조규선.PDF

Similar documents
Alloy Group Material Al 1000,,, Cu Mg 2000 ( 2219 ) Rivet, Mn 3000 Al,,, Si 4000 Mg 5000 Mg Si 6000, Zn 7000, Mg Table 2 Al (%

page 1end


untitled

전용]

fm


Microsoft Word - Shield form gasket.doc

본문.PDF

82-01.fm

00....

歯국문-Heatran소개자료1111.PDF

(72) 발명자 김창욱 경기 용인시 기흥구 공세로 , (공세동) 박준석 경기 용인시 기흥구 공세로 , (공세동) - 2 -

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

10 (10.1) (10.2),,


Æ÷Àå½Ã¼³94š

12È«±â¼±¿Ü339~370

DBPIA-NURIMEDIA

2016년 6월 비철금속 전망 보고서.hwp

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

05Çѱ۳»Áö11

2004math2(c).PDF

WIDIN - Toolholding Catalogue.pdf

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

KAERIAR hwp

untitled

untitled

04_이근원_21~27.hwp

유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

< C6AFC1FD28B1C7C7F5C1DF292E687770>

ETC Electrolytic Technologies Corporation Electrolytic Technologies Corporation (ETC) (High Strength Sodium Hypochlorite). ETC.,. ETC,,. - (Cl2) (NaOH

LG Table 1 Ni Table 1 Nominal Chemical Composition of Nickel Alloys Alloy Ni C Mn Fe S Si Cu Cr Al Ti Mo Co W Cb B Zr Nickel

12Á¶±ÔÈŁ

Vertical Probe Card Technology Pin Technology 1) Probe Pin Testable Pitch:03 (Matrix) Minimum Pin Length:2.67 High Speed Test Application:Test Socket

表紙(化学)

Product A4

,.,..,....,, Abstract The importance of integrated design which tries to i

Electropure EDI OEM Presentation

(specifications) 3 ~ 10 (introduction) 11 (storage bin) 11 (legs) 11 (important operating requirements) 11 (location selection) 12 (storage bin) 12 (i

특허청구의 범위 청구항 1 구제역이나 에이아이(AI) 감염에 의해 살 처분된 가축 매몰지의 붕괴나 침출수 유출에 의한 제2차 오염을 방 지하기 위한 방제방법에 있어서, 매몰지 내부에 고화제(Firming agent) 및 첨가물질이 주입되도록 통로를 형성하기 위한 천공단

11¹Ú´ö±Ô

06ƯÁý

(KPU-300 \(TDS, \307\321\261\333\).hwp)

레이아웃 1

DC Link Application DC Link capacitor can be universally used for the assembly of low inductance DC buffer circuits and DC filtering, smoothing. They

(72) 발명자 이승원 강원도 고성군 죽왕면 오호리 정동호 강원도 고성군 죽왕면 오호리 이호생 강원도 고성군 죽왕면 오호리 이 발명을 지원한 국가연구개발사업 과제고유번호 PMS235A 부처명 국토해양부 연구사업명 해양자원개발 연구과제명

Subject : 귀사의 일익번창하심을 진심으로 기원합니다.

GEAR KOREA

(Table of Contents) 2 (Specifications) 3 ~ 10 (Introduction) 11 (Storage Bins) 11 (Legs) 11 (Important Operating Requirements) 11 (Location Selection)

10(3)-10.fm

Prologue 01 마그네슘 합금의 장점 및 적용 분야 02 다이캐스팅 이란? 1. About 장원테크 01 Company Overview 02 사업영역 핵심기술력 04 국내 사업장 05 베트남 법인 06 업계 Top Tier 고객사 확보 2. Cash-Cow 모바일

ePapyrus PDF Document

Introduction 신뢰성 있는 결과 높은 품질의 제품을 생산하기 위해서는 제품의 공정 시스템이 중요 품질관리실험실은 품질보증과정에서 매우 중요한 역할 분석시스템은 품질관리실험실의 매우 중요한 요소 분석시스템의 결과를 기본으로 하여 제품의 품질을 결정 R&D 실험실

歯49손욱.PDF

歯전용]

2

개최요강

정보기술응용학회 발표


135 Jeong Ji-yeon 심향사 극락전 협저 아미타불의 제작기법에 관한 연구 머리말 협저불상( 夾 紵 佛 像 )이라는 것은 불상을 제작하는 기법의 하나로써 삼베( 麻 ), 모시( 苧 ), 갈포( 葛 ) 등의 인피섬유( 靭 皮 纖 維 )와 칠( 漆 )을 주된 재료

<4D F736F F F696E74202D20454D49A3AF454D43BAEDB7CEBCC52EBBEABEF7BFEBC6F7C7D428BBEFC8ADC0FCC0DA >

Development of culture technic for practical cultivation under structure in Gastrodia elate Blume

2004math2(a).PDF

Á¶´öÈñ_0304_final.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)


ISSF Tunnels brochure Korean d02.indd

ISO17025.PDF



One Stop Service,

6.24-9년 6월

베이나이트 함유 이상조직강에 관한 연구

14.531~539(08-037).fm

구리 전해도금 후 열처리에 따른 미세구조의 변화와 관련된 Electromigration 신뢰성에 관한 연구

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: * Suggestions of Ways

Coriolis.hwp

고범석.PDF

Microsoft Word - Report_합본__도시광산.doc

09È«¼®¿µ 5~152s

<31302DC0FAC0DABCF6C1A42D3431B9DAB9CEC8A32E687770>

Kor. J. Aesthet. Cosmetol., 라이프스타일은 개인 생활에 있어 심리적 문화적 사회적 모든 측면의 생활방식과 차이 전체를 말한다. 이러한 라이프스 타일은 사람의 내재된 가치관이나 욕구, 행동 변화를 파악하여 소비행동과 심리를 추측할 수 있고, 개인의

γ

11¹ÚÇý·É

Microsoft Word doc

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

44-4대지.07이영희532~

untitled

학습영역의 Taxonomy에 기초한 CD-ROM Title의 효과분석

우리들이 일반적으로 기호

ApplicationKorean.PDF

Microsoft Word - KSR2013A291

CHAPTER 17: CORROSION AND DEGRADATION


2

[수도권대기환경청 소식] 1. 제10차 수도권 대기환경정책 연구회 년도 1/4분기 직장교육 26 제5절 환경용어 해설 교토메카니즘(Kyoto Mechanism) 라돈(Rn) 배출가스 재순환장치(EGR, Exhaust G

27 2, 17-31, , * ** ***,. K 1 2 2,.,,,.,.,.,,.,. :,,, : 2009/08/19 : 2009/09/09 : 2009/09/30 * 2007 ** *** ( :

( )45.fm

<313920C0CCB1E2BFF82E687770>

Transcription:

A Study on the Machining Characteristics of the Electropolishing of Aluminum 20021 ( ) - 1 -

A Study on the Machining Characteristics of the Electropolishing of Aluminum 20021-2 -

ABSTRACT List of Figures List of Table 1 1.1 1 1.2 2 1.3 4 2 2.1 26 2.2 32 2.3 39 2.4 44-3 -

3 48 4 4.1 53 4.2 56 4.3 60 4.4 64 4.5 66 4.6 69 4.7 70 5 74-4 -

.,. AL 1050. (Al 1050). 1., 7A/cm 2, 200sec. 2. 78, 5mm. - 5 -

3. 0.5 Rmax () 1.8 Rmax. - 6 -

ABSTRACT This study is aimed to obtain the basic material for reviewing the research characteristics and the possibility of alternatives to processing stainless steel through the study on electropolishing characteristic of aluminium. As the study on the electropolishing of aluminium alloy has not been published yet, this study can be contributed to the basis of Korea industrial development because the advantage of aluminium characteristic such as light and corrosion resistance has not been fully used in industrial field. In this study the purest aluminium, AL 1050 has been used. As the study has been conducted in pure condition, it can be applied to other aluminium alloy. The results were as follows: 1. The density of electric current is important factor in electropolishing of aluminium. The surface smoothness should be more than 7A/cm2 even in a short processing time And in more than 200sec of processing time, improving rate of smoothness is slowdown. 2. Excellent surface smoothness can be obtaine d at the 78 of electrolyte and the good result of electropolishing can acquired in a electrode gap of 5mm. - 7 -

3. As there is a limitation to improve the high surface smoothness, the surface smoothness shall be maintained less than 1.8m Rmax in pre-processing stage in order to achieve the highly smooth surface less than 0.5m. - 8 -

List of Figures Fig. 2-1 Principle of electropolishing 27 Fig. 2-2 Electropolishing mechanism 30 Fig. 2-3 Current density-voltage curve of electropolishing 31 Fig. 2-4 Surface smoothing effect of electropolishing 37 Fig. 2-5 Drawing, lapping, and electropolishing 37 Fig. 2-6 Deburring effect of electropolishing 38 Fig. 2-7 Cleaning effect of electropolishing 38 Fig. 2-8 Practical application examples of electropolishing 42 Fig. 2-9 Industry application examples of electropolishing 43 Fig. 2-10 Effects of impurities on the electrical conductivity of Al 47 Fig. 3-1 Experimental setup 51 Fig. 4-1 Current density-voltage curve of Al 1050 52 Fig. 4-2 Optical micrographs for various current density 54 Fig. 4-3 Relationship between surface roughness and current density 55 Fig. 4-4 Optical micrographs for various polishing time 58 Fig. 4-5 Relationship between surface roughness and polishing time 59 Fig. 4-6 Optical micrographs for various electrolyte temperature 62 Fig. 4-7 Relationship between surface roughness and electrolyte temperature 63 Fig. 4-8 Relationship between surface roughness and electrode gap 65 Fig. 4-9 Relationship between surface roughness of before and after electropolishing 68-9 -

Fig. 4-10 Optical micrographs of Al 1050 71 Fig. 4-11 Surface profiles between before and after electropolishing 72 Fig. 4-12 Metallographic micrographs of Al 1050 73-10 -

List of Table Table 1-1 Classification of aluminum alloys 5 Table 1-2 Chemical composition of aluminum alloys 10 Table 1-3 Mechanical property of industrial aluminum alloys 14 Table 1-4 Mechanical property of pure aluminum alloys 15 Table 1-5 Transformation of mechanical property by rolling 16 process Table 1-6 Corrosion tendency of aluminum 17 Table 1-7 General characteristic of aluminum alloy 24 Table 2-1 Example of electrolyte 45 Table 3-1 Chemical composition of Al 1050 49 Table 3-2 Mechanical property of Al 1050 49 Table 3-3 Test condition 50-11 -

- 12-1 1.1

- 13-1.2

- 14 -

1.3-15 -

1) Table 1-1 Classification of aluminum alloys SERIES ALLOY APPLICATION CHARACTER 1000 SERIES 1235 FOIL STOCK 1050 FIN STOCK, COSMETIC CAP UTENSILS, NAME PLATE LITHO SHEET ARCHITECTURAL PANEL EVAPORATOR 99.0,,. ( 99.0 ~ 99.5%) Fe Si. 1000,,. 1235, 1100, 1050, 1235 1100, 1050-16 -

2000 SERIES 3000 SERIES 1145 FOIL STOCK 1100 FIN STOCK SOLAR COLLECTOR, CONDENSER CASE 2014 AIRCRAFT STRUCTURES 2017 MACHINE PRODUCTS FITTINGS 2024 AIRCRAFT STRUCTURES 3003 ARCHITECTURAL MATERIALS UTENSILS FIN STOCK 1100, 1050. Cu,. 2024,. 6000 (CLAD). 1100Mn (1.5%) 20%., (DEEP DRAWING). 30033004-17 -

4000 SERIES 5000 SERIES 3004 CAN BODY 3105 P.P CAP 4343 WELDING WIRE 4043 RADIATOR FIN CLAD 5005 AUTOMOTIVE PARTS ARCHITECTURAL PARTS 5052 CONTAINER, VAN TRUCK AUTOMOTIVE PARTS CAN END 5082 CAN TAB, CAN END, Mn1.2% 3003,,, Mn 1.2% + Mg 1.0% 3004DEEP DRAWING, BODY,. Si,. 4000, BRAZING ALLOY. Mg. Mg Mg Mn 0.8%Mg1.25%Mn,.,. 5052, 5005, 5083. 5005,,,, 50525083, 5086-18 -

6000 SERIES 5182 CAN END 5083 MARINE PARTS DEFENCE PARTS TRANSPORTATION EQUIPMENTS 6061 AUTOMOTIVE PARTS MARINE PARTS MACHINE PARTS RAILROAD CARS 6063 MACHINE PARTS SEA CONTAINER, END,. 5083 LNG.. 2000, 7000,, 6061.,. - 19 -

7000 SERIES 8000 SERIES 7039 7072 7075 AIRCRAFT STRUCTURES MACHINE PARTS AUTOMOTIVE PARTS AIRCRAFT STRUCTURES Zn. 0.2%~0.3%Cr. Cu,. (Duralumin) 7075. 8011 P.P CAP 8000 P.P CAP. - 20 -

Table 1-2 Chemical composition of aluminum alloys ALLOY Si Fe Cu Mn Mg Cr Ni Zn Ti OTHERS AL(%) EACH TOTAL 1070 0.20 0.25 0.04 0.03 0.03 - - 0.04 0.03 0.03 99.70 1050 0.25 0.40 0.05 0.05 0.05 - - 0.05 0.03 0.03 99.50 1145 0.55 Si+Fe 0.05 0.05 0.05 - - 0.05 - - - 99.45 1235 0.65 Si+Fe 0.05 - - - - - - 0.05 99.35 1100 1.00 Si+Fe 0.05-0.20 0.05 - - - 0.10-0.05 0.15 99.00 1200 1.00 Si+Fe 0.05 0.05 - - - 0.10-0.05 0.15 99.00 2011 0.40 0.70 5.00-6.00 - - - - 0.30 0.05 0.15 Remainder - 21 -

2014 0.50-3.90-0.40-0.20-0.70 1.20 5.00 1.20 0.80 0.10-0.25 0.15 0.05 0.15 2017 0.20-3.50-0.40-0.40-0.70 0.80 4.50 1.00 0.80 0.10-0.25-0.05 0.15 2024 0.50 0.50 3.80-0.30-1.20-4.90 0.90 1.80 0.10-0.25-0.05 0.15 3003 0.60 0.70 0.05-1.00-0.20 1.50 - - - 0.10-0.05 0.15 3004 0.30 0.70 0.25 1.00-0.80-1.50 1.30 - - 0.25-0.05 0.15 3104 0.60 0.80 0.05-0.80-0.80-0.25 1.40 1.30 - - 0.25 0.10 0.05 0.15 3105 0.60 0.70 0.30 0.30-0.20-0.80 0.80 0.20-0.40 0.10 0.05 0.15 4032 11.0-13.5 1.0 0.50-1.3-0.8-1.3 0.10-0.25-4043 4.5-6.0 0.8 0.03 0.05 0.05 - - 0.10 0.20-22 -

5005 0.30 0.70 0.20 0.20 0.50-1.10 0.10-0.25-0.05 0.15 5050 0.40 0.70 0.20 0.10 1.10-1.80 0.10-0.25-0.05 0.15 5052 0.25 0.40 0.10 0.10 2.20-0.15-2.80 0.35-0.10-0.05 0.15 5056 0.30 0.40 0.10 0.05-4.50-0.05-0.20 5.60 0.20-0.10-0.05 0.15 5082 0.20 0.35 0.15 0.15 4.00-5.00 0.15-0.25 0.10 0.05 0.15 5086 0.40 0.50 0.10 0.20-3.50-0.05-0.70 4.50 0.25-0.25 0.15 0.05 0.15 6061 0.40-0.15-0.80-0.04-0.70 0.15 0.80 0.40 1.20 0.35-0.25 0.15 0.05 0.15 6063 0.20-0.45-0.35 0.10 0.10 0.60 0.90 0.10-0.10 0.10 0.05 0.15 7075 0.40 0.50 1.20-0.30 2.10-0.18- - 5.10-0.20 0.05 0.15-23 -

2.00 2.90 0.28 6.10 7076 0.40 0.60 0.30-0.30-1.20-7.00- - - 1.00 0.80 2.00 8.00 0.20 0.05 0.15 7079 0.30 0.40 0.40-0.10-2.90-0.10-3.80- - 0.80 0.30 3.70 0.25 4.80 0.10 0.05 0.15 8011 0.10 0.55 0.15-0.05 - - 0.05-0.03 0.10-24 -

2) Table 1-3 Mechanical property of industrial aluminum alloys (8) (20) () Al 99.996% Al 96.5% (100) cal/g (20~100) (Cu68.94% ) 2.7 660.2 0.2226 24.5810-6 2.71 656 0.2297 35.510-6 59% - 25 -

(8) 3) Table 1-4 Mechanical property of pure Aluminum alloys kg/mm 2 kg/mm 2 % 4.8 1.25 48.8 17 99.996% 75% 11.5 11.0 5.5 27 H B - 26 -

. Table 1-5 Transformation of mechanical property by rolling process kg/mm 2 kg/mm 2 % H B Al 50% 9 Al 12 75% 17 Al 2.8 10 14.5 35 7 5 23 32 44-27 -

4),.. Table 1-6. (8) Table 1-6 Corrosion tendency of aluminum Al,., (Oxalic acid).,,,,. 80%...,.,, - 28 -

. (Cl), (Br), (I), (Hg), (S). Al. (Cu) (Ag), (Ni), (Fe). (Mg), (Mn). 5) (Cu) - 29 -

(Si) (Mg) - 30 -

(Fe) (Mn) (Ni) - 31 -

(Cr) (Ti) (Zn) - 32 -

(Ca), (Na, Li) - 33 -

(Be), (V, Zr) - 34 -

6) Table 1-7 General characteristic of aluminum alloys (9) 2.7Fe 7.87, Cu8.9 1/3..,,,. Fe 5, Cu 60%.,. LNG,..,,. - 35 -

,,,, Case.. 3%. - 36 -

2 2.1 - (+), (-),,.,.,,, () (). (1) Fig. 2-1,. - 37 -

a)initial state of electropolishing process b)intermediation of electropolishing process Fig. 2-1. The principle of electropolishing - 38 -

Ben Franklin,.. (10) Fig. 2-2.. (7)~(8), Fig. 2-2..., (pit). (11) - 39 -

Fig. 2-3 -. AB, BC. Plateau CD,. (pit) plateau,. plateau. (11),.,. -. - 40 -

Fig. 2-2 Electropolishing mechanism (2) - 41 -

Fig. 2-3 Current density-voltage curve of electropolishing - 42 -

(1) 2.2 1) 5080%,.. 2) super-passivation. 1520. (12)., (Bailby layer) - 43 -

,.. 3) / 4) (Burr), Fig. 2-6 (edge ). - 44 -

5) (electrocleaning). ( )., (cathodic cleaning), (direct cleaning)...,.. (anodic cleaning), ( ). - 45 -

(reve rse cleaning),.,.. (acid dip).,......,. PR,. PR - 46 -

., ( ).,,,. - 47 -

Fig. 2-4 Surface smoothing effect of electropolishing Fig. 2-5 Drawing, Lapping, and Electropolishing - 48 -

Fig. 2-6 Deburring effect of electropolishing (1) Fig 2-7 Cleaning effect of electropolishing - 49 -

2.3,, /,,,,,.,, LCD,,,,,,,.,, ()., (electropolishing, electrolytic polishing)., (fittings) - 50 -

,. Fig. 2-9 Chemical supply system, Gas cabinet, TFT LCD cleaner,,,, Dry. (fittings), (tubes).,., STS316L,,,.. (1), (Stainless steel),.,,, - 51 -

.,,,. - 52 -

(a) Pipe 1 (b) Pipe 2 (c) Pipe 3 (d) Hygienic kitchen utensils (1) Fig. 2-8 Practical application examples of electropolishing - 53 -

(a) Chemical supply unit (b) Gas cabinet (c) TFT LCD cleaner Fig. 2-9 Industry application examples of electropolishing - 54 -

2.4,,,,,,,,.,,,,,..,, (V),,, Fig. 2-10. Table2-1. (2)-(5) - 55 -

Table 2-1 Example of electrolyte BASE ALLOY ELECTRO COMPOSITION Stainless steel High Nickel STS316L Electrolyte 1 Electrolyte 1 : phosphoric acid 50%(vol) sulphuric acid 20%(vol) distilled water 30%(vol) Nickel 200 Electrolyte 2, 3 and 4 Electrolyte 2 : phosphoric acid 650 sulphuric acid 350 Monel 400 Electrolyte 2, 3 and 4 Electrolyte 3 : phosphoric acid 1 gal chromic acid 1lb Hastelloy C-22 Electrolyte 3 and 4 Electrolyte 4 : phosphoric acid 400 sulfuric acid 300 Inconel 718 Electrolyte 4 ethylene glycol 300 Copper Zinc Pure Cu Electrolyte 5 Monophase Electrolyte 6 or 7 alloy Twocomponent alloy Multicomponent alloy Pure Zn Electrolyte 8 Zn alloy Electrolyte 5 : orthophosphoric acid 690g/ Methyl alcohol 470 g/ Electrolyte 6 : orthophosphoric acid 684g/ ethylene glycol 111 water 500 g/ Electrolyte 7 : orthophosphoric acid 684g/ ammonium acetate 20 g/ ethylene glycol 111 water 500 g/ Electrolyte 8 : ethylene glycol 100 Ethanol 400 Sodium thiocyanate 50g - 56 -

Zn-Al-Cu(Al 25% ) Zn-Al-Cu(Cu 10% ) Electrolyte 9 Electrolyte 10 Zn-Al-Cu Electrolyte 8 Electrolyte 9 : perchloric acid 25 Methanol 575 Nitric acid 10 Electrolyte 10 : 5% solution perchloric acid in ethanol - 57 -

Electric conductivity (m/ ) 39 38 37 36 35 34 33 32 0 0.1 0.2 0.3 0.4 0.6 Impurity(%) Fig. 2-10 Effects of impurities on the electrical conductivity of Al - 58 -

3 Fig.3-1 (power supply). (-) (Stainless steel jig)(+). Power supply 50V, 50A power supply (jig). Process bath 2x 2. (Al 1050) Table 3-1.,,,, (),,,. Table 3-3. - 59 -

Table 3-1 Chemical composition of Al 1050(%) Symbol for element Si Fe Cu Mn Mg Zn Ti Al Chemical composition 0.25 0.40 0.05 0.05 0.05 0.05 0.03 99.5 (%) Table 3-2 Mechanical property of Al 1050 Brinell Yield / Strength Kgf/mm 2 Tensil Strength Kgf/mm 2 Elongation Thickness 1.6mm % Hardness Kgf/mm 2 Kgf/mm 2 Kgf/mm 2 1050 0 3.00 8.00 39 20 6.50 3.00 -H14 10.50 11.00 10 32 7.00 3.50 -H16 12.50 13.50 8 36 8.00 4.00 -H18 15.00 16.00 7 40 8.50 5.00-60 -

Table 3-3 Test condition Power supply 50V, 50A DC Workpiece Al 1050 (anode) 2 cm 2 cm (t=0.5 mm) Phosporic acid 90% Electrolyte Cromic acid, to saturation Distilled water, as requried Electrode (cathode) Jig Surface roughness tester Cu Stainless steel Form Talysurf Surface measurement Kan Scope 3.0 Metallographic measurement HITACHI S-4200-61 -

(a) The schematic of experiment (b) Process bath (c) Test equipment Fig. 3-1 Experimental setup - 62 -

4 Fig. 4-1 Al 1050 -. 5mm, 87, (H 3 PO 4 ), (Cr 2 O 3 ), (H 2 O).. Current density (A/cm 2 ) 12 10 8 6 4 2 Workpiece Al 1050 Temperature 87 Electrode gap 5mm Electrolyte H 3 PO 4 +Cr 2 O 3 +H 2 O Electrolyte : Phosphoric acid (H 3 PO 4 ) 90% Distilled water (H 2 O), as required Chromic acid (Cr 2 O 3 ), to saturation 0 0 5 10 15 20 Voltage (V) Fig. 4-1 Current density-voltage curve of Al 1050-63 -

4-1. Fig. 4-2, Fig. 4-3. 0.3Ra, 1.6Rmax. 150sec, 46 5mm, (H 3 PO 4 ), (Cr 2 O 3 ), (H 2 O)., 7A/cm 2. 03A/cm 2, 37A/cm 2, 7A/cm 2... - 64 -

(a) 1 A/cm 2 (b) 7 A/cm 2 (c) 10 A/cm 2 Fig. 4-2 Optical micrographs for various current density - 65 -

Surface roughness (mm) 2.0 1.5 1.0 0.5 R max R a Before polishing 1.6 mm R max 0.3 mm R a Workpiece Al 1050 Polishing time 150s Temperature 46 o C Electrode gap 5mm Electrolyte H 3 PO 4 +Cr 2 O 3 +H 2 O 0.0 0 2 4 6 8 10 Current density (A/cm 2 ) Fig. 4-3 Relationship between surface roughness and current density - 66 -

4-2. Fig. 4-4, Fig. 4-5. 0.3Ra, 1.6Rmax. 7.0A/cm 2, 65, 5mm. (H 3 PO 4 ), (Cr 2 O 3 ), (H 2 O). 200sec. 050sec,. 50200sec,, 200400sec.,,. - 67 -

,.,,.,. - 68 -

(a) 50 sec (b) 200 sec (c) 400 sec Fig. 4-4 Optical micrographs for various polishing time - 69 -

Surface roughness (mm) 2.0 1.5 1.0 0.5 R max R a Before polishing 1.6 mm R max 0.3 mm R a Workpiece Al 1050 Current density 7 A/cm 2 Temperature 65 o C Electrode gap 5mm Electrolyte H 3 PO 4 +Cr 2 O 3 +H 2 O 0.0 0 100 200 300 400 Time (sec) Fig. 4-5 Relationship between surface roughness and polishing time - 70 -

4-3. Fig. 4-6, Fig. 4-7. 0.3Ra, 1.6Rmax, 6A/cm 2, 120sec, 3mm. (H 3 PO 4 ), (Cr 2 O 3 ), (H 2 O), Al 1050 - -, 78.,.,, (). - 71 -

Fig. 4-6 (a), (b), (c), 2848. 4878,, 78. - 72 -

(a) 28 (b) 78 (c) 90 Fig. 4-6 Optical micrographs for various electrolyte temperature - 73 -

2 R max R a Surface roughness (mm) 1 Workpiece Al 1050 Current density 6 A/cm 2 Polishing time 120s Electrode gap 3mm Electrolyte H 3 PO 4 +Cr 2 O 3 +H 2 O Before polishing 1.6 mm R max 0.3 mm R a 0 30 40 50 60 70 80 90 Temperature ( o C) Fig. 4-7 Relationship between surface roughness and electrolyte temperature - 74 -

4-4. 6.0A/cm 2, 80sec, 72, (H 3 PO 4 ), (Cr 2 O 3 ), (H 2 O) 0.2Ra, 1.9Rmax Fig. 4-8., (5mm ),.,. Al 1050. - 75 -

2.5 R max R a Surface roughness (mm) 2.0 1.5 1.0 0.5 Before polishing 1.9mmR max 0.2mmR a Workpiece Al 1050 Current density 6 A/cm 2 Polishing time 80s Temperature 72 o C Electrolyte H 3 PO 4 +Cr 2 O 3 +H 2 O 0.0 0 2 4 6 8 10 Electrode gap (mm) Fig. 4-8 Relationship between surface roughness and electrode gap - 76 -

4-5. () #1200, #1500, #2000 () Fig.9. 7.0A/cm 2, 120sec, 5mm, 68, (H 3 PO 4 ), (Cr 2 O 3 ), (H 2 O). #1200 3.10Rmax() 1.72Rmax, #2000 1.96Rmax(). #2000 () 1.96 Rmax 1.35Rmax.,., () - 77 -

. (),, (). - 78 -

Workpiece Al 1050 3.2 Current density 7 A/cm 2 Surface roughness, R max (mm) 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 #1200 Abrasive #1500 Abrasive #2000 Abrasive Polishing time 120s Electrode gap 5mm Temperature 68 o C Electrolyte H 3 PO 4 +Cr 2 O 3 +H 2 O 1.4 Before EP After EP Fig. 4-9 Relationship between surface roughness of before and after electropolishing - 79 -

4-6. Al 1050,. Fig. 4-10,, Fig. 4-11 (profile).. Fig. 4-12 (a), (b),.,,,. Fig. 4-12 (c) (pit). (pit),. - 80 -

4-7. Al 1050 Al 2024. Al 1050. Table 1-2 Al 2000. Table 2-1,,. (Mn) (base)al 3000, (Si) Al 4000, (Mg) Al 5000, - (Mg-Si) Al 6000, - (Zr-Mg) Al 7000. - 81 -

(a) Before electropolishing (b) After electropolishing Fig. 4-10 Optical micrographs of Al 1050-82 -

(a) Before electropolishing (b) After electropolishing Fig. 4-11 Surface profiles between before and after electropolishing - 83 -

(a) Before electropolishing (b) After electropolishing (c) Pit mark Fig. 4-12 Metallographic micrographs of Al 1050-84 -

5 AL 1050,,,,.. 1.,, 7A/cm 2. 2.,,, 200sec,. 3. 78-85 -

,. 4. 5mm,,. 5. 0.5 Rmax () 1.8 Rmax. - 86 -

1. E. S. Lee, J. W. Park and Y. H. Moon, Development of Ultra Clean Machining Technology with Electrolytic Polishing Process, International Journal of KSPE, Vol. 2, No. 1, 2001, pp1825 2. R. Rokicki, "Electropolishing of high nickel alloy", Journal of Metal Finishing, 91(6), 1993, pp. 103-104. 3. R. Kovacheva, R. Dafinova and N. Gidikova, "Electropolishing of copper and copper base alloy for metallographic inspection", Praktische Metallographic 30, 1993, pp. 558-566. 4. R. Kovacheva, N. Gidikova and A. Lilova, "A new Electropolishing technique for metallographic specimen preparation of zinc and zinc alloy", Materials Characterization, 28, 1992, pp. 205-211 5. R. Kovacheva, S. Zadgorsky and A. Lilova, "Electrolytic polishing of Zn-Al-Cu alloys", Praktische Metallographic 29, 1992, pp. 62-73 6. Robert L. Davis, An Electropolishing Primer, Products Finishing, 1995, pp.6871 7. Internet data of WOOJOO Precision Co., Ltd, URL : www.woo-joo.co.kr, Technical Information - 87 -

8. Y. H. Yum, Seoul University, Mechanical Metallurgy, 1988, pp.212-229 9. Internet data of ILIJN Enterprise Co., Ltd., URL : www.iljinkiup.co.kr, Property of Aluminum 10. T. Hryniewicz, "Towards a new conception of electropolishing of metals and alloys", Processings of First East-West Symposium on Materials and Processes, UK, 1990, pp. 243-252 11. J. P. Caire, E. B. Chainet and N. P. Valenti, "Study of a new stainless steel electropolishing process", Proceedings of the 80th AESF Annual Technical Conference, USA, 1993, pp. 149-156 12. S. Ganesh Sundara Raman and K. A. Padmanabhan, "Effect of electropolishing on the room temperature low-cycle fatigue behavior of AISI 304LN stainless steel", Int. J. Fatigue, Vol. 17, No. 3, 1995, pp.179182-88 -