12½ÅÇöÁ¤

Similar documents
<30352DB1E2C8B9C6AFC1FD2028C8ABB1E2C7F D36362E687770>

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종

00....

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

hwp

19(1) 02.fm

歯전기전자공학개론

歯김유성.PDF

Microsoft PowerPoint - dev6_TCAD.ppt [호환 모드]

- 2 -

<4D F736F F D205F D F20C1F6BBF3B0ADC1C25FC0AFB0E6C8F12CBDC5C7F6C1A45F2E646F63>

DC Link Application DC Link capacitor can be universally used for the assembly of low inductance DC buffer circuits and DC filtering, smoothing. They

Vertical Probe Card Technology Pin Technology 1) Probe Pin Testable Pitch:03 (Matrix) Minimum Pin Length:2.67 High Speed Test Application:Test Socket

RRH Class-J 5G [2].,. LTE 3G [3]. RRH, W-CDMA(Wideband Code Division Multiple Access), 3G, LTE. RRH RF, RF. 1 RRH, CPRI(Common Public Radio Interface)

LCD

NNFC 분석 / 특성평가장비의구성 구조 & 표면분석 Mechanical & Bio 분석 Electrical 특성측정 In-Line 측정 불량분석 RE 분석 FE-(S)TEM Cs-corrected STEM 3D FE-STEM In-situ TEM FE-SEM DB-F

Microsoft Power Point 2002

KAERIAR hwp


jaeryomading review.pdf

05-1Ưº°±âȹ

Coriolis.hwp

PowerPoint Presentation

<30365F28BFCFB7E129BEC8BAB4C5C22E687770>

. 서론,, [1]., PLL.,., SiGe, CMOS SiGe CMOS [2],[3].,,. CMOS,.. 동적주파수분할기동작조건분석 3, Miller injection-locked, static. injection-locked static [4]., 1/n 그림

<C0E7B7AEB1B3C0E72DC5E5C5E5C6A2B4C2BFA1B3CAC1F6C0FDBEE02DBFCFBCBA2E687770>

12-17 총설.qxp

18103.fm

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

<4D F736F F F696E74202D20B3AAB3EBC8ADC7D0B0F8C1A4202DB3AAB3EBB1E2BCFA2E BC8A3C8AF20B8F0B5E55D>

Electropure EDI OEM Presentation

융합WEEKTIP data_up

가. 회사의 법적, 상업적 명칭 당사의 명칭은 주성엔지니어링 주식회사라고 표기합니다. 또한 영문으로는 JUSUNG Engineering Co., Ltd. 라 표기합니다. 나. 설립일자 및 존속기간 당사는 반도체, FPD, 태양전지, 신재생에너지, LED 및 OLED 제

06ƯÁý

Introduction Capillarity( ) (flow ceased) Capillary effect ( ) surface and colloid science, coalescence process,

10신동석.hwp

05À±Á¸µµ

歯동작원리.PDF

untitled

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

Ceramic Innovation `

전자실습교육 프로그램

DISPLAY CLASS Electronic Information Displays CRT Flat Panel Display Projection Emissive Display Non Emissive Display Cathode Ray Tube Light Valve FED

歯03-ICFamily.PDF

Microsoft Word - SRA-Series Manual.doc

소개.PDF

전기정보 11월(내지).qxp

41(6)-09(김창일).fm

06...._......

untitled

슬라이드 1

슬라이드 1

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]

유기 발광 다이오드의 전하주입 효율 향상을 통한 발광효율 향상 연구

Slide 1

82-01.fm

요약문 1 요 약 문 1. 과 제 명 : 소음노출 저감을 위한 작업환경관리 및 측정방안 연구 2. 연구기간 : ~ 연 구 자 : 연구책임자 장 재 길 (연구위원) 공동연구자 정 광 재 (연구원) 4. 연구목적 및 필요성

(specifications) 3 ~ 10 (introduction) 11 (storage bin) 11 (legs) 11 (important operating requirements) 11 (location selection) 12 (storage bin) 12 (i

< C6AFC1FD28B1C7C7F5C1DF292E687770>

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 25(1), IS

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

Kinematic analysis of success strategy of YANG Hak Seon technique Joo-Ho Song 1, Jong-Hoon Park 2, & Jin-Sun Kim 3 * 1 Korea Institute of Sport Scienc

Microsoft PowerPoint - [ ][금요과학터치]-upload 버전.ppt

½Éº´È¿ Ãâ·Â

Small-Cell 2.6 GHz Doherty 표 1. Silicon LDMOS FET Table 1. Comparison of silicon LDMOS FET and GaN- HEMT. Silicon LDMOS FET Bandgap 1.1 ev 3.4 ev 75 V

NanoFocus catalog

<4D F736F F F696E74202D F FB5BFBACEC7CFC0CCC5D820B1E8BFA9C8B22E BC8A3C8AF20B8F0B5E55D>

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

02_4_특집_김태호_rev4_ hwp

인문사회과학기술융합학회


,,,,,, (41) ( e f f e c t ), ( c u r r e n t ) ( p o t e n t i a l difference),, ( r e s i s t a n c e ) 2,,,,,,,, (41), (42) (42) ( 41) (Ohm s law),


歯RCM

歯Trap관련.PDF

18211.fm

6.24-9년 6월

82.fm

2 목차 3 안전을 위한 주의 사항 3 제품 설치 시 주의사항 4 전원 및 AC 어댑터 관련 주의사항 6 제품 이동 시 주의사항 6 제품 사용 시 주의사항 7 화면 잔상 시 주의사항 7 제품 청소 시 주의사항 9 라이선스 18 사용자 설정 18 메인 메뉴 활성 19 사


Microsoft PowerPoint - 카메라 시스템

슬라이드 1

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Oct.; 27(10),

Æ÷Àå½Ã¼³94š

PowerPoint 프레젠테이션

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

ApplicationKorean.PDF

(Table of Contents) 2 (Specifications) 3 ~ 10 (Introduction) 11 (Storage Bins) 11 (Legs) 11 (Important Operating Requirements) 11 (Location Selection)

DBPIA-NURIMEDIA

Preliminary spec(K93,K62_Chip_081118).xls

PJTROHMPCJPS.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 28, no. 4, Apr (planar resonator) (radiator) [2] [4].., (cond

untitled

김기남_ATDC2016_160620_[키노트].key

DBPIA-NURIMEDIA

공학박사학위 논문 운영 중 터널확대 굴착시 지반거동 특성분석 및 프로텍터 설계 Ground Behavior Analysis and Protector Design during the Enlargement of a Tunnel in Operation 2011년 2월 인하대

Microsoft PowerPoint - analogic_kimys_ch10.ppt

139~144 ¿À°ø¾àħ

64.fm

Transcription:

Characterization Technology and Reliability (Local Characterization by Atomic Force Microscopy (AFM)) hjshin@kookmin.ac.kr, 20. 1Tb Gb/s. 10-9 m (Nanotechnology) 21,,,,,.,,,. 1981 Gerd Binnig Heinrich Rohrer tunneling tunneling current scanning tunneling microscopy (STM) 1)... (Scanning Force Microscopy), (Van der Waals Force), (Magnetic Force), (Electrostatic Force), (Friction Force),.,,,,,.,,.,. Fermi level pinning. 93

. SFM Kelvin probe force microscopy 2), piezoelectric force microscopy 3), magnetic force microscopy 4).. 1) FET(Field Effect Transistor) 100 drain source shallow junction channel. p-n channel.. dopant profile. 2). PRAM (phase change random access memory) RRAM (resistive random access memory).... 3) - inversion domains, threading dislocations, pin holes -... 4) ITO (Indium - Tin - Oxide) (Light-emitting Diode), (Liquid crystal display), (Solar cell). ITO (Full color) / (Organic/Polymer LED). ITO (Work Function - 4 5eV; ) hole-injecting. ITO /,. Table 1. 2 doping profiling (shallow pn junction) SKPM 1), SCM 2), SRP 3) gate oxide C-AFM 4) transport behavior SIM 5) failure SKPM, C-AFM (phase change) C-AFM C-AFM TFT (potential conductivity) SKPM, C-AFM ITO SKPM, C-AFM PFM6), SNDM 7) SIM, SKPM C-AFM mapping SNDM Electronic band alignment SKPM band bending Schottky current C-AFM 1) SKPM : Scanning Kelvin Probe Microscopy; 2) SCM : Scanning Capacitance Microscopy; 3) SRP : Spreading Resistance Microscopy; 4) C-AFM : Conducting Atomic Force Microscopy; 5) SIM : Scanning Impedance Microscopy; 6) PFM : Piezo-response Force Microscopy; 7) SNDM : Scanning Non-Dielectric Microscopy 94

ITO. Table.. 2.1,, contact mode, tapping mode, noncontact mode. Contact mode, position sensitive photo diode (PSPD). feedback., N/m., noncontact mode., noncantact mode nm. Van der Waals force 0.1~0.01nN. (amplitude),.. Tapping mode noncontact mode. Noncontact mode,, tapping mode. 2.2 2.2.1 Kelvin probe force microscopy Kelvin Probe Force Microscopy (KPFM) coating Si surface potential. contact potential difference (CPD) Kelvin method capacitance displacement current current. KPFM current electrostatic force, mv sensitivity nm. 95

. Fermi level, voltage CPD. capacitor (U=1/2CV 2 ).. Fig. 1. KPFM system. tip sample dc ac voltage (Vapp = Vdc+ Vac sin wt)..., atom ion, 5), charge trap 6), surface band bending 7). KPFM. Fig. 1 KPFM system. f 0, f 1 surface potential. KPFM electrostatic force feedback CPD voltage CPD, electrostatic force 0 ( force=0, nullifying techniques) voltage CPD. CPD. Fermi level F 1 component surface contact potential lock-in technique F 1 electrostatic force dc voltage feedback loop modulation surface potential. KPFM surface potential electronic state. KPFM, flash memory silicon-oxide-nitrideoxide-silicon (SONOS) system trap charge 8), nanocrystal floating gate memory 9), p-n junction profile 10), open-circuit voltage photo-induced charging rate 11) 96

. tip dc voltage sweep first harmonics term 0 voltage Kelvin probe force spectroscopy (KPFS). KPFS CPD calibration. Highly Oriented Pyrolytic Graphite (HOPG) 5.0eV 12). calibration HOPG. HOPG Pt(111), Au film, ITO Table 2. Pt (111) 5.68 ev Au 5.08 ev, ITO 5.30eV. 13,14) nm. scanning nonlinear dielectric microscopy (SNDM) 16) capacitance, SCM. SCM SNDM MOSFET source drain channel 17), Si carrier 18), SONOS writing erasing trap 19), 20). Table 2. Kelvin Probe Force Spectroscopy HOPG, Pt(111), Au, ITO Sample HOPG Au Pt ITO CPD (Tip-Sample) (V) -0.45-0.37 0.23-0.15 Measurements work function (ev) ref 5.08 5.68 5.3 Literature work function (ev) 5.0 5.1~3 5.6~7 4.0~5.0 2.2.2 Scanning Non-linear Dielectric Microscopy KPFM Scanning capacitance microscopy (SCM). 1984 Matey Blanc SCM 15) metal-oxide-semiconductor (MOS) - (C-V) SPM,. SCM profile Fig. 2. SNDM system. Fig. 2 SNDM system. coating, SiO2 layer, MOS. dc/dv. Fig. 3(a) C-V curve, Fig. 3(b) dc/dv. dc/dv dc/dv. dc/dv. n- type p-type dc/dv p-type, n-type n p. Fig. 3(c) p type n type 97

Fig. 4. PFM system. Fig. 3. (a) C-V curve (b) dc/dv curve (c) p type n type SNDM image. SNDM image. 5 10 19 /cm 3 n+ type Si photolithography boron arsenic. p-type 3 boron 2 10 16 /cm 3, n-type 5 arsenic 13 10 15 /cm 3. doping profile. dynamics 22,23). ( ). Fig. 4 PFM system. contact mode ac dimension, modulated deflection 2.2.3 Piezoelectric force microscopy.,. 21). Fig. 5. (a) 60 nm PZT hysteresis loop, engineering PFM (b) phase (c) amplitude image 98

first harmonic term lock-in-technique., phase. Fig. 5(a) 60 nm PZT hysteresis loop. dc ac. Fig. 5(b) (c) PFM phase amplitude image engineering. 19 nm, PFM. 2.2.4 Magnetic force microscopy MRAM (magnetic random access memory).. 24), magnetic force microscopy (MFM) 4). MFM. Fig. 6 MFM. MFM noncontact mode mode Van der Waals force, long-range force. repulsive attractive...,,,,, probe nanolithography, probe-based data storage system,. / (National Research Lab. R0A-2007-000-20105-0) (ERC, Center for Materials and Processes of Self-Assembly R11-2005-048-00000-0). Fig. 6. MFM. 1. G. Binnig and H. Rohrer, Surface Studies by Scanning Tunneling Microscopy. Phys. Rev. Lett. 49, 57-61 (1982) 2. M. Nonnenmacher, M. P. O Boyle, and H. K. 99

Wickramasinghe, Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921-3 (1991) 3. S. V. Kalinin and D. A. Bonnell, Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys. Rev. B 65, 125408_1-11 (2002) 4. D. Rugar, H. J. Mamin, P. Guethner, S. E. Lambert, J. E. Stern, I. McFadyen, and T. Yogi, Magnetic force microscopy: General principles and application to longitudinal recording media. J. Appl. Phys. 68, 1169-83 (1990) 5. H. Sugimura, Y. Ishida, K. Hayashi, O. Takai, and N. Nakagiri, Potential shielding by the surface water layer in Kelvin probe force microscopy. Appl. Phys. Lett. 80, 1459-61 (2002) 6. G. Lubarsky, R. Shikler, N. Ashkenasy, and Y. Rosenwaks, Quantitative evaluation of local charge trapping in dielectric stacked gate structures using Kelvin probe force microscopy. J. Vac. Sci. Technol. B 20, 1914-7 (2002) 7. A. Chavez-Pirson, O. Vatel, M. Tanimoto, H. Ando, H. Iwamura, and H. Kanbe, Nanometer-scale imaging of potential profiles in optically excited n-i-p-i heterostructure using Kelvin probe force microscopy. Appl. Phys. Lett. 67, 3069-71 (1995) 8. S.-D. Tzeng and S. Gwo, Charge trapping properties at silicon nitride/silicon oxide interface studied by variable-temperature electrostatic force microscopy. J. Appl. Phys. 100, 023711_1-9 (2006) 9. C. Y. Ng, T. P. Chen, H. W. Lau, Y. Liu, M. S. Tse, O. K. Tan, and V. S. W. Lim, Visualizing charge transport in silicon nanocrystals embedded in SiO 2 films with electrostatic force microscopy. Appl. Phys. Lett. 85, 2941-3 (2004) 10. H. Shin, C. Kim, B. Lee, J. Kim, H. Park, D-K. Min, J. Jung, S. Hong, and S. Kim, Formation and process optimization of scanning resistive probe. J. Vac. Sci. Technol. B, 24, 2417-20 (2006) 11. D. C. Coffey and D. S. Ginger, Time-resolved electrostatic force microscopy of polymer solar cells. Nature Materials, 5, 735-40 (2006) 12. M. Bohnisch, and F. Burmeister, A. Rettenberger, J.Zimmermann, J. Boneberg and P. Leierer, Atomic Force Microscope Based Kelvin Probe Measurements: Application to an Electrochemical Reaction. J. Phys.Chem. B, 101, 10162-5 (1997) 13. C. Kim, B. Lee, H. J. Yang, H. M. Lee, J. G. Lee, and Shin, H. Effects of Surface Treatment on Work Function of ITO (Indium Tin Oxide) Films, J. Kor. Phys. Soc. 47, S417-21 (2005). 14. H. Shin, C. Kim, C. Bae, J.-S. Lee, J. Lee and S. Kim Effects of ion damage on the surface of ITO films during plasma treatment, Appl. Surf. Sci. 253, 8928-32 (2007) 15. J. R. Matey and J. Blanc, Scanning capacitance microscopy. J. Appl. Phys. 57, 1437-44 (1985) 16. Y. Cho, A. Kirihara, and T. Saeki, Scanning nonlinear dielectric microscope. Rev. Sci. Instrum. 67, 2297-303 (1996) 17. V. Raineri and S. Lombardo, Effective channel length and base width measurements by scanning capacitance microscopy. J. Vac. Sci. Technol. B 18, 545-8 (2000) 18. C. J. Kang, C. K. Kim, J. D. Lera, Y. Kuk, K. M. Mang, J. G. Lee, K. S. Suh, and C. C. Williams, Depth dependent carrier density profile by scanning capacitance microscopy. Appl. Phys. Lett. 71, 1546-8 (1997) 19. K. Honda and Y. Cho, Visualization using scanning nonlinear dielectric microscopy of electrons and holes localized in the thin gate film of a metal-sio 2- Si 3N 4-SiO 2-semiconductor flash memory. Appl. Phys. Lett. 86, 013501_1-3 (2005) 20. Y. Cho, S. Hashimoto, N. Odagawa, K. Tanaka, and Y. Hiranaga, Realization of 10 Tbit/in. 2 memory density and subnanosecond domain switching time in ferroelectric data storage. Appl. Phys. Lett. 87, 232907_1-3 (2005) 21. Meyer B and Vanderbilt D, Ab initio study of ferroelectric domain walls in PbTiO3. Phys. Rev. B. 65, 104111_1-11 (2002) 22. T. Tybell, C. H. Ahn, and J.-M. Triscone, Ferroelectricity in thin perovskite films. Appl. Phys. Lett. 75, 856-8 (1999) 23. J. Woo, S. Hong, D-K. Min, H. Shin, and K. No, Effect of domain structure on thermal stability of nanoscale ferroelectric domains. Appl. Phys. Lett. 80, 4000-2 (2002) 24. J. Chang, A. A. Fraerman, S. Han, H. Kim, S. A. Gusev, and V. L. Mironov, Magnetic force microscopy (MFM) study of remagnetization effects in patterned ferromagnetic nanodots. Journal of magnetics, 10, 58-62 (2005) 100

2005 2006 -. 2005 2006 -. 1991 1994 Case Western Reserve University 1996 Case Western Reserve University 1996.9-97.8 Max-planck Institute fur Metallforschung, Alexander von Humboldt Research Fellow 1997.9-01.8, Samsung Advanced Institute and Technology, Storage Lab., Member of Research Staff 2001.8-02.2, Samsung Advanced Institute and Technology, Storage Lab., Project Manager 2002.3-. 101