황철홍.PDF

Similar documents
ePapyrus PDF Document

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

ePapyrus PDF Document

°í¼®ÁÖ Ãâ·Â

INDUS-8.HWP

CONTENTS.HWP


歯49손욱.PDF

슬라이드 제목 없음

歯320.PDF

a16.PDF

14.fm

KAERI/RR-2243/2001 : 가동중 중수로 원전 안전성 향상 기술개발 : 중수로 안전해석 체계 구축

논문수정본.PDF

세계 비지니스 정보

이수진.PDF

12(4) 10.fm

< C6AFC1FD28B1C7C7F5C1DF292E687770>

334 退 溪 學 과 儒 敎 文 化 第 55 號 角 說 에서는 뿔이 난 말과 고양이라는 기형의 동물을 소재로 하여 당대 정치 상 황을 비판하였고, 白 黑 難 에서는 선과 악을 상징하는 색깔인 白 과 黑 이 서로 벌이 는 문답을 통하여 옳고 그름의 가치관이 전도된 현실세

Microsoft PowerPoint - dev6_TCAD.ppt [호환 모드]

< B3E2BFF8BAB828C8AFB0E629312E687770>

Coriolis.hwp

KAERIAR hwp

歯174구경회.PDF

untitled

정봉수.PDF

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -

보고서(겉표지).PDF

歯140김광락.PDF

Microsoft Word - KSR2012A021.doc

264 축되어 있으나, 과거의 경우 결측치가 있거나 폐기물 발생 량 집계방법이 용적기준에서 중량기준으로 변경되어 자료 를 활용하는데 제한이 있었다. 또한 1995년부터 쓰레기 종 량제가 도입되어 생활폐기물 발생량이 이를 기점으로 크 게 줄어들었다. 그러므로 1996년부

인문사회과학기술융합학회


<BCF6BDC D31385FB0EDBCD3B5B5B7CEC8DEB0D4C5B8BFEEB5B5C0D4B1B8BBF3BFACB1B85FB1C7BFB5C0CE2E687770>


<313120B9DABFB5B1B82E687770>

Æ÷Àå½Ã¼³94š

겉표지.PDF

#Ȳ¿ë¼®

-

00-1표지

main.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

2

10(3)-12.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

슬라이드 1

82 제 1 발표장 (2 일금 ) CFD 응용 [V] 이남훈 1*, 류태광 2 NUMERICAL VERIFICATION OF SHAKE TABLE TEST FOR THE LIQUID STORAGE TANK N. Lee and T. Yoo 1.,.,,,.,. Baek e

인쇄본 - 10졸업논문_배세욱_강내탄도에 사용되는 Ergun식에 대한 수치적 보정연구_초록 수정.hwp

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

e hwp

歯Trap관련.PDF

ÀÌÁÖÈñ.hwp


PJTROHMPCJPS.hwp

책임연구기관

116 제 2 발표장 (2 일금 ) 특별세션 - 고성능컴퓨팅 박근태 1, 최해천 1*, 최석호 2, 사용철 2, 권오경 3 ANALYSIS AND CONTROL OF TIP-LEAKAGE FLOW IN AN AXIAL FLOW FAN USING LARGE EDDY SI

경제통상 내지.PS

°æÁ¦Åë»ó³»Áö.PDF

2 大 韓 政 治 學 會 報 ( 第 18 輯 1 號 ) 과의 소통부재 속에 여당과 국회도 무시한 일방적인 밀어붙이기식 국정운영을 보여주고 있다. 민주주의가 무엇인지 다양하게 논의될 수 있지만, 민주주의 운영에 필요한 최소한의 제도적 조건은 권력 행사에서 국가기관 사이의

박선영무선충전-내지

11¹ÚÇý·É

우루과이 내지-1

장영준.PDF

Chapter 11 Rate of Reaction

歯전용]

Microsoft Word - KSR2013A320

Development of culture technic for practical cultivation under structure in Gastrodia elate Blume

(2) : :, α. α (3)., (3). α α (4) (4). (3). (1) (2) Antoine. (5) (6) 80, α =181.08kPa, =47.38kPa.. Figure 1.

No Slide Title

02¿ÀÇö¹Ì(5~493s

공학박사학위 논문 운영 중 터널확대 굴착시 지반거동 특성분석 및 프로텍터 설계 Ground Behavior Analysis and Protector Design during the Enlargement of a Tunnel in Operation 2011년 2월 인하대

09이훈열ok(163-

<C1B6BBE7BFACB1B D303428B1E8BEF0BEC B8F1C2F7292E687770>

저작자표시 - 동일조건변경허락 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 이저작물을영리목적으로이용할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원

15(4장1절 P).PDF

~41-기술2-충적지반

82-01.fm

16-기06 환경하중237~246p

67~81.HWP

영암군 관광종합개발계획 제6장 관광(단)지 개발계획 제7장 관광브랜드 강화사업 1. 월출산 기( 氣 )체험촌 조성사업 167 (바둑테마파크 기본 계획 변경) 2. 성기동 관광지 명소화 사업 마한문화공원 명소화 사업 기찬랜드 명소화 사업 240

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),


04-다시_고속철도61~80p

DBPIA-NURIMEDIA

139~144 ¿À°ø¾àħ

09È«¼®¿µ 5~152s

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

( )박용주97.PDF

Microsoft Word - KSR2012A038.doc

09권오설_ok.hwp

<C1A4C3A5BFACB1B D3420C1A4BDC5C1FAC8AFC0DAC0C720C6EDB0DFC7D8BCD220B9D720C0CEBDC4B0B3BCB1C0BB20C0A7C7D120B4EBBBF3BAB020C0CEB1C720B1B3C0B020C7C1B7CEB1D7B7A520B0B3B9DF20BAB8B0EDBCAD28C7A5C1F6C0AF292E687770>

44(3)-16.fm

[96_RE11]LMOs(......).HWP

년AQM보고서_Capss2Smoke-자체.hwp

°æÁ¦Àü¸Á-µ¼º¸.PDF

Journal of Educational Innovation Research 2016, Vol. 26, No. 3, pp DOI: Awareness, Supports

DBPIA-NURIMEDIA

Transcription:

A N um eric al S tu dy on Com bu s tion Ch aract eri s tic s of Hig h - T em perature Cat aly tic Com bu s t or 200 1 2 ( )

A N um eric al S tu dy on Com bu s tion Ch aract eri s tic s of Hig h - T em perature Cat aly tic Com bu s t or 200 1 2 ( )

200 1 2

I (Pt ) T hermal (Hybrid). 2, GRI 2.11, Chou. Site density.,. T hermal ( ) CO NOx.., CH 4, T hermal,.,,,,,. T hermal

II, NOx N 2 +O(+M ) N 2O(+M ) NO, N 2O. N 2O NO, T hermal NO Prompt NO. CO NOx 1ppm 6 ppm.

III A B S T RA CT T he objectiv e of this paper w as to inv estigat e combustion characteristics of the hybrid catalytic combu stor w hich con sist ed of a catalytic combu stor and a therm al combustor with a lean m ethane- air mixtur e on platinum cataly st. Num erical investigations ar e performed by a tw o- dimen sion boundary layer model and detailed reaction m echanism. F or gaseou s chemistry GRI 2.11 w as employed and for surface chemistry the r eaction m echanism by Chou w as u sed. At catalytic combu stor, for the m or e accurat e calculation s the actual site den sity of catalytic surface w hich w as w ashcoated support s w as decided by the comparison with experimental data. T he effects of gaseou s r eaction on catalytic combu stion inv estigated by comparison of t w o cases w hich both surface and gaseou s chemistry w er e con sidered and surface chemistry w as con sider ed only. T he effect s of oper ation condition s at the entrance w er e evaluat ed. At thermal combustor, the production char acteristics of CO and NOx w hen an addition fuel w as injected at entr ance of the thermal combustor entr ance or not. T he result s w er e as follow s : At cat alytic combu stor, the effect s of gaseou s r eaction w ere too w eek t o alt er the macroscopic view point such as light off location and CH4 conv er sion r ate. But in therm al combu stor, gaseou s r eaction had a great effect s on interm ediates

IV formation at dow n str eam of the catalytic combu st or and combu stion characteristics at entrance of the thermal combustor. T herefor e both surface and gaseou s chemistry mu st be incorpor ated to estim ate combu stion characteristics accurately. T he num erical simulation with these result s enable u s to predict the effect s of oper ation condition s r easonably such as equiv alence ratio, temperature, v elocity, channel diam eter and pr essure. It w ill also pr ovide beneficial information s to decide design factor s and operating condition s of cat alytic combu stor. In case additional fuel w as not injected at therm al combu stor, it w as show n that the production of N2O w as m or e dominant than that of NO due to the relatively important reaction N 2 +O(+M ) N 2O(+M ). How ever, pr oduction of NO becomes more incr eased than that of N2O, and Prompt NO mechanism becomes mor e dominant than T hermal NO m echanism with increasing the am ount of additional fuel injection. Finally w e could identify that the emissions of CO and NOx w er e v ery low about 1 ppm and 6 ppm respectiv ely at an exit.

V 1. 1 1.1 1 1.2 2 1.3 5 2. 6 2.1 6 2.2 6 2.3 11 2.4 13 3. 16 3.1 16 3.1.1 Site density 16 3.1.2 18 3.1.3 20 3.1.4 23

VI 3.2 T hermal 40 3.2.1 (Catalytic Stabilized) 40 3.2.2 (Hybrid) 42 4. 47 5. 49

VII N OM EN CLA T U RE c p : Mixture heat capacity c p k : Specific heat capacity of kth species C k : Creation rate of species k D k : Destruction rate of species k D kj : Multicomponent diffusion coefficient D T k : T hermal diffusion coefficient g : Acceleration of gr avity h k : Specific enthalpy of species k k f i : Forw ard reaction rate constant k ri : Rever se reaction rate constant K g : T otal number of gas- phase species K s : T otal number of surface species M : Mass flux M l : Mass loss rate at the lower boundary p : T hermodynamics pr essur e r : Radial distance s k : Rate of production of kth species by surface reaction

VIII T : T emperature u : Axial direction velocity v : Stefan velocity V k r : Diffusion velocity of species k W k : Molecular weight of species k W : Mixture m ean molecular w eight x : Axial distance X k : Mole fraction of species k Y k : Mass fraction of species k : T hermal conductivity of mixture : Viscosity of moxture : Stream function : Density i : Density at the reactor inlet : Normalized stream function k : Rate of production of species k ki' : Stoichiometric coefficient of reactant k ki' ' : Stoichiom etric coefficient of pr oduct k Z k : Site fraction of the kth species : Site density for surface phase

IX LIS T OF F IGU RE S Fig. 1 Fig. 2 Fig. 3 Description of r eaction s in the monolith Surface r eaction mechanism of methane oxidation Schem atic of the hybrid catalytic combu stor and computational domain Fig. 4 Profiles of mean temperature and CH4 m ole fraction w ith site densities Fig. 5 Structur e of catalytic reaction in the m onolith Fig. 6 Radical pr ofiles of temperature and CH4 m ole fraction at selected axial distance Fig. 7 Fig. 8 Contour s of CO and OH mole fr action for Surf and Both Profiles of CO and NOx mole fr action for Surf and Both at therm al combu stor Fig. 9 T emper atur e and CH4 mole fr action isopleths for varying inlet equivalence r atio Fig. 10 Streamwise w all and mean t emperature and CH4 conver sion rate at exit for v arying inlet equiv alence ratio Fig. 11 T emper atur e and CH4 mole fr action isopleths for varying inlet temper ature Fig. 12 Streamwise w all and mean t emperature and CH4 conver sion

X rate at exit for v arying inlet t emperature Fig. 13 T emper atur e and CH4 mole fr action isopleths for varying inlet velocity Fig. 14 Streamwise w all and mean t emperature and CH4 conver sion rate at exit for v arying inlet v elocity Fig. 15 T emper atur e and CH4 mole fr action isopleths for varying diameter of monolith channel Fig. 16 Streamwise w all and mean t emperature and CH4 conver sion rate at exit for v arying diameter of monolith channel Fig. 17 T emper atur e and CH4 mole fr action isopleths for varying inlet pressure Fig. 18 Streamwise w all and mean t emperature and CH4 conver sion rate at exit for v arying inlet pressur e Fig. 19 Profiles of mean temperature, r adicals (OH, O, H ), CO and NOx mole fr action at therm al combu stor Fig. 20 Profiles of N2O pr oduction r ate by each r eaction at center line Fig. 21 Profiles of mean temperature and NOx when 25% and 50% of initial CH4 w ere added Fig. 22 Profiles of mean temperature, NOx and CO mole fr action at the exit w hen CH4 w as added

XI LIS T OF T A B LE S T able 1. Calculation Condition s at inlet of the cat alytic combu st or T able 2. Surface r eaction m echanism of CH4 oxidation on platinum taken fr om C. P. Chou

1 1.1 1.,, CO2, (NOx ),,.,.,. (Flame combustion ), (NOx ), (CO).. [1] (Flameless combustion),., NOx, CO

2 (UHC) [2,3].,,, [4,5,6 ]. Fig. 1 (Homogeneous), (Heterogeneous). Fig. 2,,,.. 1.2. 1200. (Pd) (Pt ), [7] (Hexaaluminates) [8,9,10]. (Supports ),.

3 Fig. 1 Description of reactions in the monolith (a) Adsorption reactions (b) Surface reactions and desorption reactions Fig. 2 Surface reaction mechanism of methane oxidation

4, (Catalytically stabilized) (Hybrid), [11,12,13]., 1,, 2. [14] Raja (Parabolic) (E - lliptic) 2,. [15 ],. Hickman [16] Deutschmann [17], Chou [18 ] CH 4 CH 4., Schlegel [19,20 ] CH 4 C3H 8 NOx,. Dalla Betta [2 1] CO,

5..,, T hermal,. T hermal. 1.3 (CH4 ) (Pt ) T hermal..,,, Monolith. T hermal ( ) (Catalytically Stabilized) (Hybrid), CO NOx.

6 2.1 2. Fig. 3 (a) Monolith., Fig. 3 (b) T hermal., 2. [2 2 ] 0.15 cm, T hermal 8 cm 80 cm. 2.2 (Steady ) 2, Von Mises x M (1) (4). [2 3 ]

7 (a) Schematic of the hybrid catalytic combustor (b) Schematic and dimensions of the computational domain Fig. 3 Schematic of the hybrid catalytic combustor and computational domain

8 = u u x - u M ( dm dx - dm l u ) dx + dp dx u M 2 ( u r 2 u ) + g ( i - ) ( 1) u Y k x - = k W k - dm l dx Y k u M ( dm - ) dx u M ( r Y k V k r ) ( k = 1,, K g ) (2) = u c p T x - u c p M ( dm dx - dm l ) dx T u M 2 ( u r 2 T ) - K g k = 1 k W k h k - 2 u r M K g k = 1 Y k V k r c p k T ( 3) p = R T W (4) x. r, u, Y k k, T, c p, p,,, W, k, V k (5).

9 V k r = u r X k WM K g j k W jd kj X j - D T k Y k ur TM T (5) X k k, W j, D kj, D T k. k (6). k = C k - D k (6), C k D k k, (7), (8). C k = I i = 1 ' ki k ri K j = 1 [ X j ] ' ' j i + I i = 1 ' ' ki k f i K j = 1 [ X j ] ' j i ( 7) D k = I i = 1 K ' ki k [ X f i j ] j = 1 ' j i + I i = 1 K ' ' k i k [ X ri j ] j = 1 ' ' j i ( 8) ' k i i k, ' ' k i i k, k f i k ri.

10 (9) (10 12). Site fraction Z k d t = s k = 0 ( k = K g + 1,..., K g + K s ) (9) Site fraction, Z k k (Surface coverage), Site density, s k. (J k + v Y k) n = s k W k, ( k = 1 K g ) ( 10), J k, n, v (Stefan ), (11). v = 1 ( K g k = 1 s k W k ) n ( 11)

11 { T K r - g (J k + Y k v) h k n k = 1 }g = K g + K s k = K g + 1 s k W k h k ( 12). CRESLAF Code [2 3 ], CHEMKIN- [2 4] SURFACE CHEMKIN (Ver 4.0) [25 ] T RANFIT Package [2 6 ]. 2.3.,. 70,.. Hybrid T hermal. T able 1 Bond [2 7]

12 T ab le 1. Calculation Condition s at inlet of the catalytic combu stor 0.39 867 [K] 730 [cm/s] 1 [atm],. T hermal.,.,., Fig. 3 (a) T hermal,, T hermal.

13 2.4 CH 4 Chou [18 ], T able 2. H, OH, O, H 2O, CO, C, CH, CH2, CH3, Pt Bulk Pt (B) 11. 7, 11 5 23. Arrhenius. Motz Wise [28 ] Sticking coefficient, Sticking coefficient 1. 49 279 GRI 2.11 [29 ]. C1, C2 - Chemistry, NOx T hermal NO, Prompt NO, N2O NO NO2.. T hermal GRI 2.11, NOx T hermal NO Nishioka [30 ].

14 GRI NOx Zeldovich T hermal NO, NOx T hermal NO N 2O Prompt NOx T hermal T hermal NO. T hermal CH 4. C on v ers ion [ % ] = CO 2 CO 2

15 Surface reaction mechanism of CH4 Table 2 oxidation on platinum taken from C. P. Chou ADSORPTION REA CTION A [cm,mole,sec] S Ea [kj/mole] A01 : O2+2PT (*) => 2O(*)+2PT (B) 0.003 0.0 0.00 A02 : CH4+2PT (*) => CH3(*)+H (*)+2PT (B) 0.150 0.0 27.00 A03 : CH4+O(*)+PT (*) => CH3(*)+OH (*)+PT (B) 0.430 0.0 59.20 A04 : CO+PT (*) => CO(*)+PT (B) 0.840 0.0 0.00 A05 : H2+2PT (*) => H (*)+H (*)+2PT (B) 0.046 0.0 0.00 A06 : OH +PT (*) => OH (*)+PT (B) 1.000 0.0 0.00 A07 : H2O+PT (*) => H2O(*)+PT (B) 0.500 0.0 0.00 SURFA CE REA CTION S01 : CH3(*)+PT (*) => CH2(*)+H (*)+PT (B) 1.0E +21 0.0 20.00 S02 : CH2(*)+PT (*) => CH (*)+H (*)+PT (B) 1.0E +21 0.0 20.00 S03 : CH (*)+PT (*) => C(*)+H (*)+PT (B) 1.0E +21 0.0 20.00 S04 : H (*)+O(*)+PT (B) => OH (*)+PT (*) 1.0E +20 0.0 10.50 S05 : OH (*)+PT (*) => H (*)+O(*)+PT (B) 1.0E +12 0.0 20.80 S06 : H (*)+OH (*)+PT (B) => H2O(*)+PT (*) 1.0E +21 0.0 62.50 S07 : 2OH (*) => H2O(*)+O(*) 1.0E +20 0.0 51.25 S08 : H2O(*)+PT (*) => OH (*)+H (*)+PT (B) 1.8E +13 0.0 54.20 S09 : C(*)+O(*)+PT (B) => CO(*)+PT (*) 5.0E +20 0.0 62.50 S10 : CO(*)+PT (*) => C(*)+O(*)+PT (B) 1.0E +13 0.0 156.50 S11 : CO(*)+O(*)+2PT (B) => CO2+2PT (*) 4.0E +20 0.0 49.14 DESORP TION D01 : 2O(*)+2PT (B) => O2+2PT (*) 1.0E +21 0.0 216.00 D02 : CO(*)+PT (B) => CO+PT (*) 8.5E +12 0.0 152.50 D03 : 2H (*)+2PT (B) => H2+2PT (*) 5.0E +20 0.0 67.40 D04 : OH (*)+PT (B) => OH+PT (*) 1.5E +13 0.0 192.80 D05 : H2O(*)+PT (B) => H2O+PT (*) 1.0E +13 0.0 45.00 S: Stick coefficient, (*): surface species, PT(*): Free surface site, PT(B): Bulk species site The kinetic constant of the ith reaction is expressed as k f i = A T exp ( - E a R u T ) Case of adsorption process, k f i = ( S 1 - S/ 2 ) 1 m R T 2 W

16 3.1 3. 3.1.1 S ite den s ity Site Density ( SD ),, SD.,, SD. 2.707E - 09 m ole / cm 2 [17]. Bond [2 7] SD,,. Fig. 4 Bond SD CH 4. Fig. 4 (a) SD 2.707E - 09 m ole / cm 2,. SD 1.757E - 10 m ole/ cm 2,

17 (a) Temperature Fig. 4 b) CH4 Conversion rate Profiles of mean temperature and CH4 mole fraction with site densities

18. Fig. 4 (b ) CH 4 SD, SD 1.757E - 10 m ole / cm 2. CO. Bond SD 1.757E - 10 m ole/ cm 2. 3.1.2 Fig. 5,. 2.7 cm, (Light off) (Surface ignition ).,, (Kinetic control region) (Mass transfer control region ).,. [3 1].

19 Fig. 5 Structure of catalytic reaction in the monolith

20,. 3.1.3, Fig. 6 ( Surf ) ( Both ) CH 4.,., CH 4. Fig. 7 OH CO. Fig. 7 (a) Surf, OH, Both, Surf,. OH, OH. Fig. 7 (b ) CO, Both Surf..

21 (a) Radial profiles of temperature (b) Radial profiles of CH4 Fig. 6 Radial profiles of temperature and CH4 mole fraction at selected axial distance

22 (a) OH mole fraction (b) CO mole fraction Fig. 7 Contours of CO and OH mole fraction for Surf and Both

23 Fig. 8 T hermal CO NOx. Surf Both T hermal, T hermal., Both CO NOx Surf. CO, Both, NOx.,, CH 4,, T hermal. T hermal. 3.1.4,. Bond [27 ]

24 Fig. 8 Profiles of CO and NOx mole fraction for Surf and Both at thermal combustor

25 0.39, 867 K, 730 cm/ s, 1 atm. Fig. 9 0.35 0.39 CH 4. 0.35,,, CH4.,. 0.39, 2.7 cm,. CH4.,. Fig. 10 CH 4. 0.35 CH 4,. 0.39, 1300 K CH 4 90 %. T hermal 0.375

26 (a) Temperature (b) CH4 mole fraction Fig. 9 Temperature and CH4 mole fraction isopleths for varying inlet equivalence ratio

27 Fig. 10 Streamwise wall and mean temperature and CH4 conversion rate at exit for varying inlet equivalence ratio

28. Fig. 11 840 K 850 K CH 4,. 840 K, 900 K, CH4. 850 K 10 K 6 cm, CH 4.. Fig. 12 CH 4. 850 K, 1200 K, CH 4 70%. Griffin [3 2 ] 0.4 857 K. 1300 K 870 K. CH 4. Fig. 13 5, 15 m/ s CH 4

29 (a) Temperature (b) CH4 mole fraction Fig. 11 Temperature and CH4 mole fraction isopleths for varying inlet temperature

30 Fig. 12 Streamwise wall and mean temperature and CH4 conversion rate at exit for varying inlet temperature

31. 5 m/ s 2 cm 15 m/ s 6 cm.. CH4, 15 m/ s CH 4. Fig. 14 CH 4.,. CH 4,. Fig. 15 Monolith 0.1, 0.3 cm, CH 4, Monolith. 0.3 cm, 0.1 cm., 0.1 cm

32 (a) Temperature (b) CH4 mole fraction Fig. 13 Temperature and CH4 mole fraction isopleths for varying inlet velocity

33 Fig. 14 Streamwise wall and mean temperature and CH4 conversion rate at exit for varying inlet velocity

34, 0.3 cm.. CH4. Fig. 16 Monolith. Ratio, 0.3 cm, CH 4.,.,. Fig. 17 1, 20 atm, CH4. 10 atm,.,. 20 atm, 1 atm,

35 (a) Temperature (b) CH4 mole fraction Fig. 15 Temperature and CH4 mole fraction isopleths for varying diameter of monolith channel

36 Fig. 16 Streamwise wall and mean temperature and CH4 conversion rate at exit for varying diameter of monolith channel

37. CH 4, CH 4. Fig. 18 CH 4. CH 4, 10 atm. CH 4,. CH 4,,,.

38 (a) Temperature (b) CH4 mole fraction Fig. 17 Temperature and CH4 mole fraction isopleths for varying inlet pressure

39 Fig. 18 Streamwise wall and mean temperature and CH4 conversion rate at exit for varying inlet pressure

40 3.2 T herm al 3.2.1 (Cat aly tic St abilized ) Fig. 19 T hermal, OH, O, H, CO NOx. Fig. 19 (a) 5 cm 1400 K, OH, O, H,. Fig. 19 (b) CO, CO2. NOx 0.4 ppm, N 2O NO NO2. NOx NO NO2, N 2O CH 4 NOx [3 3,3 4 ]., Fig. 20 N2O (R1 R7) ( ), R7 0.1. N 2O R6, N 2 O(+M ) N 2O R7. N 2O H, O N2 R3, R1, R7

41 (a) Mean temperature and radicals (b) CO and NOx Fig. 19 Profiles of mean temperature, radicals(oh, O, H), CO and NOx mole fraction at thermal combustor

42., 1400 K N2O NOx. 3.2.2 (Hy brid ) T hermal, CH4 (%). Fig. 21 (a), (b) 25% 50% NOx, T hermal NO NO T heraml NO Prompt NO. 25%, 5 cm 1600 K. NOx, NO N 2O N 2 N 2O, NOx. NOx NO, NO Prompt NO, T hermal NO. 50%, 1800 K. NOx N2O NO, T hermal NO NOx. NOx NO, NO T hermal NO

43 Fig. 20 Profiles of N2O production rate by each reaction at center line

44 Prompt NO. Fig. 22 T hermal, CO, NOx T hermal NO, N2O. 1400 1800 K, CO NOx 25%. T hermal NO 1600 K, 50% 1800 K NOx Prompt NO NO. 1600 K, CO NOx 5.9 ppm, 1.1 ppm.

45 (a) 25% CH4 addition (b) 50% CH4 addition Fig. 21 Profiles of mean temperature and NOx when 25% and 50% of initial CH4 were added

46 Fig. 22 Profiles of mean temperature, NOx and CO mole fraction at the exit when CH4 was added

47 4., T hermal CO NOx. 1., CH 4, T hermal,. 2.,,,,. 3. T hermal, NOx NO N 2O.. N 2 +O(+M ) = N 2O(+M ) 4. T hermal N2O

48 NO, T hermal NO Prompt NO. 5. 1600 K, NOx CO 1.1 ppm 5.9 ppm.

49 5. ( 1) H. Arai and M. Machida, 1991, "Recent Progress in High-Temperature Catalytic Combustion," Catalysis Today, Vol. 10, pp. 81 94. (2) Ralph A., Dalla Betta, Thomas Rostrup-Nielsen, 1999, "Application of Catalytic Combustion to a 1.5 MW Industrial Gas Turbine," Catalysis Today, Vol. 47, pp. 369 375. (3),,, 1997, NOx, (B) 21 6, pp. 822 829. (4) Ralph A. Dalla Betta, Thomas Rostrup-Nielsen, 1999, "Application of Catalytic Combustion to a 1.5 MW Industrial Gas Turbine," Catalysis Today, Vol 47, pp. 369 375. (5) Seonhi Ro Vaillant, Anton Scholten Gastec, 1999, "Catalytic Combustion in a Domestic Natural Gas Burner," Catalysis Today, Vol. 47, pp. 415 420. (6) Isotta Cerri, Guido Saracco, Francesco Geobaldo and Vito Specchia, 2000, "Development of a Methane Premixed Catalytic Burner for Household Applications," Ind. Eng. Chem. Res., Vol. 39, pp. 24 33.

50 (7) F. Moallemi, G. Batley, V. Dupont, T. J. Foster, M. Pourkashanian, A. Williams, 1999, "Chemical Modeling and Measurements of the Catalytic Combustion of CH4/Air Mixture on Platinum and Palladium Catalysts," Catalysis Today, Vol. 47, pp. 235 244. (8) Jean-Claude Bertolini, 2000, "Surface Stress and Chemical Reactivity of Pt and Pd Overlayers." Applied Catalysis A : General, Vol 191, pp. 15 21. (9) Ben W.-L. Jang, R. M. Nelson, James J. Spivey, Meltem Ocal, R. Oukaci, George Marceln, 1999, "Catalytic Oxidation of Methane over Hexaaluminates and Hexaaluminate-supported Pd Catalysts," Catalytic Today, Vol. 47, pp. 103 113. ( 10) Yong Seong Seo, Sung June Cho, Sung Kyu Kang, Hyun Dong Shin, 2000, "Experimental and Numerical Studies on Combustion Characteristics of a Catalytically Stabilized Combustor," Catalysis Today, Vol. 59, pp. 75 86. ( 11) S. T. Kolaczkowski, 1995, "Catalytic Stationary Gas Turbine Combustor," Trans IChemE, Vol. 73, pp. 168 190.

51 (12),,, 2000,, 20 KOSCO symposium, pp. 152 161. (13),,, 2000,, 2000 B, pp. 328 334. ( 14) G. Groppi, E. Tronconi, P. Forzatti, 1999, Mathematical Models of Catalytic Combustors," Catal. Rev. Sci. Eng., Vol. 42, No. 2, pp. 227 254. ( 15) L. L. Raja, R. J. Kee, O. Deutschmann, J. Warnatz, L. D. Schmidt, 2000, "A Critical Evaluation of Navier-Stokes, Boundary-Layer and Plug-Flow Models of the Flow and Chemistry in a Catalytic-Combustion Monolith," Catalysis Today, Vol. 59, pp. 47 60. ( 16) D. A. Hickman, L. D. Schmidt, 1993, "Steps in CH4 Oxidation on Pt and Rh Surfaces : High-Temperature Reactor Simulations," AIChE Journal Vol. 39, No. 7, pp. 1164 1177. ( 17) O. Deutschmann, F. Behrendt, J. Wanatz, 1994, "Modeling and Simulation of Heterogeneous Oxidation of Methane on a Platinum Foil," Catalysis Today, Vol. 21, pp. 461 470.

52 ( 18) C. P. Chou, J. Y. Chen, G. H. Evans, W. S. Winters, 1999, "Numerical Studies of Methane Catalytic Combustion Inside a Monolith Honeycomb Reactor Using Multi-Step Surface Reactions," Combustion Science and Technology, in press. ( 19) A. Schlegel, P. Benz, T. Griffin, W. Weisente- in, H. Bockhorn, 1996, "Catalytic Stabilization of Lean Premixed Combustion: Method for Improving NOx Emissions," Combustion and Flame, Vol. 105, pp. 33 2 340. (20) A. Schlegel, S. Buser, P. Benz, 1994, "NOx Formation in Lean Premixed Noncatalytic and Catalytically Stabilized Combustion of Propane, "Twenty-Fifth Symposium (International) on Combustion/The Combustion Institute, pp. 1019 1026. (2 1) R. A. Dalla Betta, D. G. Loffler, 1996, "Selectivity Considerations in Methane Catalytic Combustion," ACS Symposium Series 638, pp. 36 47. (22) R. E. Hayes and S. T. Kolaczkowski, 1997, "Introduction to Catalytic Combustion," Gordon and Breach Science Publishers.

53 (23) M. E. Coltrin, H. K. Moffat, R. J. Kee, F. M. Rupley, 1993, "CRESLAF(Ver 4.0) : A Fortran Program for Modeling Laminar, Chemically Reacting, Boundary-Layer Flow in Cylindrical or Planar Channels," Sandia Report SAND93-0478. (24) R. J. Kee, F. M. Rupley, J. A. Miller, 1989, "Chemkin- : A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics," Sandia Report SAND89-8009B. (25) M. E. Coltrin, R. J. Kee, F. M. Rupley, 1994, "SURFACE CHEMKIN(Ver. 4.0) : A Fortran Package for Analyzing Heterogeneous Chemical Kinetics at a Solid-Surface - Gas-Phase Interface," Sandia Report SAND90-8003C. (26) R. J. Kee, G. Dixon-Lewis, J. Wanatz, M. E. Coltrin and J. A. Miller, "A Fortran Computer Code Package for the Evaluation of Gas-Phase Multicomponent Transport Properties," 1994, Sandia Report SAND 86-8246. (27) T. C. Bond, R. A. Noguchi, C. Chou, R. K. Mongia, J. Chen, R. W. Dibble, 1996, "Catalytic Oxidation of Natural Gas over Supported Platinum : Flow Reactor Experiments and Detailed Numerical Modeling," Twenty-Sixth Symposium (International) on Combustion/The Combustion

54 Institute, pp. 1771 1778. (28) H. Motz and H. Wise, 1960, The Journal of Chemical Physics, Vol. 31, pp. 1893. (29) GRI Mech. Ver. 2.11, available from http://www. gri.org. (30) Nishioka M., Nakagawa S., Ishikawa Y. and Takeno T., 1994, "NO Emission Characteristics of Methane-Air Double Flame," Combustion and Flame, Vol. 98, pp. 185 203. (31) R. E. Hayes, S. T. Kolaczkowski, 1999, "A Study of Nusselt and Sherwood Numbers in a Monolith Reactor," Catalysis Today, Vol 47, pp. 295 303. (32) T. A. Griffin, L. D. Pfefferle, 1990, "Gas Phase and Catalytic Ignition of Methane and Ethane in Air over Platinum," AIChE Journal, Vol. 36, pp. 861 870. (33) J. A. Miller, C. T. Bowman, 1989, "Mechanism and Modeling of Nitrogen Chemistry in Combustion," Progress in Energy and Combustion Science, Vol. 15, pp. 287 338.

55 (34) Michael C. Drake and Richard J. Blint, 1991, "Relative Importance of Nitric-Oxide Formation Mechanisms in Laminar Opposed-flow Diffusion Flames," Combustion and Flame, Vol. 83, pp. 185 203.