Gray level 변환 및 Arithmetic 연산을 사용한 영상 개선

Similar documents
PowerPoint 프레젠테이션

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

07.045~051(D04_신상욱).fm

02이재원_ok.hwp

BMP 파일 처리

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

Microsoft PowerPoint - D03_SpatialDomainEnhance_note.ppt [호환 모드]

표지

,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3

untitled

hwp

04-다시_고속철도61~80p

45-51 ¹Ú¼ø¸¸

2 : (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, (JBE

프로덕트 아이덴티티의 유형별 특성에 관한 연구

À±½Â¿í Ãâ·Â

nonpara6.PDF

09권오설_ok.hwp

1. 서 론

(JBE Vol. 7, No. 4, July 0)., [].,,. [4,5,6] [7,8,9]., (bilateral filter, BF) [4,5]. BF., BF,. (joint bilateral filter, JBF) [7,8]. JBF,., BF., JBF,.

1 : 360 VR (Da-yoon Nam et al.: Color and Illumination Compensation Algorithm for 360 VR Panorama Image) (Special Paper) 24 1, (JBE Vol. 24, No

DioPen 6.0 사용 설명서

PowerChute Personal Edition v3.1.0 에이전트 사용 설명서

영상 처리 프로그래밍 By Visual C++

ch3.hwp

Slide 1

확률 및 분포

히스토그램구하기 사전준비 : 히스토그램을저장할메모리가필요함 필요한메모리개수 à 전체영상의픽셀은그값이 0 ~ 255이므로 256 개의메모리필요함 영상을구성하는픽셀의개수는매우크므로메모리형식은 unsigned long으로해야함 ( unsigned 란 +/- 를고려하지않는다는

untitled

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]

화해와나눔-여름호(본문)수정

화해와나눔-가을호(본문)

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

?

1. 서 론

歯1.PDF

LIDAR와 영상 Data Fusion에 의한 건물 자동추출

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

CONTENTS INTRODUCTION CHARE COUPLED DEVICE(CCD) CMOS IMAE SENSOR(CIS) PIXEL STRUCTURE CONSIDERIN ISSUES SINAL PROCESSIN

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

170

006- 5¿ùc03ÖÁ¾T300çÃâ

08김현휘_ok.hwp

LCD Display

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>


슬라이드 1

2 / 26

[ReadyToCameral]RUF¹öÆÛ(CSTA02-29).hwp

김기남_ATDC2016_160620_[키노트].key

歯전용]

Microsoft PowerPoint - ch25ysk.pptx

VZ94-한글매뉴얼

63-69±è´ë¿µ

HW5 Exercise 1 (60pts) M interpreter with a simple type system M. M. M.., M (simple type system). M, M. M., M.

데이터 시각화

歯세대갈등국민조사97.PDF

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: (LiD) - - * Way to

좋은 사진 찍는 방법

03.Agile.key


歯AG-MX70P한글매뉴얼.PDF

untitled

DBPIA-NURIMEDIA

Microsoft PowerPoint - 카메라 시스템

03이경미(237~248)ok

2 : (Juhyeok Mun et al.: Visual Object Tracking by Using Multiple Random Walkers) (Special Paper) 21 6, (JBE Vol. 21, No. 6, November 2016) ht

<313120B9DABFB5B1B82E687770>

Ⅰ. Introduction 우리들을 둘러싸고 잇는 생활 환경속에는 무수히 많은 색들이 있습니다. 색은 구매의욕이나 기호, 식욕 등의 감각을 좌우하는 것은 물론 나뭇잎의 변색에서 초목의 건강상태를 알며 물질의 판단에 이르기까지 광범위하고도 큰 역할을 하고 있습니다. 하


untitled

public key private key Encryption Algorithm Decryption Algorithm 1


2005CG01.PDF

PowerPoint 프레젠테이션

차분 이미지 히스토그램을 이용한 이중 레벨 블록단위 가역 데이터 은닉 기법 1. 서론 멀티미디어 기술과 인터넷 환경의 발달로 인해 현대 사회에서 디지털 콘텐츠의 이용이 지속적 으로 증가하고 있다. 이러한 경향과 더불어 디지털 콘텐츠에 대한 소유권 및 저작권을 보호하기

OR MS와 응용-03장

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구

(JBE Vol. 20, No. 5, September 2015) (Special Paper) 20 5, (JBE Vol. 20, No. 5, September 2015) ISS

¼º¿øÁø Ãâ·Â-1

( )실험계획법-머리말 ok

설계란 무엇인가?

untitled

e-300

BT.709 DCI BT [ 1] TTA Journal Vo

untitled

(3) () () LOSS LOSS LOSS LOSS (4) = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100


목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

2

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun; 26(6),

공연영상

1.표지.hwp

<3130C0E5>

2 : (Imjae Park et al.: Modified Exposure Fusiom with Improved Exposure Adjustment Using Histogram and Gamma Correction) (Special Paper) 22 3,

비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2

C# Programming Guide - Types

Transcription:

Point Operation Histogram Modification 김성영교수 금오공과대학교 컴퓨터공학과

학습내용 HISTOGRAM HISTOGRAM MODIFICATION DETERMINING THRESHOLD IN THRESHOLDING 2

HISTOGRAM A simple datum that gives the number of pixels that a given value in an image Ex) a 8bit gray-scale image Bin Counts Prob. 0 163 0.005 1 77 0.003... 255 1561 0.051 number of pixels gray level 3

4

in color images 5

true color Color Quantization 256-color 6

HISTOGRAM MODIFICATIONS Improving image contrast and brightness based on histogram Focus on the histogram shape and range 7

fields Histogram Scaling (Histogram Stretching) Histogram Scaling (Histogram Shrinking) Histogram Sliding Histogram Equalization 8

9 50 100 10 210 75 110 55 30 x y 10) 10) :( (210 50) 50) :( 100 ( y x 10) 50)*(210 ( 50) 10)*(100 ( y x 10 50) ( 50) (100 10) (210 10 50) (100 10) 50)*(210 ( x x y min min min max min max ' ) ), ( ( ) ( ) ( ), ( S I y x I I I S S y x I Scaling

O x, y = S max S max I max I min I x, y I min + S min I max I min S max S min : largest gray-level value in the image I(x,y) : smallest gray-level value in I(x,y) : maximum gray-level values possible : minimum gray-level values possible 10

Low-contrast image Histogram of low-contrast image Image after histogram stretching Histogram of image after stretching 11

Histogram of original image Image after shrinking Histogram of shrinked image 12

Sliding O x, y = I x, y + offset offset : amount to slide the histogram 13

Original image Histogram of original image positivevalue histogram sliding Histogram of image after sliding 14

Equalization 높은 contrast 좋은 contrast 15

Aim to change a picture in such a way as to produce a picture with flatter histogram, where all levels are equiprobable 16

CDF Cumulative Distribution Function 17

Deriving Algorithm (1) I l and O l (0 l < L): for the input and output image, the number of pixels per level L 1 l=0 I(l) = L 1 l=0 O(l) for an arbitrarily chosen level p in the input image p l=0 I(l) = q l=0 O(l) 18

Deriving Algorithm (2) Since the output histogram is uniformly flat (T: total number of pixels in the image) O l = T N max N min So the cumulative histogram of the output image q l=0 O(l) = q T N max N min = p l=0 I(l) 19

Deriving Algorithm (3) Output pixels at level q is given by E q, I = q = N max N min T p l=0 I(l) Equalizing function (E) of the level (q) and the image (I) The output image is then O x,y = E I x,y, I 20

algorithm 1 입력영상의히스토그램의값을누적시켜각레벨에서의히스토그램누적합계산 2 히스토그램의누적합을전체픽셀의개수로나누어값을정규화함 3 정규화된값에최대 gray level 값을곱한후반올림을수행 4 입력영상의각 gray level 에대해변환값으로대응 21

10 8 9 2 14 1 5 2 51 49 43 44 27 29 18 10 10 8 11 15 7 0 7 0 7 (1,2,4,4,6,6,7,7) 0 7 히스토그램누적값균일화결과 (10,18,27,29,43,44,49,51) 7 51 (1.37, 2.47,3.71,3.98,5.90, 6.04, 6.73, 7.00) 22

4 5 3 6 7 4 2 2 4 6 0 2 2 5 7 0 0 2 3 5 0 1 2 4 4 LUT 입력레벨 개수 누적값 균일화결과레벨 0 10 10 1.37 1 1 8 18 2.47 2 2 9 27 3.71 4 3 2 29 3.98 4 4 14 43 5.90 6 5 1 44 6.04 6 6 5 49 6.73 7 7 2 51 7.00 7 6 6 4 7 7 6 4 4 6 7 1 4 4 6 7 1 1 4 4 6 1 2 4 6 6 23

Original light image Histogram of original image Histogram of equalized image 24

Histogram normalization vs. equalization equalization normalization 25

DISADVANTAGE Background noise can be increased The image quality in a near-constant region may be degraded 26

THRESHOLD 의결정 background object threshold Bimodal histogram 27

8 26 130 28

OPTIMAL THRESHOLD BY OTSU (1) 1) 히스토그램계산 2) T = k(k 1) 에서클래스분리를위한확률및평균계산 C 1 (k) = k 1 i=0 P i, C 2 k = L 1 i=k P i = N C 1 (k) ω 1 (k) = C 1(k) N, ω 2(k) = C 2(k) N = 1 ω 1(k) k 1 L 1 L 1 μ T1 k = i P i, μ T2 k = i P i, μ T = i P i i=0 i=k i=0 μ 1 k = μ T1 k C 1 k, μ 2 k = μ T2 k C 2 k = μ T μ T1 k N C 1 (k) 29

OPTIMAL THRESHOLD BY OTSU (2) 3) T = k(k 1) 에서클래스분리를위한분산 σ W 2 계산 σ 1 2 k = k 1 n=0 n μ 1 (k) 2 P n C 1 (k), σ 2 2 k = L 1 n=k n μ 2 (k) 2 P n C 2 (k) σ W 2 k = ω 1 k σ 1 2 k + ω 2 (k)σ 2 2 k, k 1, 2,, (L 1) 4) 모든레벨에대해반복하여최적임계값선택 σ W 2 T opt = min 1 k L 1 σ W 2 (k) 30

OPTIMAL THRESHOLD BY OTSU (3) σ 2 = σ B 2 + σ W 2 Within class variance: σ W 2 = ω 1 σ 1 2 + ω 2 σ 2 2 Between class variance: σ B 2 = σ 2 σ W 2 = ω 1 μ 1 μ 2 + ω 2 μ 2 μ 2 = ω 1 ω 2 μ 1 μ 2 2 31

ALGORITHM 1. 히스토그램계산 2. μ T 계산 3. 각 threshold k(1 k < L) 에대해 3-1. C 1 (k), C 2 (k), μ T1 k, μ T2 k, ω 1 (k), ω 2 (k) 계산 3-2. σ 2 B 계산 3-3. 최대 σ 2 B 와비교하여현재 σ 2 B 가더크면 1 현재 σ 2 B 를사용하여최대 σ 2 B 를갱신 2 threshold k를 optimal threshold (T_OPT) 로선택 Coarse to fine approach 사용가능 32

요약 Histogram A simple datum that gives the number of pixels that a given value in an image Histogram modifications Improving image contrast and brightness by changing shape and range of histogram Histogram Normalization (Histogram Stretching and Histogram Shrinking), Histogram Sliding, Histogram Equalization Selecting Threshold Optimal thresholding: Otsu s method 33

REFERENCE R. Gonzalez, R. Woods, Digital Image Processing (2nd Edition), Prentice Hall, 2002 Scott E Umbaugh, Computer Imaging, CRC Press, 2005 Mark Nixon and Alberto Aguado, Feature Extraction & Image Processing, ELSEVIER, 2008 Frank SHIH, Image Processing and Pattern Recognition, IEEE Press, 2010 34