Studies on the Chemical Characteristics of Hovenia (Hovenia dulcis) Honey Produced in Korea Weon Ki Paik*, Ae Kyung Kwak, Myeong Lyeol Lee 1 and Ha Sik Sim 1 Division of Life Science & Chemistry, Daejin University 1 Department of Agricultural Biology, National Academy of Agricultural Science, RDA (Received 4 February 215; Revised 24 May 215; Accepted 1 June 215) Abstract In order to use as a new functional food material, we analyzed the chemical components including the organic compounds, minerals and vitamin C of hovenia honey which were produced in South Korea. The condensed rate of methanol extraction in honey was 79.5% and main organic compounds that extract by organic solvents in GC-MS analysis were trichloromethane, acetoxyethane, cyclopentane, methane trichloride and so on. Also, main aromatic compounds that extract by organic solvents in SPME analysis were benzoic aldehyde, carbamide, isourea, oxacyclobutane, dimazine and many more. As proximate composition, crude ash content was higher than acacia honey (.6%) and manuka honey (.24%) by.36%, and crude protein was higher than acacia honey (.1%) and manuka honey (.23%) by.3%, but the crude fat of hovenia and manuka honey was lower content than acacia honey (.44%) by.34%. Free sugar that analyze by HPLC consisted of fructose 38.6%, glucose 28.75%, and total sugars was 67.35%. Minerals by ICP analysis were detected total 24 kinds, K 1.695ppm > Si 6.121ppm > Na 5.898ppm > Ca 1.9855ppm etc. Vitamin C was not detected and the antioxidation test result by DPPH free radical scavenge effect of hovenia honey was highered than acacia honey but lowered than manuka honey. As a result, we could confirm that Korean hovenia honey is more beneficial in nutritious substances than acacia honey. Key words: Hovenia honey, Organic compounds, Minerals, GC-MS, SPME, ICP. ( ) ( ) (Honey Plants) *Corresponding author. E-mail: 1@daejin.ac.kr 75
76 (, 23; 27;, 211),,,,,,,,,,,,,,,, (, 23),. (Honey),,,,,,, (, 27). (33kcal/1g),, (Ferreres et al., 1991; Sabatier et al., 1992; Chen et al., 2) (Blaser, 199; Willix et al., 1992; Molan, 1992, 21, 22; Shin and Ustunol, 25), (, 1994)., hydroxy methyl furfur(hmf), (Kushnir, 1979; White et al., 1962, 1963, 1967, Sample (raw honey) Methanol extracts Methanol extration (Sample : MeOH : H 2 O = 1:4:1) Evaporated Partition with Hexane and water 2 (Hexane:water = 1:1) Water phase Chloroform 2 (Chloroform:water = 1:1) Water phase Ethyl acetate 2 (Ethyl acetate:water = 1:1) Water phase Butanol 2 (Butanol water=1:1) Hexane phase chloroform phase Ethyl acetate phase Butanol phase Water phase Evaporated Evaporated Evaporated Evaporated Evaporated Hexane chloroform Ethyl acetate Butanol Water Fig. 1. Schematic diagram of solvent extraction of each honey.
1979, 198; Davies, 1975), (1971), (1972), (1984) HMF, diastatic activity,,, (1991), diastase HMF. (21), (25), (, 1995;, 21, 22;, 22;, 23;, 23;, 23;, 28; 213). (Hovenia dulcis), (Robinia pseudoacacia) (Leptospermum scoparium). Haxane, Chloroform, Ethyl acetate, Butanol. (SPME) Gas Chromatography SCAN ( : Agilent 689GC/5973iMSD, ). ( 213-23 ). 15 C, Kjeltec 84 Analyzer unit Foss( ), FOSS Drive unit 25( ), 5 C.,,, (, 1997). 212 5, honeynz( ) 213, 214 UMF(Unique Manuka Factor) 1+ 15+. 1g 5ml(MeOH 4 : H 2 O 1) 24 Fig. 1 5 (fructose, glucose, sucrose, lactose, maltose) 5% EtOH syringe filter E.P tube HPLC( : Condensed mass (g) 9 8 7 6 5 4 3 2 1 Hexane Chloroform Ethyl acetate Butanol H 2 O Hovenia honey Acacia honey Manuka honey Fig. 2. Condensed mass (g) of solvent extractions of hovenia (Hovenia dulcis), acacia (Robinia pseudo-acacia) and manuka (Leptospermum scoparium) honey 1 (g). 77
78 Shiseido SP-2, Japan). C 1g 5% metaphosphoric acid 2mL homogenize 5mL 5% metaphosphoric acid 2mL 15,rpm 5 HPLC. (, 23)., 1g (HClO 4 : H 2 SO 4 : H 2 O 2 = 9 : 2 : 5) 25mL (hot plate), 1mL (Whatman No. 2). ICP(Inductively coupled plasma) Emission Spectrometer Analyzer(Model Name: Optima 2DV, PerkinElmer, USA), forward RF power; 1,3W, pump flow rate; 1.5ml/min, plasma flow; 15L/min, auxiliary flow;.2l/min, nebulizer flow;.65l/min. E-tube.4ml,.1mM DPPH(1,1-Diphenyl-2- picryhydrazyl, Sigma D9132-1G).5ml.1ml 1 vortexing 3. ELISA 517nm,. C. Free radical (%) = 1-{( / ) 1} 1g (MeOH) 79.5%, 93.6%, H 2 O 68.7g, 83.26g, Butanol Table 1. Organic compound and aromatic compound composition of hovenia honey Solvent Chloroform Butanol Haxane Ethyl acetate Organic compound by GC-MS analysis Trimethyleneoxide, Acetone, Skelly solve B, Hexyl hydride, Freon 2, Trichloromethane, Formyl trichloride 2-Propanone, Methylketone, Dimethyl ketone, Ketopropane, Dimethylketal, Hexyl hydride, Gettysolve-B, Acetic acid, Ethyl acetate, Acetidin, Acetoxyethane, Methenyl trichloride, Hemostyp, Butyl hydroxide, Propylcarbinol, Benzene, Methylbenzene, Methacide, 4-Heptanone, 1,1'-Oxybisbutane Isohexane, Methylpentane, Pentane, Skelly solve B, Hexyl hydride, Gettysolve-B, Butanal, 2- Methylbutyraldehyde, Butyraldehyde, Cyclopentane, Benzene, Heptanen, Heptyl hydride, Gettysolve-C, Dipropylmethane Acetone, Isopentane, iso-pentane, 2-Methylbutane, 1,1,2-Trimethylethane, Ethyldimethylmethane, Acetoxyethane, Isoamylhydride, Skellysolve B, Hexyl hydride, Gettysolve-B, Acetic acid ethyl ester, Ethyl acetate, Acetoxyethane, Trichloromethane, Methane trichloride, Methenyl trichloride, Isopropyl acetate, 2-Ace toxypropane, 2-Propyl acetate, 1-Ethoxybutane, propanoic acid, Ethyl propanoate Aromatic compound by SPME analysis Propionaldehyde, Propional, Methylacetaldehyde, n-propanal, 1-Propanone, Trimethyleneoxide, Oxacyclobutane, 1,3-Epoxypropane, 1,3-Propylene oxide, Trimethylene oxide, 1,1-dimethyl, N,N-Dimethylhydrazine, Dimazine, 1,1-Dimethylhydrazine, unsym-dimethylhydrazine, Unsymmetrical dimethylhydrazine, Ureophil, Ureaphil, Urea-13C, Carbamide, Isourea, Carbonyldiamide, Pseudourea, Carbamimidic acid, Benural 7, 2H-Pyran, Oxane, Oxacyclohexane, Pentamethylene oxide,skelly solve B, Hexyl hydride, Gettysolve-B, Freon 2, Trichloromethane, Methane trichloride, Acetamide, Fluoroacetamide, 1-Propene, 2-(p-Methoxyphenyl), 2-(4-methoxyphenyl), 1,1,1-Trifluoropropene, 3,3,3-Trifluoropropene, 3-Heptyne, Benzenecarbonal, Benzoic aldehyde, Oxirane, Phenyloxirane, 1-Phenyloxirane, Styrene epoxide, Styrene7,8-oxide, benzene, 2-Furanmethanol, Benzyl alcohol, cis-linalool oxide, 2-Propenamide, Ethyl ethynyl ketone, Lilacaldehyde
Chloroform Abundance 25 2.95 2 15 1 5 Time Butanol Abundance 14 12 1 8 6 4 1.936 1.657 2. 4. 6. 8. 1. 12. 14. 16. 18. 2. 22. 2.75 2.591 2.322 2. 2 931 3.42 4.758 1.635 3.281 4.652 Time 2. 4. 6. 8. 1. 12. 14. 16. 18. 2. 22. Hexane Abundance 2.14 2 1.875 1.933 2.322 15 1 1.818 5 2.541 Time 2. 4. 6. 8. 1. 12. 14. 16. 18. 2. 22. Ethyl acetate Abundance 2 15 2.15 1 1.999 5 2.643 1.6342.59 Time 2. 4. 6. 8. 1. 12. 14. 16. 18. 2. 22. SPME Abundance 2.95 12.617 12 1 8 16.365 18.916 6 7.648 18.685 4 2.47 3.166 15.52917.429 22.22 1.777 3.242 6.29 1.621 16.67 584 24.592 28.599 45.954 Time 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. Fig. 3. Organic compound composition spectra of hovenia honey by each solvent. 79
Table 2. Proximate chemical composition of hovenia, acacia and manuka honey (unit: %) 8 Components Sample Moisture Crude protein Crude fat Ash Carbohydrate Hovenia honey 22.19.15.3..34.13.36.23 76.81.21 Acacia honey 18.75.42.1.1.44.1.6.1 8.65.39 Manuka honey 19.79.7.23..34.9.24. 79.3.3 Table 3. Contents of free sugars and vitamin C on hovenia, acacia and manuka honey Contents Sample Hovenia honey Acacia honey Manuka honey Vitamin C (mg/1g)...... Total sugars 67.35.89 72.81 2.19 7.23 1.53 Fructose 38.6.3 48.52 1.85 39.7 2.4 Glucose 28.75.86 24.29.33 31.16.86 Free sugars Sucrose...... (%) Lactose...... Maltose...... 6.71g, 5.1g. Hexane Ethyl acetate Chloroform.57g, 3.47g..68g, 1.4g, 3.6g,.35g. Haxane, Chloroform, Ethyl acetate, Butanol H 2 O. 84.48% H 2 O 74.54g (, 213),, (Kim Rhee, 1996) H 2 O. (MeOH) 91%, H 2 O 78.32g Butanol, Hexane, Ethyl acetate Chloroform 7.6g,.67g, 4.6g.35g (Fig. 2). Fig. 3 Table 1. GC-MS Chloroform Trichloromethane(peak abundance: 2,7,), Acetone, Butanol Acetoxyethane(peak :1,6,). Methenyl trichloride, Acetidin, Haxane Cyclopentane(peak : 2,8,), Heptanen Ethyl acetate Methane trichloride(peak : 2,5,), Isopentane. SPME Benzoic aldehyde(peak :11,8), Propional, Oxacyclobutane, Propionaldehyde, Dimazine, Methylacetaldehyde, Trimethyleneoxide, Trimethylene oxide, Carbamide, Isourea. (213) GC-MS Trichloromethan, Formyl trichloride, Acetidin, Propyl carbinol, Hemostyp, Methylolpropane Triptane, Cyclopentane, Heptyl hydride, Dipropylmethane, Acetoxyethane, Propanoic acid, SPME Hydrazine, Carbamide resin, Benzoguanamine, Dimazine, Gentanol, Isooctane, Cyclotrisiloxane, Enanthaldehyde, Heptaldehyde, Silane, Cinchoninaldehyde, Quininaldehyde.
Table 4. Inorganic mineral contents of hovenia, acacia and manuka honey Minerals (ppm) Kind of honey Hovenia Acacia Manuka Minerals (ppm) Kind of honey Hovenia Acacia Manuka As.....64.6 Mn...11.1.. Se.287.2.17.24.29. Cr.266....273.1 Mo.55..56.4.17.1 Mg.817.42.492.25.65.6 Zn.291.4 1.482.197.267.36 V.29.1...24.1 Sb.28.1.17.6.217. Be.117.1.118.1.. Pb.5.1.... Ca 1.985.1.294.13 2.223.161 Co.273.1.25.1.269.1 Cu.65.1.119.18.35.1 Cd.4..58..4. Ti.26.1.195.1.236.32 Ni.56..57... Al.251.16.154.17.22.28 Ba.2.6.39.9.1.3 Sr.19.1.19.1.13.1 Fe.22.77.226.5.165.2 Na 5.878.171 4.527.366 5.573.38 B 1.765.26 1.319.521 1.754.158 Li.98..99..5. Si 6.121.643 3.42.569 4.487.4 K 1.695.276 3.91.152 11.865.346 Results are expressed as Mean S.D. 14 12 1 Contents (ppm) 8 6 4 Hovenia honey Acacia honey Manuka honey 2 As Se Mo Zn Sb Pb Co Cd Ni Ba Fe B Si Mn Cr Mg V Be Ca Cu Ag Ti Al Sr Na Li K Minerals Fig. 4. Inorganic mineral contents of hovenia, acacia and manuka honey. 1g 22.19%,.3%,.34%,.36%, 76.81% (Table 2). (213) (.28%), (.57%) (1994).26%. (23) ( 2.71%, 1.6%, 86.41%). 18.75%,.1%,.44%,.6%, 8.6%, 19.79%,.23%,.34%,.24%, 79.3%.. Chung (1984).2%, 81
9 82 Free radical scavenge effect (%) 8 7 6 5 4 3 2 Vitamin C Hovenia honey Acacia honey Manuka honey 1 Conrol.1.5.1.5.1.625.125.25.5 1 5 Conc. of honey (%) Fig. 5. Antioxidation test result of vitamin C, hovenia, acacia and manuka honey by the DPPH free radical scavenge effect..57%,.1%,.12%,.8%.. HPLC Table 3. fructose, glucose sucrose, lactose, maltose, 67.35% fructose 38.6%, glucose 28.75%. (213) (62.27), fructose(35.31%) glucose(26.96%). 72.81% fructose 48.52%, glucose 24.29%, 7.23% fructose 39.7%, glucose 31.16%. fructose, C 3. ICP 24 K 1.695ppm, Si 6.121ppm, Na 5.898ppm, Ca 1.985ppm, 22 Na 4.527ppm, Si 3.42ppm, K 3.91ppm, Zn 1.482ppm (Table 4). (macro nutrient) Mg, Ca, Na, K, (micro nutrient) Mo, Zn, Cu. K 11.865ppm, Na 5.573ppm, Si 4.487ppm, Ca 2.223ppm (Fig. 5), K 3.47, 3.84 Na. (211) K. Ca 6.75, 7.56 Mg 1.66, 1.23.
. (Rashed Soltan, 24). WHO, Cd.4ppm,.58ppm(WHO :.3ppm ), Pb.5ppm(WHO : 1ppm ). free radical,, C. C.625%, free radical 81% (Fig. 5). 3, C,.625%.,.625%.5383%, 1% 5.7873% 5% 67.23%. (213) 1% 1.6%. 1% 2.17% 5% 35.83%, 3 1% 31.64% 5% 73.31%.,. 3.25%,.9% 1% C.. 79.5%, GC-MS Trichloromethane, Acetoxyethane, Cyclopentane, Methane trichloride. SPME Benzoic aldehyde, Carbamide, Isourea, Oxacyclobutane, Propionaldehyde, Dimazine. 22.19%,.3%,.34%,.36%, 76.81%, (.1%) (.6%) (.23%) (.34%). HPLC 67.35%, Fructose 36.6%, Glucose 28.75%, (72.81%) (48.52%) (7.23%) (39.7%), C 3. ICP 24 K 1.695ppm, Si 6.121ppm, Na 5.898ppm, Ca 1.985ppm. K 3.47, 3.84 Na, Ca 6.75, 7.56 Mg 1.66, 1.23.. DPPH 83
84.625% C 81%.5383%. 3, 5% 67.23% (35.83%) (73.31%). ( : PJ9378).,,. 1994., HMF. 23(4): 675-679.,,. 28.. 21(1): 15-21.,,,. 1995.. 18(4): 53-56.,. 1972. free amino acid. 6: 7.,,,,. 213. ( ). 28(5): 345-354.. 23.. J. Fd Hyg. Safety 18(4): 184-194.,,,,,. 23... pp. 178-184.. 23.., 23.. 3p.,,,,,,. 27.. 22(2): 147-152.,,,,. 1971.. 3: 168.,,. 21.. 21(4): 383-388.,,. 22.. 22(1): 66-71.,,,,,,. 22.. 31(5): 899-94.,,,,. 211., Hydroxy Methyl Furfural. 31(2): 241-249.. 25.. 34(2): 162-166.,,,. 1984.. 16: 17. :. 1997.,,,,,. 213.. 28(1): 75-78.,,,. 1991. diastase hydroxymethylfurfural. 17: 155. Blaser, M.J. 199. Helicobacter pylori and the pathogenesis of gastroduodenal inflammation. J. Infect. Dis. 161: 626-633. Chen, L, A. Mehta, M. Berenbaum. A. R. Zangerl and N J. Engeseth. 2. Honeys from different floral sources as inhibitors of enzymatic browning in fruit and vegetable homogenates. J. Agric. Food Chem. 48: 4997-5. Chung, W.C., Kim, M.W., Song, K.J., and Choi, E.H. 1984. Chemical composition in relation to quality evaluation on Korean honey. Korean J. Food Sci. Technol. 16: 17-22. Davies, A. M. C. 1975. Amino acid analysis of from Eleun Countries. J. Apicultural Res. 4: 29. Ferreres, F., Tomas-Barberan, F.A., Gil, B.I., Tomas-Lorents, F. 1991. An HPLC technique for flavonoid analysis in honey. J. Sci. Food Afric. 56: 49-56. Kushnir, I. 1979. Sugar and sugar products ; Sensitive thin layer chromatographic detection of high fructose corn syrup and other adulterants in honey. J. Assoc. Anal. Chem. 62: 917. Molan, P. C. 1992. The antibacterial activity of honey. Bee world 73: 5-28. Molan, P. 21. Why honey is effective as a medicine. Bee world 82: 22-4. Molan, P. 22. Not all honeys are the same for wound healing Bull. Eur. Tissue Rep. Soc. 9: 5-6. Rashed, M.N. and Soltan, M.E. 24. Major and trace elements in different types of Egyptian mono-floral and non-floral bee honeys. J. Food. Comp. Anal. 17: 725-735. Sabatier S., M. J. Amiot, M. Tacchini and S. Aubert. 1992. Identification of falvonoids in sunflower honey. J. Food Sci. 57: 773-777. Shin, H. and Z. Ustunol. 25. Carbohydrate composition of honey from different floral sources and their influence on
growth of selected intestinal bacteria: An in vitro comparison. Food Res. Int. 38: 721-728. White, J. W. Jr., Riethof, M. L., Subers, M. H. and Kushnir, I. 1962. Composition of American honey. 1261p. Technical Bull., U.S. Dept. Agr., Washington, D.C. White, J. W. Jr. 1963. Determination of acidity, nitrogen and ash in honey. J. Assoc. Anal. Chem. 45: 548. White, J. W. Jr. and Kushnir, I. 1967. Composition of American honey; Protein. J. Apicultural Res. 4: 29. White, J. W. Jr. 1979. Methods for determining carbohydrates, hydroxyfurfural and proline in honey; Collaborative study. J. Assoc. Ana. Chem. 62: 515 White, J. W. Jr. 198. Detection of honey adultration by carbohydrate anylysis. J. Assoc. Anal. Chem. 63: 11. Wilix, D. J., P. C. Molan and C. G. Harfoot. 1992. A comparison of the sensitivity of wound-infecting species of bacteria to the antibacterial activity of manuka honey and other honeys. J. Appl. Bacteriol. 73: 338-394. 85