FC8AEB4EB5FC0CCC1D6BFCF5F E687770>

airDACManualOnline_Kor.key

DW 개요.PDF

Voice Portal using Oracle 9i AS Wireless

Transcription:

2

3

4

Ubiquitous Network BCN U biquitous S ensor N etwork 5

6 Ad-hoc network Sensing Read/Write Read Control

7

/ 125KHz,134KHz 13.56Mhz 433.92MHz 860MHz~960MHz 2.45GMhz (ISO 18000-2) (ISO 18000-3) (ISO 18000-7) (ISO 18000-6) (ISO 18000-4), POST CARD / Invitation for Hitachi Exhibition 2002, Tire Pressure Sensor. Passport, ID card RFID chip 8

9

10

Host Reader TAG APPLICATION COMMANDS APPLICATION RESPONSES Encoder Decoder Command/ Response Unit Tag Driver And Mapping Rules AIR INTERFACE COMMANDS RESPONSES Tag Physical Memory Logical Memory Map #ISO/IEC TR18001 (TR):ARP ARP Logical Memory Data Protocol Processor Physical Interrogator SG1 SG1 SG1 SG3 ISO/IEC 15961 ISO/IEC 15962 Host Interrogator Tag Data Syntax(CD) Functional Commands and Other syntax features(cd) ISO/IEC 15962 Annexes SG2 #ISO/IEC TR15963(FCD) Unique ID ISO/IEC 18000-1,2,3,4,6,7 1. Generic(FDIS) 2. Below 135kHz(FDIS) 4. 2.4GHz(FDIS) 6. 860-960MHz(FDIS) 3. 13.56MHz(FDIS) 7. 433MHz(FDIS) 1. : ISO/IEC JTC1/SC31/WG4 2. : NP CD FCD FDIS IS 11

12

13

14

Standards and Projects EPCglobal 1 EPC Tag Data Specification SAG Version 1.24 Later slide EPCglobal 2 900 MHz Radio Frequency (RF) Identification Tag Specification (Class 0) Candidate recommendation EPCglobal 3 13.56 MHz ISM Band Class 1 Radio Frequency (RF) Identification Tag Interface Specification (Class 1) Candidate recommendation EPCglobal 4 860 MHz - 930 MHz Class I Radio Frequency (RF) Identification Tag Radio Frequency & Logical Communication Interface Specification (Class 1 Version 1) HAG Candidate recommendation EPCglobal 5 OID Radio Frequency Identity Protocols Generation 2 Identity Tag (Class 1): Protocol for Communications at 860 MHz 960 MHz (Generation 2) HAG EPCglobal 6 Reader Protocol SAG EPCglobal 7 Savant Specification SAG EPCglobal 8 Physical Markup Language (PML) Core Specification, XML Schema and Instance Files SAG EPCglobal 9 Object Name Service (ONS) Specification SAG Schedule Interim conference calls and webinars 27-28 May 2004 - HAG - Anaheim, CA 28 September - 1 October 2004 - Baltimore, MD: UHF Generation 2 15

16

(Source: Auto-ID Center) 17

18

Antenna Antenna 1 TAG 2 TAG Reader TAG 3 TAG (Modulated Reflection) 19

20

Demodulator Voltage Multiplier Phase Modulator Clock Generator 21

22

23 Application Layer Middleware Layer Reader Layer Telemetics Environment Alien Reader Legacy Systems ETRI Reader SD DATAX iz 9200 SDRD PORTA SD RD PORTB A ONLINE B BWD - ENTER PORTSEL DISC DATA + SD

24

25

Reader #1 Channel #1 (f1) Reader #2 Channel #2 (f2)......... Reader #M Channel #N (fn) 26

Reader #1 Reader #2... Reader #M... Channel #1 (f1) Channel #2 (f2)... Channel #N (fn) Reader #1 Reader #2 Reader #M Reader Reader Reader 27

I When power matching (R T = R r ; R v =0; X T =X A ) P e = P S Only half of the power drawn from the antenna is transferred to the Load (R T ) The other half is reflected back into the space 28

29

Slotted ALOHA procedure < Transponder system with slotted ALOHA anticollision procedure > 30

Transmit. TAG 1 TAG 2 TAG 3 TAG 4 TAG n Receiver If 40kbps 25usec * 64bit=1.6msec(data length) 250 Delay slot 400msec(same time) 31

Binary Search Algorithm 32

Binary Search Algorithm < Manchester code and NRZ code> 33

Binary Search Algorithm 34

Binary Search Algorithm 35

36

Start Reader [PingID] [Preamble] [CLKSYNK] [SOF] [DATA] [EOF] [EOF] [Bin modulation] 000 001 010 011 100 101 111... Tag 1 [CRC][1010010010100100...] Tag 2 [CRC][1010011010100101...] Tag 3 [CRC][1110110011100111...] Backscattering Backscattering Backscattering Contention Transaction gap Reader [PingID] [Bin modulation] [Preamble] [CLKSYNK] [SOF] [DATA] [EOF] [EOF] 000 001 010 011 100 101 111... [PTR]=[0000 0000][LEN]=[0000 0011][VALUE]=[101] Contention Transaction gap Tag 1 [CRC][1010010010100100...] Tag 2 [CRC][1010011010100101...] Tag 3 [CRC][1110110011100111...] Backscattering Backscattering Reader [PingID] [Preamble] [CLKSYNK] [SOF] [DATA] [EOF] [EOF] [Bin modulation] 000 001 010 011 100 101 111... [PTR]=[0000 0000][LEN]=[0000 0110] [VALUE]=[101001] Transaction gap Tag 1 Tag 2 Tag 3 [CRC][1010010010100100...] [CRC][1010011010100101...] [CRC][1110110011100111...] Backscattering Backscattering 37

Reader [ScrollID] [Preamble] [CLKSYNK] [SOF] [DATA] [EOF] [CW... [PTR]=[0000 0000] [LEN]=[0000 1001][VALUE]=[101001001] Transaction gap Tag 1 [CRC][1010010010100100...] Tag 2 Tag 3 [CRC][1010011010100101...] [CRC][1110110011100111...] Backscattering Reader [Quiet] [Preamble] [CLKSYNK] [SOF] [DATA] [EOF] [PTR]=[0000 0000][LEN]=[0000 1001] [VALUE]=[101001001] Tag 1 [CRC][1010010010100100...] Tag 2 [CRC][1010011010100101...] Tag 3 [CRC][1110110011100111...] No reply Reader [PingID] [Bin modulation] [Preamble] [CLKSYNK] [SOF] [DATA] [EOF] [EOF] 000 001 010 011 100 101 111... [PTR]=[0000 0000] [LEN]=[0000 0000] [VALUE]=[0] Transaction gap Tag 1 [CRC][1010010010100100...] Tag 2 [CRC][1010011010100101...] Tag 3 [CRC][1110110011100111...] Backscattering Backscattering 38

Reader [ScrollID] [Preamble] [CLKSYNK] [SOF] [DATA] [EOF] [CW... [PTR]=[0000 0000] [LEN]=[0000 0011] [VALUE]=[101] Transaction gap Tag 1 Tag 2 Tag 3 [CRC][1010010010100100...] [CRC][1010011010100101...] [CRC][1110110011100111...] Backscattering Reader [Quiet] [Preamble] [CLKSYNK] [SOF] [DATA] [EOF] [PTR]=[0000 0000][LEN]=[0000 0011] [VALUE]=[101] Tag 1 [CRC][1010010010100100...] Tag 2 [CRC][1010011010100101...] Tag 3 [CRC][1110110011100111...] No reply Reader [PingID] [Bin modulation] [Preamble] [CLKSYNK] [SOF] [DATA] [EOF] [EOF] 000 001 010 011 100 101 111... [PTR]=[0000 0000] [LEN]=[0000 0000] [VALUE]=[0] Transaction gap Tag 1 Tag 2 Tag 3 [CRC][1010010010100100...] [CRC][1010011010100101...] [CRC][1110110011100111...] Backscattering 39

Reader [ScrollID] [Preamble] [CLKSYNK] [SOF] [DATA] [EOF] [CW... [PTR]=[0000 0000] [LEN]=[0000 0011][VALUE]=[111] Transaction gap Tag 1 [CRC][1010010010100100...] Tag 2 [CRC][1010011010100101...] Tag 3 [CRC][1110110011100111...] Backscattering Reader [Quiet] [Preamble] [CLKSYNK] [SOF] [DATA] [EOF] [PingID] [Preamble] [CLKSYNK] [SOF] [DATA] [EOF] END [PTR]=[0000 0000] [LEN]=[0000 0011] [VALUE]=[111] Tag 1 [CRC][1010010010100100...] Tag 2 [CRC][1010011010100101...] Tag 3 [CRC][1110110011100111...] No reply 40

41

42

Comparison of Technologies for Flexible Electronics 43

44

Sensors: device whose output can be quantified and changes with one or more physical phenomena. This output information can be used for process monitoring and control. Transducer: device which transforms energy from one domai n (magnetic, thermal, mechanical, optical, chemical, electrical) into another A detector: device indicating presence, absence, or change ofthe signal qualitatively, either as a binary signal or as a low resolution signal with several states. 45

Example of sensors Magnetic sensors Honeywell s HMC/HMR magnetometers Photo sensors Clairex: CL9P4L Temperature sensors Panasonic ERT-J1VR103J Accelerometers Analog Devices: ADXL202JE Motion sensors Advantaca s MIR sensors Properties of sensors Range Accuracy Repeatability Linearity Sensitivity Efficiency Resolution Response time Overshoot Drift and stability Offset Packaging Property of the circuit 46

We need to integrate the computation capa bility into the physical world to improve th e quality of life, and to facilitate applicatio ns that were not feasible before To make this possible, we need a large nu mber of computing devices. This mandates that they have very low cost and consume l ittle power For low-cost and low-power devices to do s ophisticated work, they need communicati on capability For a large number of devices to communi cate, radio communication is probably the only feasible option Finally, the current technology has enable d all these to happen To incorporate intelligence in the physical world Large number of computing devices Low-cost devices Wireless communication 47

Remote Sensing via Satellite Dataloggers Traffic Monitoring RFID Ad-hoc mobile networks Wireless Sensor Networks 48

RFID Tag with Sensor 49

Sensor Node Platform 50

Sensor Node Platform 51

52

53

1. Why Sensor Networks? Small Processors (Size) Low cost Permits remote object monitoring Unattended mode of operation Coordination Deployed in toxic locations or remote regions Latest technology for Monitoring 54

2. Features of Sensor Networks What is a Sensor Network? 1000s of sensors deployed to collect, process and store information e.g. weather conditions. Local communication to achieve global objectives Current Ad-hoc protocols are not applicable Popular application areas Medical, Military, Natural Habitat monitoring, micro-organisms monitoring, etc Factors to consider when deploying sensors Low power Large numbers Frequent motion, task dynamics / Device failures Distributed sensing Exception free, unattended operation 55

3. Design Issues Sensor Network Vs Wired / Wireless network Data centric addressed by data values rather than identities Application Specific tailored for specific tasks Types of coordination between sensors to achieve above goals Centralized single point of failure energy inefficient non scalable Distributed localized algorithms robust to network partitions/ node failures short range of communication - energy efficient scalable low communication overhead simpler self-configuration 56

Sensor Node Considers issues like 4. Communication Architecture 57

4. Communication Architecture Considers issues like Hardware constraints Productions costs Environment Transmission media Current Ad-hoc protocols are not applicable 58

4. Communication Architecture Protocol Stack 59

5. Physical Layer Research Areas Modulation schemes Overcome effects of Signal propagation Hardware design Aim minimize energy Power d n, d= distance and 2<=n<=4. (n=4 for low lying antennas) M-ary reduces on-time by sending multiple bps Binary energy efficient - low complexity, low power consumption Suggested solution- Ultra wideband base-band transmission TDMA transmission resilience to multi-path Low transmission power simple transceiver circuitry. 60

Type Infrastructure Power Efficiency Goal Cellular Yes- Centralized Not power efficient Hi QoS/ bandwidth efficient Bluetooth No. Shortrange wireless Power 20dBm/ range 10m Replace cable between electronic terminals with RF links MANET Yes Not power efficient Hi QoS under mobility conditions Sensor N/w requires No Power~0dBm/ range<10m Power conservation 61

Research issues:- MAC for sensor networks Error control coding schemes Power saving modes Suggested MACs SMACS Self organizing MAC for sensor network Nodes discover neighbors, duplex time slots, random wake-up schedule and turn off in idle state EAR - Eaves-Drop-and-register algorithm (works with SMACS) Continuous service in mobile / stationary conditions CSMA-based MAC phase changes, constant listen periods and random delays. Hybrid TDMA/FDMA number of channels calculated for min. system energy 62

Design issues:- Power Efficient Data centricity Data Aggregation Attribute based addressing Internetworking with external networks Suggested Schemes Small Minimum Energy Communication Network (SMECN) Creates sub-graphs of sensor networks with minimum energy paths Flooding Broadcasting of data to all neighbors. Issue - resource blindness, Implosion 63

Gossiping Send data to randomly selected neighbors Sensor Protocols for Information via Negotiation Send data to only interested nodes. Send descriptive data rather than entire data. Sequential Assignment Routing Create multiple trees with roots are one hop away from sink. Nodes select a tree to route data back based on energy resources Low-Energy Adaptive Clustering Hierarchy Formation of clusters to conserve energy Directed Diffusion Data centric routing based on interests and gradients 64

Transport Layer Not explored much as yet. Option UDP for sink to sensors & TCP for sink to user * Proposed Solution for transport Application Layer Yet unexplored. 3 possible solutions:- - Sensor Management Protocol - Task Assignment and Data Advertisement Protocol - Sensor Query and Data Dissemination Protocol 65