<32392DC1A4BAB8C5EBBDC5C0CFB9DD20B9D720B1B3C0B02DB1E8B3B2C8A32E687770>

Similar documents
<33302DC1A4BAB8C5EBBDC5C0CFB9DDB9D7B1B3C0B02D B1E8B3B2C8A3292E687770>

09권오설_ok.hwp

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770>

DBPIA-NURIMEDIA

ch3.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A528B1E8C1BEB9E8292E687770>

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

<30312DC1A4BAB8C5EBBDC5C7E0C1A420B9D720C1A4C3A52DBDC5C1F82E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, (JBE Vol. 22, No. 2, March 2017) ISSN

07.045~051(D04_신상욱).fm

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

À±½Â¿í Ãâ·Â

45-51 ¹Ú¼ø¸¸

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

Gray level 변환 및 Arithmetic 연산을 사용한 영상 개선

2 : 3 (Myeongah Cho et al.: Three-Dimensional Rotation Angle Preprocessing and Weighted Blending for Fast Panoramic Image Method) (Special Paper) 23 2

04 김영규.hwp

04 Çмú_±â¼ú±â»ç

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

1. 서 론

08김현휘_ok.hwp

<31325FB1E8B0E6BCBA2E687770>

인문사회과학기술융합학회

,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3

14.531~539(08-037).fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

DBPIA-NURIMEDIA

<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770>

2 : (Juhyeok Mun et al.: Visual Object Tracking by Using Multiple Random Walkers) (Special Paper) 21 6, (JBE Vol. 21, No. 6, November 2016) ht

05 목차(페이지 1,2).hwp

06_ÀÌÀçÈÆ¿Ü0926

2 : (Jaeyoung Kim et al.: A Statistical Approach for Improving the Embedding Capacity of Block Matching based Image Steganography) (Regular Paper) 22

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

04 최진규.hwp

<30345F D F FC0CCB5BFC8F15FB5B5B7CEC5CDB3CEC0C720B0BBB1B8BACE20B0E6B0FCBCB3B0E8B0A120C5CDB3CE20B3BBBACEC1B6B8ED2E687770>

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

ePapyrus PDF Document

03 장태헌.hwp

3 : 3D (Seunggi Kim et. al.: 3D Depth Estimation by a Single Camera) (Regular Paper) 24 2, (JBE Vol. 24, No. 2, March 2019)

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

<31342D495420C0B6C7D5B1E2BCFA2DB9AEBFB5BDC42E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1),

디지털포렌식학회 논문양식

°í¼®ÁÖ Ãâ·Â

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

2 : (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, (JBE

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

<333820B1E8C8AFBFEB2D5A B8A620C0CCBFEBC7D120BDC7BFDC20C0A7C4A1C3DFC1A42E687770>

歯1.PDF

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

I

04_이근원_21~27.hwp

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 26(12),

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

REP - CP - 016, N OVEMBER 사진 요약 25 가지 색상 Surf 를 이용한 사진 요약과 사진 배치 알고리즘 Photo Summarization - Representative Photo Selection based on 25 Color Hi

3. 클라우드 컴퓨팅 상호 운용성 기반의 서비스 평가 방법론 개발.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 28(11),

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: * Suggestions of Ways

03-16-김용일.indd

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

<30302DB8F1C2F7BFDC2E687770>

???? 1

<372E20B9DAC0B1C8F12DB0E62E687770>

03-서연옥.hwp

1 : 360 VR (Da-yoon Nam et al.: Color and Illumination Compensation Algorithm for 360 VR Panorama Image) (Special Paper) 24 1, (JBE Vol. 24, No

27 2, 17-31, , * ** ***,. K 1 2 2,.,,,.,.,.,,.,. :,,, : 2009/08/19 : 2009/09/09 : 2009/09/30 * 2007 ** *** ( :

김기남_ATDC2016_160620_[키노트].key

차분 이미지 히스토그램을 이용한 이중 레벨 블록단위 가역 데이터 은닉 기법 1. 서론 멀티미디어 기술과 인터넷 환경의 발달로 인해 현대 사회에서 디지털 콘텐츠의 이용이 지속적 으로 증가하고 있다. 이러한 경향과 더불어 디지털 콘텐츠에 대한 소유권 및 저작권을 보호하기

<372DBCF6C1A42E687770>

DBPIA-NURIMEDIA

(JBE Vol. 7, No. 4, July 0)., [].,,. [4,5,6] [7,8,9]., (bilateral filter, BF) [4,5]. BF., BF,. (joint bilateral filter, JBF) [7,8]. JBF,., BF., JBF,.

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A S

DBPIA-NURIMEDIA

02이재원_ok.hwp

#유한표지F

04-다시_고속철도61~80p

Æ÷Àå½Ã¼³94š

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE May; 27(5),

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

04서종철fig.6(121~131)ok

DBPIA-NURIMEDIA

(JBE Vol. 23, No. 1, January 2018) (Special Paper) 23 1, (JBE Vol. 23, No. 1, January 2018) ISSN 2287-

1 : (Sunmin Lee et al.: Design and Implementation of Indoor Location Recognition System based on Fingerprint and Random Forest)., [1][2]. GPS(Global P

DBPIA-NURIMEDIA

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

Transcription:

Journal of the Korea Institute of Information and Communication Engineering 한국정보통신학회논문지(J. Korea Inst. Inf. Commun. Eng.) Vol. 19, No. 10 : 2441~2449 Oct. 2015 모폴로지를 이용한 마스크 기반 에지 검출 알고리즘에 관한 연구 이창영 김남호 * A Study on Mask-based Edge Detection Algorithm using Morphology Chang-Young Lee Nam-Ho Kim * Dept. of Control and Instrumentation Eng., Pukyong National University, Busan 608-737, Korea 요 약 디지털 정보화 시대에서 영상은 여러 매체에서 필수적으로 이용되며, 에지는 영상에서 물체의 크기, 위치, 방향 등 을 포함하는 중요한 특징 정보이다. 이러한 에지를 검출하기 위한 여러 연구들이 국내외에서 진행되고 있다. 기존의 에지 검출 방법들에는 고정된 가중치 값을 적용하는 Sobel, Prewitt, Roberts, Laplacian, LoG 등이 있다. 이와 같은 기 존의 에지 검출 방법들은 고정된 가중치 마스크를 영상에 적용하기 때문에 에지 검출 특성이 다소 미흡하게 나타난 다. 따라서 본 연구에서는 이러한 문제점을 보완하기 위해, 모폴로지에서 bottom-hat 변환과 열기 연산을 이용하여 영상을 개선하고 마스크 기반의 기울기를 구한 후 에지를 구하는 알고리즘을 제안하였다. 그리고 제안한 알고리즘의 성능을 평가하기 위해, 기존의 Sobel, Roberts, Prewitt, Laplacian, LoG 에지 검출 방법들과 비교하여 시각적 영상을 나타내었고, 각각의 영상을 기준으로 하는 MSE 값을 구하여 유사성을 비교하였다. ABSTRACT In this digital information era, utilization of images are essential for various media, and the edge is an important characteristical information of an object in images that includes the size, location, direction and etc. Many domestic and international studies are being conducted in order to detect these edge. Existing edge detection methods include Sobel, Prewitt, Roberts, Laplacian, LoG and etc. which apply fixed weight value. As these existing edge detection methods apply fixed weight mask to the image, edge detection characteristic appears slightly insufficient. Accordingly, in order to supplement these problems, this study used bottom-hat transformation from mathematical morphology and opening operation in improving the image and proposed an algorithm that detects for the edge after calculating mask-based gradient. And to evaluate the performance of the proposed algorithm, a comparison was made against the existing Sobel, Roberts, Prewitt, Laplacian, LoG edge detection methods, in illustrating visual images, and similarities were compared by calculating the MSE value based on the standard of each image. 키워드 : 에지 검출, 마스크, 모폴로지, 영상 개선 Key word : Edge Detection, Mask, Morphology, Image Enhancement Received 09 July 2015, Revised 07 August 2015, Accepted 21 August 2015 * Corresponding Author Nam-Ho Kim(E-mail:nhk@pknu.ac.kr, Tel:+82-51-629-6328) Dept. of Control and Instrumentation Eng., Pukyong National University, Busan 608-737, Korea Open Access http://dx.doi.org/10.6109/jkiice.2015.19.10.2441 print ISSN: 2234-4772 online ISSN: 2288-4165 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License(http://creativecommons.org/li-censes/ by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright C The Korea Institute of Information and Communication Engineering.

한국정보통신학회논문지(J. Korea Inst. Inf. Commun. Eng.) Vol. 19, No. 10 : 2441~2449 Oct. 2015 Ⅰ. 서 론 현대 사회는 정보가 매우 활발히 교류되고 있으며, 영상은 이를 가속화시키는 매체 중 하나이다. 이러한 영상에서 에지는 물체의 크기, 위치, 방향 등을 포함하 는 중요한 특징 정보로서 많은 영역에서 활용되고 있다. 그리고 에지 검출 기술은 군사, 의료, 산업 등의 여러 분 야에서 각각의 목적에 맞게 다양하게 활용되고 있으며, 영상 처리 분야 중 영상 분할, 영상 인식, 특징 추출 등 에서 필수적인 전처리 기법이고, 의료용 전자기기, 스 마트 TV 및 스마트 폰, 차량 인식 등 여러 응용에 적용 되고 있다[1-4]. 이에 따라 영상에서 이러한 에지를 검 출하기 위한 연구들이 국내외에서 활발히 진행되고 있 다[5-7]. 일반적으로 널리 사용되는 에지 검출 방법에는 고정 마스크를 영상에 적용하는 소벨(Sobel), 프리윗(Prewitt), 로버츠(Roberts), 라플라시안(Laplcian), LoG(Laplacian of Gaussian) 방법 등이 있다[8, 9]. 이러한 방법들은 알 고리즘이 단순하고, 빠른 처리 시간의 장점을 갖는 반 면, 고정된 마스크를 영상에 적용하기 때문에, 영상 내 의 화소값이 급격히 변화하는 경우, 우수한 에지 검출 특성을 나타내며 화소값이 서서히 변화하는 경우, 에지 검출 특성이 다소 미흡하다. 따라서 본 연구에서는 화소값이 서서히 변화하는 영 역에서도 우수한 에지 검출 특성을 얻기 위해 모폴로지 에서 bottom-hat 변환과 열기 연산을 이용하여 영상을 개선하고 처리된 영상의 마스크 기반의 기울기를 구한 후 에지를 검출하는 알고리즘을 제안하였다. 그리고 제안한 알고리즘의 성능을 평가하기 위해 시 험 영상을 사용하여 기존의 소벨, 로버츠, 프리윗, 라플 라시안, LoG 에지 검출 방법들과 제안한 알고리즘을 시 뮬레이션하여 시각적으로 비교하였으며, 각각의 영상 을 기준 영상으로 설정하고 MSE(mean squared error) 값을 구하여 그 유사성을 비교하였다. Ⅱ. 제안한 알고리즘 본 논문은 기존 에지 검출 방법들의 에지 검출 결과 를 보완하기 위해 영상 개선 후, 방향성을 고려한 마스 크 기반의 처리를 통해 에지를 검출하는 알고리즘을 제 안하였다. 제안한 알고리즘은 세 단계로 나눌 수 있다. 첫 번째 단계에서 제안한 그레이 기반의 모폴로지 연산을 수행 하여 영상을 개선한다. 두 번째 단계에서 공간 영역 기 반의 방향성을 고려한 마스크를 적용하여 그레이 레벨 기울기를 구한다. 그리고 세 번째 단계에서 영상에 임 계값을 적용하여 2진화한 후 에지를 구한다. 제안한 알고리즘의 처리 과정은 다음과 같다. Step 1. 효과적인 에지 검출을 위한 전처리 과정으로 서 모폴로지를 영상에 적용한다. 여기서 모폴로지는 집 합에 기반한 이론이며, Serra를 통해 영상을 해석하는 도구로 사용되었고, 이 연산은 영상 처리 및 컴퓨터 비 전에서 여러 문제를 해석하는데에 있어서 강력한 도구 이다[10]. 모폴로지의 기본적인 연산은 침식(erosion), 팽창(dilation)이며, 이를 응용한 열기(opening), 닫기 (closing)가 주로 영상 처리에 유용하게 사용된다. 이 방 법은 먼저 구조 요소(SE:structure element)를 필요로 하 며, 구조 요소에 따라 결과에 많은 영향을 준다. 본 논문 에서 사용된 구조 요소는 식 (1)과 같다. (1) 그레이 영상에 대한 침식은 식 (2)와 같다. min (2) 여기서 는 원 영상이고 는 원 영상의 인덱스 값이 며, 는 구조 요소의 인덱스 값이다. 팽창은 식 (3)과 같다. max (3) 그리고 이들을 이용하여 열기와 닫기를 구하며, 각각 식 (4), (5)와 같다. (4) (5) 제안한 알고리즘에서는 에지 검출에 적합한 영상 개선 2442

모폴로지를 이용한 마스크 기반 에지 검출 알고리즘에 관한 연구 을 위해, 영상 뺄셈을 열기 및 닫기와 결합하여 얻을 수 있는 top-hat 변환 및 bottom-hat 변환 중 bottom-hat 변 환을 사용하였으며, 식 (6)과 같이 정의된다. (6) if if (9) 본 논문은 열기와 bottom-hat 변환의 차를 이용하여 에지 검출에 적합하게 최종적으로 영상을 개선하며, 식 (7)과 같다. (7) Step 2. 개선한 영상의 에지 검출 과정은 다음과 같이 처리한다. 본 논문에서는 그레이 레벨 영상으로부터 기울기를 구하기 위해 공간 영역 기반의 마스크에서 방향성을 고 려하여 처리하였으며, 제안한 알고리즘에 이용된 마스 크는 그림 1과 같다. D 1 D 2 D 3 P i-1,j-1 P i-1,j P i-1,j+1 식 (9)에서 구한 값으로부터 에지를 강조하기 위해가 중치를 적용하여 기울기를 구하며, 식 (10)과 같다. (10) 여기서 는 가중치이다. 최종 에지 기울기는 식 (11)과 같이 구한다. (11) 은 적용한 방향의 개수이다. Step 3. 처리된 영상을 히스토그램을 이용한 임계값 을 구한 후, 그 임계값에 따라 2진화하여 에지 영상을 얻는다[11]. 제안한 방법의 전체 알고리즘은 그림 2와 같다. D 4 P i,j-1 P i,j P i,j+1 P i+1,j-1 P i+1,j P i+1,j+1 그림 1. 마스크 Fig. 1 Mask 그림 1에서 방향성을 고려한 영역을 지정하며 식 (8) 과 같다. 식 (8)에서 구한 영역 내에서 화소 값의 크기 비교를 통해 식 (9)와 같이 값을 구한다. 그림 2. 제안한 알고리즘 Fig. 2 Proposed algorithm (8) Ⅲ. 시뮬레이션 및 결과 본 논문은 모폴로지에서 bottom-hat 변환과 열기 연 산을 이용한 전처리 과정을 거친 후 마스크 기반의 기 울기를 적용하여 에지를 구하는 알고리즘을 제안하였 2443

한국정보통신학회논문지(J. Korea Inst. Inf. Commun. Eng.) Vol. 19, No. 10 : 2441~2449 Oct. 2015 다. 제안한 알고리즘의 에지 검출 성능을 확인하기 위 해, 기존의 에지 검출 방법들과 제안한 알고리즘을 시 뮬레이션하여 그 결과로 비교하였다. 또한 모폴로지 전 처리(MP:morphology preprocessing)를 적용하여 기존 의 방법들로 처리한 결과와 제안한 알고리즘을 비교하 였다. 기존의 에지 검출 방법들과 정량적으로 비교하기 위해 각 알고리즘으로 처리한 영상을 기준으로 MSE를 구하여 나타내었다. 본 논문에서는 표준 영상으로 그림 3과 같이 512 512 크기 8비트 그레이 레벨의 Lena 영상 을 사용하여 시뮬레이션하였다. 그림 3. 시험 영상(Lena) Fig. 3 Test image(lena) 그림 4는 그림 3의 시험 영상을 사용한 모폴로지 전 처리 결과이다. 그림 4. 모폴로지 전처리 결과 영상 Fig. 4 Result image of the morphology preprocessing 그림 5는 그림 3의 시험 영상을 사용하여 기존의 방 법들과 제안한 에지 검출 알고리즘을 시뮬레이션 한 결 과 영상들이며, 그림 6은 그림 5에서 사각형으로 표시 한 영역을 확대한 영상이다. 그림 7은 전처리 과정을 거 친 후의 기존의 방법들과 제안한 알고리즘을 시뮬레이 션한 결과 영상들이며, 그림 8은 사각형으로 표시한 영 역을 확대한 영상이다. 그림 5, 6에서 (a)는 소벨, (b)는 프리윗, (c)는 로버 츠, (d)는 라플라시안, (e)는 LoG 에지 검출 방법, 그리 고 (f)는 제안한 알고리즘(PA:proposed algorithm)으로 처리한 결과 영상의 2진화한 영상이다[11]. 그림 7, 8에서 (a)는 MP+소벨, (b)는 MP+프리윗, (c) 는 MP+로버츠, (d)는 MP+라플라시안, (e)는 MP+LoG 에지 검출 방법, 그리고 (f)는 제안한 알고리즘으로 처 리한 영상을 2진화한 영상이다. 그 결과, 그림 5에서 소 벨 에지 검출 방법으로 처리한 영상은 좌측 상단 및 우 측 하단부에서 일부 에지가 누락된 검출 결과를 나타내 었다. 프리윗 에지 검출 방법으로 처리한 영상은 소벨 방법의 에지 검출 결과에 비해 에지 크기가 작게 검출 된 결과를 나타내었다. 로버츠 에지 검출 방법으로 처 리한 영상은 전반적으로 에지 끊김 현상을 나타내었다. 라플라시안 에지 검출 방법으로 처리한 영상은 전체적 으로 에지 크기가 작게 검출된 결과를 나타내었으며, 많은 에지가 누락된 검출 결과를 나타내었다. LoG 에지 검출 방법으로 처리한 영상은 머리카락 등 화소값이 자 주 많이 변화하는 영역에서의 에지 검출 특성이 우수하 였고, 좌측 상단 및 우측 하단에서 에지가 누락된 검출 결과를 나타내었다. 제안한 에지 검출 방법으로 처리한 영상은 좌측 상단부 및 우측 하단부를 포함한 전 영역 에서 에지 검출 특성이 우수하였다. 그림 6은 그림 5의 (125, 125) 화소를 중심으로 150 150의 크기로 확대한 영상이며, 소벨 에지 검출 방 법으로 처리한 영상은 좌측 하단의 일부 에지를 검출하 였으며, 모자 부분의 에지의 끊김을 나타내었다. 프리윗 에지 검출 방법으로 처리한 영상은 좌측에서 라인 에지 가 누락된 검출 결과를 나타내었다. 로버츠 에지 검출 방 법으로 처리한 영상은 좌측의 라인 에지 및 모자 부분의 에지의 검출 결과가 다소 미흡하였다. 라플라시안 에지 검출 방법으로 처리한 영상은 좌측의 비 에지 영역에서 에지 검출 오류를 나타내었다. LoG 에지 검출 방법으로 처리한 영상은 좌측의 영역 및 우측의 모자 영역에서의 에지 검출 결과가 미흡하였다. 그리고 제안한 알고리즘 으로 처리한 영상은 좌측의 라인 에지 및 모자 부분의 에 지가 끊김 없이 우수하게 검출된 결과를 나타내었다. 또 한 그림 7에서 모폴로지 전처리를 적용한 기존의 방법들 로 처리한 결과 영상들은 전처리 전의 결과 영상들에 비 해 좌측 영역의 라인 및 우측 하단 영역의 에지 검출 특 성이 개선된 결과를 나타내었다. 2444

모폴로지를 이용한 마스크 기반 에지 검출 알고리즘에 관한 연구 (a) (b) (c) (d) (e) (f) 그림 5. 시뮬레이션 결과 (a) 소벨 (b) 프리윗 (c) 로버츠 (d) 라플라시안 (e) LoG (f) 제안한 알고리즘 Fig. 5 Simulation result (a) Sobel (b) Prewitt (c) Roberts (d) Laplacian (e) LoG (f) Proposed algorithm (a) (b) (c) (d) (e) (f) 그림 6. 시뮬레이션 결과(확대) (a) 소벨 (b) 프리윗 (c) 로버츠 (d) 라플라시안 (e) LoG (f) 제안한 알고리즘 Fig. 6 Simulation result(zoom) (a) Sobel (b) Prewitt (c) Roberts (d) Laplacian (e) LoG (f) Proposed algorithm 2445

한국정보통신학회논문지(J. Korea Inst. Inf. Commun. Eng.) Vol. 19, No. 10 : 2441~2449 Oct. 2015 (a) (b) (c) (d) (e) (f) 그림 7. 모폴로지 전처리를 적용한 시뮬레이션 결과 (a) MP+소벨 (b) MP+프리윗 (c) MP+로버츠 (d) MP+라플라시안 (e) MP+LoG (f) 제안한 알고리즘 Fig. 7 Simulation result applying morphology prepocessing (a) MP+Sobel (b) MP+Prewitt (c) MP+Roberts (d) MP+Laplacian (e) MP+LoG (f) Proposed algorithm (a) (b) (c) (d) (e) (f) 그림 8. 모폴로지 전처리를 적용한 시뮬레이션 결과(확대) (a) MP+소벨 (b) MP+프리윗 (c) MP+로버츠 (d) MP+라플라시안 (e) MP+LoG (f) 제안한 알고리즘 Fig. 8 Simulation result applying morphology prepocessing(zoom) (a) MP+Sobel (b) MP+Prewitt (c) MP+Roberts (d) MP+Laplacian (e) MP+LoG (f) Proposed algorithm 2446

모폴로지를 이용한 마스크 기반 에지 검출 알고리즘에 관한 연구 그리고 제안한 알고리즘은 영상의 전 영역에서 우 수한 에지 검출 특성을 나타내었다. 그림 8은 그림 7의 (125, 125) 화소를 중심으로 150 150의 크기로 확대한 영상이며, 모폴로지 전처리를 적용한 기존의 방법들로 처리한 결과 영상들은 좌측의 라인 에지 및 모자 부분 의 에지 검출 특성이 개선된 결과를 나타내었다. 그리 고 제안한 알고리즘은 좌측 영역의 라인 에지 및 모자 영역의 에지가 우수하게 검출된 결과를 나타내었다. 그리고 각 알고리즘을 정량적으로 비교하기 위해 처리 된 영상을 각각 기준 영상으로 MSE를 구하였으며, MSE는 식 (12)와 같다. (12) 그림 9. MSE 비교 Fig. 9 Comparison of MSE 식 (12)에서 는 처리 영상의 가로 및 세로 화소 수이며, 는 기준 영상, 는 대상 영상이다. 비교 결과를 표 1에 나타내었으며, 기존의 방법에 전처리 과정을 적용한 결과를 표 2에 나타내었다. 표 1. 알고리즘 비교(MSE) Table. 1 Comparison of algorithm with MSE Sobel Prewitt Robets Laplacian LoG PA Sobel 0.000 0.017 0.070 0.135 0.134 0.070 Prewitt 0.017 0.000 0.061 0.124 0.122 0.071 Roberts 0.070 0.061 0.000 0.100 0.111 0.101 Laplacian 0.135 0.124 0.100 0.000 0.138 0.152 LoG 0.133 0.121 0.111 0.137 0.000 0.140 PA 0.070 0.071 0.101 0.152 0.140 0.000 그림 9는 표 1에 대한 그래프이며, 그림 10은 표 2에 대한 그래프이다. 표 2. 모폴로지 전처리를 적용한 알고리즘 비교(MSE) Table. 2 Comparison of algorithm applying morphology prepocessing with MSE Sobel Prewitt Robets Laplacian LoG PA Sobel 0.000 0.011 0.077 0.108 0.133 0.057 Prewitt 0.011 0.000 0.075 0.104 0.130 0.056 Roberts 0.077 0.075 0.000 0.083 0.109 0.086 Laplacian 0.108 0.104 0.083 0.000 0.111 0.101 LoG 0.132 0.129 0.109 0.111 0.000 0.130 PA 0.057 0.056 0.086 0.101 0.131 0.000 그림 10. 모폴로지 전처리 적용 후 MSE 비교 Fig. 10 Comparison after morphology preprocessing with MSE 표 및 그림들의 결과로부터 제안한 알고리즘은 Sobel 방법과 가장 유사한 특성을 나타내었으며, Laplacian 방법과는 많은 차이를 나타내었다. Ⅳ. 결 론 본 논문은 기존의 에지 검출 방법들의 문제점을 보 완하기 위해, 모폴로지에서 bottom-hat 변환과 열기 연산을 이용하여 전처리 과정을 거친 후 마스크 기반 2447

한국정보통신학회논문지(J. Korea Inst. Inf. Commun. Eng.) Vol. 19, No. 10 : 2441~2449 Oct. 2015 의 기울기를 구하여 에지를 검출하는 알고리즘을 제 안하였다. 시뮬레이션 결과, 소벨 및 프리윗 에지 검 출 방법은 전반적으로 우수한 크기 특성을 갖는 에지 가 검출된 결과를 나타내었으며, 일부 영역에서 에지 가 누락되는 검출 오류를 나타내었다. 로버츠 에지 검 출 방법과 라플라시안 에지 검출 방법, 그리고 LoG 에지 검출 방법들은 전반적으로 검출 결과가 다소 미 흡하였다. 그리고 제안한 알고리즘은 영상의 전 영역에서 우 수한 에지 검출 특성을 나타내었다. 또한 모폴로지 전 처리를 적용한 기존의 방법들과 제안한 알고리즘으로 처리한 결과, 제안한 알고리즘은 기존의 방법들에 비 해 우수한 에지 검출 특성을 나타내었다. 그리고 정량 적인 비교를 위해, 각 알고리즘으로 처리된 영상을 기 준 영상으로 MSE를 구하여 결과를 나타내었다. 그 결 과 제안한 알고리즘은 소벨 방법과 유사한 특성을 나 타내었다. 따라서, 제안한 알고리즘은 물체 인식, 문자 인식 등의 여러 에지 검출 응용 분야에서 유용하게 활 용되리라 사료된다. REFERENCES [ 1 ] Xiaojun Zhai, Bensaali F., Sotudeh R., "Real-time optical character recognition on field programmable gate array for automatic number plate recognition system", Circuits, Devices & Systems, IET, vol. 7, no. 6, pp. 337-344, Nov. 2013. [ 2 ] Wang Can, Su Weimin, Gu Hong, Shao Hua, "Edge detection of SAR images using incorporate shift-invariant DWT and binarization method," International Conference on Signal Processing, vol.1,pp.745-748,2012. [ 3 ] Hongyan Sun, Shuxue Tian, "Image retrieval based on blocked histogram and Sobel edge detection algorithm", International Conference on Computer Science and Service System, pp.3277-3281, 2011. [ 4 ] Nema M.K., Rakshit S., Chaudhuri S., "Image Denoising Using Edge Model-based Representation of Laplacian Subbands", International Conference on Advances in Pattern Recognition, pp.329-332, 2009. [ 5 ] Ashish Anand, Sanjaya Shankar Tripathy, R. Sukesh Kumar, "An Improved Edge Detection Using Morphoogical Laplacian of Gaussian Operator", International Conference on Signal Processing and Intergrated Networks, pp.532-536, 2015. [ 6 ] Gupta K.G., Agrawal N., Maity S.K., "Performance analysis between aparapi (a parallel API) and JAVA by implementing sobel edge detection Algorithm", National Conference on Parallel Computing Technologies, pp.1-5, 2013. [ 7 ] Hua Xiang, Bin Yan, Qiong Cai, Guangyi Zou, "An edge detection algorithm based-on Sobel operator for images captured by binocular microscope", International Conference on Electrical and Control Engineering, pp.980-982, 2011. [ 8 ] Rosenfeld Azriel, "The Max Roberts Operator is a Hueckel-Type Edge Detector", IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.pami-3, no.1, pp.101-103, Jan. 1981. [ 9 ] Kyong-Min Lee, Moon-Soo Jang, Poo-Gyeon Park, A New Defect Inspection Method for TFT-LCD Panel using Pattern Comparison, The transaction of the korean institute of electrical engineers, pp.307-313, 2008. [10] Yeganeh H., Ziaei A., Rezaie A., "A novel approach for contrast enhancement based on Histogram Equalization", International Conference on Computer and Communication Engineering, pp. 256-260, 2008. [11] Nobuyuki Otsu,"A Threshold Selection Method from Gray-Level Histograms", IEEE Trans. on Systems, Man.., and Cybernetics, Vol. SMC-9, No. 1, pp.62-66, Jan. 1979. 이창영(Chang-Young Lee) 2011년 2월 부경대학교 제어게측공학과 공학사 2013년 2월 부경대학교 대학원 제어게측공학과 공학석사 2013년 3월~현재 부경대학교 대학원 제어계측공학과 박사과정 관심분야 : 영상처리 2448

모폴로지를 이용한 마스크 기반 에지 검출 알고리즘에 관한 연구 김남호(Nam-Ho Kim) 제19권 제1호 참조 1992년 3월~현재 부경대학교 공과대학 제어계측공학과 교수 관심분야 : 영상처리, 통신시스템, 적응필터와 웨이브렛을 이용한 잡음제거 및 신호복원 2449