KAERIRR hwp
|
|
- 희봉 담
- 6 years ago
- Views:
Transcription
1
2
3
4 ( ) 1/2 ( ) : 2.67 M Y : 454,586 : 3.81 M Y : : 6.48 M Y : 454,586 : : : :,,, TLD,, : /,, ( 5 ) Radiation therapy, therapy radiation dose verification and evaluation, : absolute measurement, TLD, chemical dosimetry, traceability ( 500 ) / ( 5 % ) ( X- ) / 2. TLD ( 5% ) TLD ( 20 MeV ) / ( 20MeV ) / (±3 % ) (±3% ) 3., /..
5 I. II.. ( 3 ). 50,.. / /. 1) /, 2) ( X- ) /.
6 III.. 1. / / - - System - 60 Co - X- - Fricke (Ferrous Sulfate) Dosimeter - Spectrophotometry system - FeSO 4 generator 2. TLD TLD ( 5% ) TLD dosimetric TLD dopants 3 3. / TLD ( 20 MV )
7 IV. 1 / - - PC data acquisition 60 Co - core bridge differential voltage output calibration - 60 Co core bridge differential voltage output core 60 Co X- - X- - Fricke Dosimeter - Fricke Dosimeter system - Fricke Dosimeter - Fricke Dosimeter - 60 Co Fricke 2 TLD, LiF:Mg,Cu,Na,Si TL KLT-300(LiF:Mg,Cu,Na,Si) TL.,,,,,,
8 ,. LiF, Mg : 0.2 mol%, Cu : 0.05 mol%, Na Si : 0.9 mol% TL, TLD TL. TLD TLD., LiF:Mg,Cu,Na,Si(MCNS) LiF:Mg,Cu(MC) ; LiF:Cu,Na,Si(CNS) ; LiF:Mg,Na,Si(MNS),. TL nm, TL 3. Mg Mg Mg. TL, Cu 385 nm 355 nm, Cu 355 nm 405 nm. Cu 385 nm. Na Si. LiF:Mg,Cu,X TL X X TL. KLT-300 TL TLD-100(LiF:Mg,Ti) 30, 30 Gy. LiF:Mg,Cu,P 73 kev 118 kev. 10 TL
9 70 ngy ICRU 5 %..,. /.. (, W/e S w,air ) (, P u, k m k att ) IAEA 277., K air, N D,air ( N gas ), D w, D w. Co-60 N k D w., IAEA 398., TLD
10 KLT-300(LiF:Mg,Cu,Na,Si, Korea), GR-200((LiF:Mg,Cu,P, China) MCP-N((LiF:Mg,Cu,P, Poland) 3 TL 1.25 MeV(Co-60) 21 MV (Microtron). IAEA/WHO TL (element correction factor (ECF)) TL. Co MV. TLD. 4 Physicist / 11. V /. Hardware 100 %. /,,.
11 / / 4., KAERI
12 SUMMARY I. Project Title Development of evaluation and performance verification technology for radiotherapy radiation II. Objectives and Necessity of the Project No matter how much the importance is emphasized, the exact assessment of the absorbed doses administered to the patients to treat the various diseases such as lately soaring malignant tumors with the radiotherapy practices is the most important factor. In reality, several over-exposed patients from the radiotherapy practice become very serious social issues. Especially, the development of a technology to exactly assess the high doses and high energies (In general, dose administered to the patients with the radiotherapy practices are very huge doses, and they are about three times higher than the lethal doses) generated by the radiation generators and irradiation equipment is a competing issue to be promptly conducted. Over fifty medical centers in Korea operate the radiation generators and irradiation equipment for the radiotherapy practices. However, neither the legal and regulatory systems to implement a quality assurance program are sufficiently stipulated nor qualified personnel who could run a program to maintain the quality assurance and control of those generators and equipment for the radiotherapy practices in the medical facilities are sufficiently employed. To overcome the above deficiencies, a quality assurance program such as those developed in the technically advanced countries should be developed to exactly assess the doses administered to patients with the radiotherapy practices and develop the necessary procedures to maintain the continuing performance of the machine or equipment for the radiotherapy. The QA program and procedures should induce the fluent calibration of the machine or equipment with quality, and definitely establish
13 the safety of patients in the radiotherapy practices. In this study, a methodology for the verification and evaluation of the radiotherapy doses is developed, and several accurate measurements, evaluations of the doses delivered to patients and verification of the performance of the therapy machine and equipment are conducted. With these conducts, not only the socio-economical losses by the patients from the maladministration of the radiotherapy doses could be greatly reduced but also huge benefit to them from the enhancement of the quality of life, which is more than the monetary value be brought. To achieve these goals, two ultimate objectives are set up and the study is conducted 1) to develop a technology for the evaluation of the high absorbed doses and high energies administered to the patients and the performance test of the radiotherapy machine and equipment and 2) to fabricate the calorimeters or chemical dosimeters for the absolute measurement of the absorbed doses (from gamma rays and high energy x-rays) in the radiotherapy practices, to establish the standards for the evaluation of radiotherapy doses and to verify an internationally acknowledged traceability of the performance of the machine and/or equipment. III. Contents and Scope of the Project The contents and scopes of the study conducted to achieve the objectives are as follow: 1. Development of absolute measurement technology and chemical dosimter for high energy/high dose radiation Development of absolute measurement technology for high energy/high dose radiation - Construction of graphite calorimeter and evaluation of its characteristics - Development of absorbed dose measurement system and performance evaluation - Absolute measurement of absorbed dose for 60 Co gamma-ray and participation in international key comparison - Development of application technology to high energy X-ray used in the
14 medical or industrial area Development of Chemical Dosimter - Design of Concept for Fricke Dosimeter - Development of Spectrophotometry system and Performance Evaluation - Construction of generator for FeSO 4 solution and evaluation of its characteristics 2. Development of the thermoluminescence dosimeters (TLDs) for the measurement of radiotherapy doses and improvement in the performance characteristics of the TLDs Development of the top notched TLDs in the world, Conduct of the performance test of the TLDs developed for the measurement and evaluation of the radiotherapy doses, Evaluation of the dosimetric characteristics for the TLDs developed and Analysis of the 3-dimensional effects from the dopants in the TLDs developed. 3. Development of the methodologies for the calibration and evaluation of the doses delivered from the radiation therapy machine and equipment Establishment of the methodologies for the dose assessment and calibration of the radiation therapy machine and equipment, Setting-up of the methodologies/procedures for the irradiating patients with the radiation therapy machine and equipment and fabrication of the irradiation phantoms, Establishment of the traceability in the measurement of doses from the radiation therapy machine and equipment and conduct of the practical verification experiments, Establishment of the measurement values for the calibration factors of the TLDs for the photons with energy of up to 20 MeV and Conduct of the practical assessment of the radiotherapy doses with the several radiation therapy machines and equipment at several hospitals and medical centers.
15 IV. The Project Results 1. Development of Absolute Measurement Technology for High Energy/High Dose radiation and Chemical Dosimeter Construction of Graphite Calorimeter and evaluation of its characteristics - Construction of Graphite Calorimeter - Completion of absorbed dose measurement system and development of data acquisition and analysis program with PC interfacing. Development of Absolute Measurement Technology of Absorbed Dose for 60 Co gamma radiation - Measurement of temporal behavior of differential voltage output in core bridge with supply of accurately known electric energy and calibration of energy in calibration run - Measurement of temporal behavior of differential voltage output in core bridge for 60 Co gamma radiation in radiation run Absolute Measurement of absorbed dose to graphite for 60 Co gamma radiation and evaluation of its uncertainty Development of Application Technology to high energy X-ray used in the medical or industrial area - Set up a design criteria of high energy X-ray measurement system using LINAC Development of Chemical Dosimeter - Design of Concept for Fricke Dosimeter - Set up of Fricke Dosimeter system and Characteristic Evaluation - Preparation Procedure of Fricke Dosimeter and Cleaning Procedure of vessels used for preparing Fricke Dosimeter - Preparation of Fricke Dosimeter and evaluation of its characteristics - Measurement of absorbed dose to Fricke solution for 60 Co gamma-ray and analysis
16 2. Development of the thermoluminescence dosimeters (TLDs) for the measurement of radiotherapy doses and improvement of their performance characteristics In this study, by the investigation of the optimum conditions for the production of the (LiF:Mg,Cu,Na,Si) TL materials, KLT-300 (LiF:Mg,Cu,Na,Si) TL detectors are developed for the medical and personnel radiation dosimetry, and the study of the roles of the dopants in the KLT-300 (LiF: Mg, Cu, Na, Si) TL materials is conducted. The fabrication of the TL detectors consists of six processes such as the preparation of the raw materials, mixing powders, activation of the materials, pelletizing with compression, sintering and annealing, and in each process various parameter values should be precisely controlled. Particularly, the concentration of the dopants doped to the LiF, base-material, is the most important parameter, and the optimum concentration is estimated as Mg of 0.2 mol%, Cu of 0.05 mol%, Na and Si of 0.9 mol%, respectively. Also the optimum sintering temperature, which is the critical parameter value in the sintering process is estimated as 830. Because the characteristics of the TL materials depend on the impurity levels in the forbidden band of the materials, it is very important to select the right additive impurity materials in order to materials having the characteristics of the TL materials pertinent to being used as the TLDs. Thus, the investigation of the roles of the dopants is able to provide very useful information to the study of the performance enhancement of the TLDs or development of new TLD materials. For the study, optimized samples such as LiF:Mg,Cu,Na,Si (called MCNS) and few samples with excluding some dopants such as LiF:Mg,Cu (called MC); LiF:Cu,Na,Si (called CNS) and LiF:Mg,Na,Si (called MNS) are fabricated under the same conditions, and the glow curves of these samples, which represent the total quantity of the luminescence, are measured. Also, in order to obtain the information of the luminescence center, the 3-dimensional TL data of the TL intensities according to the temperatures and wavelengths are collected and analyzed with comparison of the differences among them. Samples containing magnesium represent the almost similar values in the peak
17 numbers of the glow curves and temperatures at the individual peaks. While, in case of the samples without magnesium, the glow curves completely differ from those of the samples with magnesium, and magnesium is judged to be directly involved in the formation of the trap levels. From the results of the TL spectrum analysis, the emission with a wavelength of 385 nm in case of the samples containing copper is dominant, while the emission with a wavelength of 355 nm is weak but observed. In case of the samples without copper, the emission with a wavelength of 355 nm is weak but still observed, and emission with a wavelength of 405 nm is dominant. From these study results, copper is judged to play a role of the luminescence center, which is mainly associated with the emission with a wavelength of 385 nm. Also, sodium and silicon are known to be not directly associated with the luminescence center. From the above conclusions, the study suggests the possibility of the enhancement of the TL characteristics through the changes in the dopant element, X since the element X plays an assistant role of increasing the luminescence efficiency in LiF:Mg,Cu,X type TL materials. The sensitivity of the KLT-300 TL detector is thirty times higher than that of the TLD-100 (LiF:Mg,Ti), and the linearity response to the doses is linear up to the dose of about 30 Gy, and above the dose of 30 Gy, the curve is found to represent a sub-linear response. In case of the energy response, the KLT-300 detector represent more enhanced energy responses in the energy range at 73 kev and 118 kev than compared to that response from the LiF:Mg,Cu,P material. Regarding the reproducibility of the TL detectors, when the detectors are used by ten times, the coefficient of variation for the TL luminescence amounts to the same doses is found to be and excellent. The lower limit of dose detection is found to be about 70 ngy. 3. Development of the calibration and verification methods for radiation therapy system The high doses of radiation to be delivered to the patients are required to have high accuracy in practice in radiation therapy. The data required to achieve better
18 accuracy in the determination of the radiation dose delivered to the patient are available because the anatomical information obtained from sophisticated diagnostic imaging procedures are improved. It is clear that the success or failure of radiation treatment depends on the absorbed dose delivered to the tumour and this should be in a few percent from the described accuracy. So ICRU concludes that an accuracy of the ±5 % in the delivered dose to patients is needed, and the other research indicated that an even better accuracy is needed. This means that the overall uncertainties in radiation dosimetry should be minimized and the determination of the absorbed dose from the radiation beams should be improved the accuracy. The calibration of the radiation beam used for radiation therapy is needed the several complicated measurements and application of the several correction/ conversion factors. Therefore it is important that unambiguous procedures in the every step of the calibration are specified and practices of the calibration can be done with minimum difficulty. So this report described the calibration procedures using current physical data(e.g. W/e and stopping power) and correction factors (e.g. P u, k m k att ) to determine the absorbed dose from a radiation beam based on the IAEA Technical Report 277. But the various steps between the calibration of ionization chambers in terms of the quantity air kerma, K air, at the standard dosimetry laboratories and the determination of the absorbed dose to water, D W, at hospitals using dosimetry protocols based on the factor N D,air, introduce undesirable uncertainties into the measurement of D W. Many factors are involved in the dosimetric chain that starts with a calibration factor in terms of air kerma measured in air using 60 Co beam and ends with the absorbed dose to water, D W, measured in water in clinical beams. Uncertainties in the conversion of N K to N D,air mean that in practice the starting point of the calibration of clinical beams already involves a considerable uncertainties. Therefore the calibration methods to determine the absorbed dose directly from a radiation beam based on the IAEA Technical Report 398 are described in detail. After the measurements of the calibration factors for the ionization chambers are conducted with the technical support of Korea Institute of Radiological Applications in Medicine (KIRAM), the dose correction factors for the measurement by the TLDs are
19 obtained. And to verify the effectiveness of the calibration for the radiation therapy beams, the energy responses to photons with energies from 1.25 MeV of 60 Co to 21 MeV of Microtron for three kinds of TL elements such as KLT-300 (LiF:Mg,Cu,Na,Si, made in Korea), GR-200 (LiF:Mg,Cu,P, made in China) and MCP-N (LiF:Mg,Cu,P, made in Poland) are measured, respectively. The International Atomic Energy Agency (IAEA) and World Health Organization (WHO) conduct the verification of the calibration of the radiation therapy beams with using the TL powders. However, in this study, the element correction factors (ECFs) for the TL elements are able to be precisely derived, and TL elements, which are easy to handle with compared to the TL powders, are used for the calibration. Also, other investigators mainly conduct the measurement studies for the energy reponses up to those of 60 Co but, in this study, energy response measurement studies for the high energies up to 20 MeV, which are used in many radiation therapy practices, are conducted. At last, using the TLDs developed by and solid phantoms fabricated at KAERI, the dose assessments for the several radiation therapy machines and equipment at a few hospitals around the country are conducted. The dose assessments for the hospitals in the four different regions and after distinguishing the hospitals from whether they employ in-house medical physicists or not where a total of eleven hospitals or medical centers selected around the country are conducted. V. Plan for the Application of the Project Results The expected outcomes and application plans for this study, which have been obtained during the period of 1 April 2002 until 28 February 2005 are as follow: 1. Economical Aspects The technology for the calibration and verification of the high energy/high dose, which this study aims at developing, is currently the one of the hottest areas that concentrate efforts and money are given and invested for the applications of the dose measurement in medicine and spacecrafts around the world. It is
20 expected that if the establishment of the necessary technology through this study and installation of the necessary large scaled machines and equipment at the national calibration laboratories are accomplished, then, these would greatly contribute to the development of the technology of the precision industry and economy in Korea. The technology for the hardware fabrication through this study would be able to be established by itself to a maximum by 100%. In the future, if the high energy/high dose generating machine and equipment are developed through the continuing investment and studies, the manufacturing technology of the radiation generating machines and equipment in Korea would be graded up to the level of technically advanced countries. Then, it is expected that the technology would be greatly contributed to the economically enormous spreading effects on the areas such as medicine, electronics, machinery, precisional instrumentation. 2. Social Aspects Providing a methodology of the simple but convenient and accurate dose assessment to many forefront radiation therapy institutions in the country and establishing a system of the radiation therapy assessment at the same level of the technically advanced countries, Establishing the homogeneity in the administered doses to the patients among the radiation therapy practice institutions, Inducing the correct calibration of the radiation therapy machines and equipment by the accurate assessment of the to be administered doses to the patients in the radiotherapy practices at hospitals and establishing the safety of the patients and Establishing the public acceptance or trust for the radiation safety through the precise and exact assessment of the administered doses to the patients in the radiotherapy practices and continuingly verifying the performance of the therapy machines and equipment.
21 3. Technical Aspects Providing an infrastructure for the installation of the large scaled high energy/high dose standard irradiation equipment and facilities and research studies in the future, Providing an infrastructure for the assessment of radiation therapy doses, calibration and verification of the machines and equipment, Providing the measurement services for the therapeutic radiation doses to the institutions and hospitals who practice the radiation therapy to the patients with the photon and electron beams with various energy values, By extending the study results to the general industry, applying them to the national dosimetry standards for the high energy/high dose radiation generating machines and equipment at the industry sector and Applying the results to the national standards to establish the internationally acknowledged traceability system for the radiation therapy doses and to the foundation of the quality assurance and control programs for the radiation therapy doses. 4. Contributions to Other Industry and Other Aspects Providing the foundation data to prepare the legal and regulatory system for the operation of the national quality assurance and control programs in the medical sector and Extending the use of thermoluminescence dosimeters developed by KAERI to the radiation therapy dose assessment in medicine.
22 CONTENTS Summary viii Contents xviii List of Tables xx List of Figures xxii I. Introduction 1 II. Research and development status 3 III. Details of the study and the results 1. Development of absolute measurement technology for high energy/high dose radiation and chemical dosimeter 5 1) Development of absolute measurement technology for high energy/high dose radiation 5 2) Development of Chemical Dosimeter Development of the thermoluminescence dosimeters (TLDs) for the measurement of radiotherapy doses and improvement of their performance characteristics 81 1) Production of KLT-300(LiF:Mg,Cu,Na,Si) TL detector 81 2) Impurity analysis and XRD analysis 87 3) The roles of the dopants in the KLT-300(LiF:Mg,Cu,Na,Si) TL detector 91 4) TL glow curve deconvolution 104 5) Dosimetric properties of the TL detector Development of the calibration and verification methods for radiation therapy system 117 1) Absorbed dose determination in photon based on air kerma 117 2) Absorbed dose determination in photon based on standards of absorbed dose to water 150 3) Verification and evaluation of the radiotherapy radiation dose 197
23 IV. Achievement of project objectives and contribution to other development 220 V. Proposals for application of the results 23 VI. References 225
24 List of Tables Table 1-1. Heat Capacity of bare graphite and each impurity in Core. 26 Table 1-2. Radiation chemical yield of free radicals and molecules for several radiations. 61 Table 1-3. Characteristics of purified water produced by millipore purification system. 68 Table 1-4. Result of mass spectroscopic analysis of Fe resolved into H 2 SO 4 solution. 75 Table 1-5. Results of measurement of optical density of irradiated Fricke dosimeter with different dosage and their uncertainties based on control solution. 79 Table 2-1. Impurity analysis for LiF:Mg,Cu,Na,Si TL detector. 88 Table 2-2. The relative TL intensities of the MCNS, MC, CNS and MNS samples. 95 Table 2-3. The TL parameters of each deconvoluted glow curve, determined by executing the CGCD method. 106 Table 2-4. Relative dose response function of KLT-300 TL detector. 110 Table 2-5. Relative energy response of KLT-300 TL detector. 112 Table 2-6. Reproducibility of KLT-300 TL detector. 114 Table 2-7. Student's distribution. 116 Table 3-1. Characteristics of ionization chambers used in radiotherapy dosimetry. 120 Table 3-2. Reference conditions of the ionization geometry for absorbed dose measurement using an ionization chamber in a phantom. 132 Table 3-3. Quadratic fit coefficients for pulsed radiation. 134 Table 3-4. Values for k m, k att and km katt for the ionization chambers. 136 Table 3-5. The stopping power ratio water to air at the reference depth. 138 Table 3-6. Valuef the the ractor k m (= s air,m ( en / ) m,air ). 140 Table 3-7. Correction factor p cel for a Farmer type of chamber. 140 Table 3-8. Primary standards in the comparisons of absorbed dose to water at the BIPM. 155 Table 3-9. Characteristics of cylindrical ionization chamber types. 163 Table Reference conditions recommended for the calibration of ion chamber in Co-60 in standard laboratories. 167 Table Quadratic fit coefficients for the calculation of k s. 171 Table Reference conditions for the determination of absorbed dose to water in Co-60 gamma ray. 173 Table Determination of the absorbed dose to water in a 60 Co ray beam. 174
25 Table Reference conditions for the determination of photon beam quality (TPR 20,10 ). 179 Table Reference conditions for the determination of absorbed dose to water in high energy photon beams. 179 Table Calculated value of k Q for high energy photon beams for various cylindrical ion chambers as a function of beam quality TPR 20, Table Determination of the absorbed dose to water in a high energy photon beam. 184 Table Values for the factors P dis, P wall and P cel and for the Product S w,air P Q in Co-60 gamma radiation for various cylindrical ionization chamber. 193 Table Estimated relative standard uncertainties of the parameters entering into the denominator of Eq.(3-39) at the Co-60 beam quality. 194 Table Estimated relative standard uncertainties of the calculated values for k Q for high energy photon beams. 196 Table Comparison of some of the beam quality parameters. 201 Table Water absorbed dose with the photon energies. 208 Table Radiation field characteristics to be used in the energy response experiments of the TL pellets. 209 Table Absorbed doses to water for the high energy photons used in this experiment. 211 Table Relative energy responses to Co-60 for KLT-300 with the phantom types. 212 Table Relative energy responses to Co-60 for several types of TLDs for a solid phantom. 212 Table Hospitals and radiation sources to irradiate. 215 Table Results for TLD Response : Reference value is KCCH. 216 Table Results for TLD Response for the average of the all response values. 217 Table Results for TLD Response : Physicist o/x. 218 Table Results for TLD Response : Area. 219
26 List of Figures Fig Systematic diagram of evaluating dosage from High Energy / Dose Irradiation System using Chemical Dosimeter. 7 Fig Variation with energy of the ratio of the mass energy absorption coefficients of water and air. 9 Fig Illustrating transient CPE for high-energy indirectly ionizing radiation incident from the left on a slab of material. 10 Fig Wheatstone Bridge. Depending on the particular application, one or more of the bridge resistors through are thermistors. 17 Fig Schematic quasi-adiabatic calorimeter heating curves. 17 Fig Schematic Diagram of Heat-Compensated Graphite Calorimeter. 19 Fig Schematic view of the calorimeter gaps. 30 Fig Picture of Jacket Lid (a) and Base (b) Picture of shield lid and base. 32 Fig Picture of Core-Jacket-Shield Assembly after connecting thermistor wires and mounting supports for core and jacket. 33 Fig Blue print of graphite calorimeter. 35 Fig Picture of graphite calorimeter with Core-Jacket-Shield assembly. 36 Fig (a)wiring for Core Bridge Thermistor, (b) Wiring for Jacket Bridge Thermistor, (c) Wiring for Heater Leads. 39 Fig Photograph of Core-Jacket-Shield Assembly Inserted into Medium with connection of measurement wires. 40 Fig Schematic Diagram of Circuit for (a) Calibration run and (b) Measurement run. 41 Fig Photograph of homemade measurement and control box and Lock-in Amplifier. 43 Fig (a) Diagram of Thermistor (b) SEM Picture of Thermistor (c) Temperature behavior of sensor and heater thermistor in the range (d) Characteristics of sensor and heater thermistors. 45 Fig Schematic diagram of High Vacuum System connected to Calorimeter. 46 Fig Visual Basic Window showing that PC controls Lock-in Amplifier. 48 Fig Flow chart of computer interfacing with Lock-In Amplifier. 49 Fig Flow chart of Visual Basic Program communicating with Lock-in Amplifier. 50 Fig (a) Photograph of Calorimetric measurement and control system (b) Display of
27 heating and cooling curve on the graphic chart recorder for the calibration run using the equivalent circuit of core bridge. 51 Fig Photograph of Measurement system of thermal behavior of Core and Core+Jacket in vacuum as a function of time. 52 Fig (a) Theoretical Thermal behavior of Core, Jacket and Core+Jacket (b) Experimental Thermal behavior of Core and (c) Core+Jacket. 53 Fig (a) Picture of calorimeter connected with vacuum system inside radiation room (b) Picture of measurement system in the control room. 54 Fig Temporal Behavior of Bridge Output Voltage in Calibration Run and Measurement Run. 56 Fig Linac geometry for high energy X-ray measurement. 58 Fig Photograph of vial and container for the Fricke dosimeter. 66 Fig Photograph of reservoir preserving primary purified water and pipette cleaning system. 68 Fig Schematic diagram of sample holder for spectrophotometer Cary Fig Photography of vial and cuvette for Fricke dosimeter. 72 Fig (a) Photography of vial and holder to stand vial in upright position. (b)photography of irradiation of 60 Co gamma-ray to Fricke Dosimeter. 77 Fig Photography of Spectrophotometer and measurement system. 79 Fig Schematic diagram of the sintering furnace; (a) cross-section, (b) top view. 83 Fig Dependence of main peak intensity of LiF:Mg,Cu,Na,Si on Mg concentrations. 84 Fig Dependence of main peak intensity of LiF:Mg,Cu,Na,Si on Cu concentrations. 85 Fig Dependence of main peak intensity of LiF:Mg,Cu,Na,Si on Na, Si concentrations. 86 Fig Dependence of the TL intensity of LiF:Mg,Cu,Na,Si on sintering temperature. 87 Fig The glow curves of powder-type and sintered pellet-type LiF:Mg,Cu,Na,Si TL materials. 89 Fig X-ray diffraction patterns of LiF:Mg,Cu,Na,Si. A) powder. B) sintered pellet. 90 Fig Schematic diagram of 3-D TL spectra measuring system. 92 Fig Schematic diagram of the spectrometer. 93 Fig Flow diagram of temperature control. 94 Fig The normalized TL glow curves for the samples: MCNS, MC, MNS and CNS. 95 Fig Isometric plot and contour plot of the TL spectra from the MCNS sample. 98
28 Fig Isometric plot and contour plot of the TL spectra from the CNS sample. 99 Fig Isometric plot and contour plot of the TL spectra from the MNS sample. 100 Fig Isometric plot and contour plot of the TL spectra from the MNS sample. 101 Fig Analysis of the spectra at each peak temperature of the TL glow curve of MCNS sample. 102 Fig Analysis of the spectra at each peak temperature of the TL glow curve of CNS sample. 102 Fig Analysis of the spectra at each peak temperature of the TL glow curve of MC sample. 103 Fig Analysis of the spectra at each peak temperature of the TL glow curve of MNS sample. 103 Fig Computerized glow curve deconvolution for the LiF:Mg,Cu,Na,Si TL detector. The scattered curve is measured data. 105 Fig The glow curves of KLT-300 and TLD Fig Dose response of KLT-300 TL detector as a function of absorbed dose. 109 Fig Relative dose response function of KLT-300 TL detector. 109 Fig Relative energy response of LiF:Mg,Cu,Na,Si TL detector. 112 Fig Reproducibility of KLT-300 TL detector. 115 Fig Electron energy spectra and their parameters. 122 Fig An electron beam absorbed dose distribution in a water phantom. 123 Fig The two experimental set-ups to determine the quality of photon beams. 125 Fig The calibration chain for electron and high energy photons from PSDL to SSDL to user. 128 Fig Displacement of the effective point of measurement P eff (depth Zp eff ) from the center P(depth Z p ) of an ionization chamber. 130 Fig The corrextion factor for recombination P s in continuous radiation. 134 Fig Reference water phantom for absorbed dose determination. 135 Fig The perturbation factor Pu as a function of the quality of photon beams for different chamber wall materials. 139 Fig The fraction of ionization due to electrons arising in the chamber wall as a function of wall thickness for the photon beam given by. 141 Fig The ratio of Co-60 calibration factor N D,w /N K to demonstrate chamber to chamber variation for a large number of cylindrical chambers. 153
29 Fig Results of comparison of standards of absorbed dose to water (a) and air kerma (b) at the BIPM in Co-60 beam. 156 Fig Mean values of k Q at various photon beams measured at NPL in the UK for secondary ion chamber NE 2561 ( ) and NE 2611 ( ). 160 Fig Experimental set-up for the determination of the beam quality Q (TPR 20,10 ). 178 Fig Sigmoidal fits of calculated values of k Q for various ion chambers commonly used for reference dosimetry, as a function of photon beam qualities, Q (TPR 20,10 ). 183 Fig The effective point of measurement of a cylindrical ion chamber. 188 Fig The ratio of absorbed dose to water in Co-60 determined with calibration factors in terms of absorbed dose to water, N D,w and with calibration factors in terms of air kerma, N K Fig Schematic diagram of linac head. (a) 6 MV Siemens MX2 (b) 10 MV Varian Clinac 2100C. 199 Fig Calculated photon energy spectra. (a) The 6 MV beam from the Siemens MX2; (b) The 10 MV beam from the Varian Clinac 2100C. 200 Fig Comparison of the calculated and measured depth dose curves. 202 Fig Comparison of the calculated and measured cross profiles. 204 Fig Experimental set-up for energy reponses of the TLDs. 210 Fig Relative energy responses to Co-60 for several high energy photons with different types of phantoms (left side) including the low energy photon regions(by air kerma) for a comparison (right side). 213 Fig Results for TLD Response: (Reference value is KCCH). 216 Fig Results for TLD Response for the average of the all response values. 217
30 i xxvi xxvii xxviiii / 5 1. / TLD KLT-300(LiF:Mg,Cu,Na,Si) TL XRD KLT-300(LiF:Mg,Cu,Na,Si) TL TL
31 1-1. Core G-value Millipore system H 2 SO 4 Fe Co Fricke Dosimeter LiF:Mg,Cu,Na,Si MCNS, MC, CNS MNS TL CGCD TL KLT KLT KLT Student's V1/V k m k att k m k att Stopping Power Ratio Water to Air(S w,air ) k m (= s air,m ( en / ) m,air ) Farmer type p cel BIPM V 1 /V 2 k s Co Co (TPR 20,10 ) TPR 20,10 k Q P dis, P wall, P cel S w,air P Q Co-60 (3-39). 194
32 3-20. k Q TLD KLT-300 Co TLD Co TLD ( ) TLD ( ) TLD (Physicist / ( )) TLD ( ( )). 219
33 1-1. / thermistor Wheatstone bridge heating curve gap m Al mylar film (a) Jacket Lid Base, (b) Shield cap base Thermistor Core-Jacket-Shield Assembly Core-Jacket-Shield assembly (a) Core (b) Jacket thermistor (c) heating thermistor Medium Core-Jacket-Shield Assembly (a) (b) Lock-In Amplifier (a) Thermistor (b) SEM thermistor (c) heating thermistor (d) heating thermistor Visual Basic PC Lock-In Amplifier Lock-In Amplifier PC interfacing flow chart Lock-In Amplifier data flow chart (a) system (b) Graphic chart recorder core bridge heating cooling Core Core+Jacket system. 52
34 1-23. (a) Core, Jacket and Core+Jacket (b) Core, Jacket (c) Core+Jacket (a) system (b) system Bridge Output Voltage X Fricke Dosimeter Vial Container pippet cleaning system Cary 4000 Spectrophotometer sample holder Fricke Dosimeter Vial Cuvette (a) Vial holder (b) Fricke Dosimeter 60 Co Spectrometer system ; (a), (b) Mg LiF:Mg,Cu,Na,Si Cu LiF:Mg,Cu,Na,Si Na Si LiF:Mg,Cu,Na,Si LiF:Mg,Cu,Na,Si TL LiF:Mg,Cu,Na,Si TL LiF:Mg,Cu,Na,Si XRD. A), B) TL MCNS, MC, MNS CNS MCNS TL CNS TL MC TL MNS TL MCNS CNS MC MNS. 103
35 2-20. LiF:Mg,Cu,Na,Si TL KLT-300 TLD KLT KLT KLT KLT : (a) ; (0) ; (z) z (a) - (SCD). (b) - (SSD) PSDL, SSDL P( P z ) P eff Ps P u Co-60 Ka NE 2561 k Q k Q Ka N D,w Co Linac head TLD ( ) TLD ( ). 217
36 . ( 3 ). 50,.. / /. 1) /, 2) ( X- ) /. 1. / / X-
37 60 Co ( 0.96 %) 2. TLD TLD ( 5% ) TLD dosimetric 3 TL TLD dopants 3. / TLD ( 20 MeV )
38 1., TLD. (BIPM) 2 channel. (15 50 MeV). 1 (, ARPANSA, NMIS, PTB, BIPM ) / 10. IAEA. MD Anderson. 2. /. /
39 . (Heat-Loss-Compensated Calorimeter), FeSO 4 Fricke Dosimeter MeV 2 Gy/min MeV Co-60 / 50 %., dosimetric (NuTRM) 90 %.. -, 60 Co ( 70 %) 60 Co - ( 50%) ( 40 %)
40 1 / 1. /..,. ( 3 )., (TLD). Air kerma IAEA protocol.. (Chemical Dosimeter), (NIST, NPL, NRC ).
41 ., system 60 Co (1) ( ) (absorbed dose; ).,..
42 화학선량계의제작및보급 측정하고자하는고선량방사선발생장치로부터보급된화학선량계에방사선조사 흑연열량계를이용한감마선및 X-선흡수선량평가기술및적용기술개발 흑연과물의환산인자 치료선량방사선의조사에따른화학선량계용액의몰농도변화몰농도변화에의한 optical absorbance 변화량측정 흑연열량계제작기술을기반으로한물열량계제작및특성평가물열량계를이용한감마선및 X-선흡수선량평가기술및적용기술개발 감마선과 X-선에대한물의흡수선량값결정과기준선량으로활용 Optical absorbance 변화량으로부터조사된방사선의물에대한흡수선량결정기준흡수선량과비교하여치료용방사선발생장치의선량및불확도평가및통보 치료용방사선발생장치의선량평가및정도체계확립 1-1. /. (Systematic diagram of evaluating dosage from High Energy / Dose Irradiation System using Chemical Dosimeter.)
43 air kerma K air. Kair CPE CPE. air kerma K (energy fluence) - (mass-energy absorption coefficient) K air.. m, n Km Kn., ( ) (CPE: Charge-Particle Equilibrium) (1.1).
44 .,. (homogeneous). (uniform field). (, ).., (Variation with energy of the ratio of the mass energy absorption coefficients of water and air.)
45 1-3.. (Illustrating transient CPE for high-energy indirectly ionizing radiation incident from the left on a slab of material.) (2) ( ) (absorption process),,, 2,,. (dissipation).. (Heat Transfer) (1.2)
46 (convection), (conduction) (radiation).,. gradient., thermal gradient. (1.3).. Heat flow equation thermal gradient., (thermal conductivity)..,, 4 Stefan-Boltzmann,. ( ),
47 .. (Temperature Measurement)...,., thermistor., thermistor ( ) 1-2% -4%. Thermistor thermistor, (material constant)., -. thermistor,,. Thermistor 1 mm glass bead thermistor. bead thermistor thermistor temperature gradient,.
48 (Wheatstone bridge) thermistor Wheatstone bridge. 1-4 Wheatstone bridge. bridge thermistor.. bridge (power coupling impeadance matching) (optimum signal to noise ratio) bridge. thermistor. (Resistance Sensitivity; ) thermistor thermistor. thermistor V/. (Temperature Sensitivity; ) thermistor. V/. (Nonlinearity; 100 ). (, )
49 ( ) (1.2) (isothermal) (non-isothermal) (phase transition) (ice calorimeter). (Constant-temperature-environment calorimeter) (adiabatic calorimeter).,, (quasi-adiabatic calorimeter). (two-body) (three-body) core jacket core jacket thermal buffer shield (1.3).. (Isothermal calorimeter) core jacket core.. (Constant-temperature-environment calorimeter) core jacket. (dissipation). core
50 (energy flow). core jacket. (Adiabatic calorimeter). jacket feedback core. core jacket. (20 rads/min.). (Constrained Quasi-Adiabatic calorimeter) thermal head (core jacket ) jacket. core, jacket shield, core jacket jacket shield shield initial rating period, final rating period. W. P White period. Initial rating period shield
51 . core jacket Newton (cooling law) shield drift. thermal head 0 core. period core jacket (dissipation). core jacket thermal head. period jacket shield. shield setting feedback. period final rating period (drift). thermal head final rating period period. thermal head 0 core jacket. thermal head core, jacket shield thermal head. - jacket..
52 1-4. thermistor Wheatstone bridge. (Wheatstone Bridge. Depending on the particular application, one or more of the bridge resistors through are thermistors.) T Core Jacket T Shield 1-5. heating curve. (Schematic quasi-adiabatic calorimeter heating curves.) (3) core, jacket, shield medium (Heat-Loss-Compensated Calorimeter) (1.4). core
53 . core jacket core thermal gradient.,,, thermal gradient (1.5). core., core jacket core jacket, core heater core core jacket jacket. jacket core jacket jacket core. Thermal gradient. (calibration run) (measurement run), core, jacket shield core core core jacket. core thermal gradient core. core heater heater thermal gradient thermal gradient. thermal gradient core heater (conducting film) core core
54 core jacket heater thermistor, Wheatstone bridge arm core jacket shield. thermistor core jacket heater. medium medium (thermo-regulated). shield shield jacket, shield (thermally floating) (Schematic Diagram of Heat-Compensated Graphite Calorimeter.) (4) ( ) core, jacket, shield medium.
55 Core Core 20 mm 3 mm. Core core core 0.5 mm thermistor Wheatstone bridge. Core 2 thermistor 1.5 k thermistor, 20 k thermistor calibration heater. Core 3 polystyrene. Jacket Jacket core Core 2 jacket base 3 polystyrene 1 mm 1 mm. Jacket lid base core. Jacket lid base 6 m coating mylar film core mylar film core core jacket. Jacket jacket lid base core core jacket. Jacket base core thermistor 5 cm core core jacket polystyrene. core pumping jacket. jacket jacket cap cap jacket base. Shield Jacket shield 3 1 mm polystyrene
56 shield core jacket. shield 36 mm, 74 mm core 85. Shield medium 2 mm (front surface) (fluctuation) core. Shield 1 mm cap. Shield mylar. Medium Medium core shield medium mylar. Medium Shield 2 mm medium (vacuum box). 15 cm 10 cm., medium medium thermoregulator. ( ) ( %) core jacket (thermistor, polystyrene, aluminized mylar film, platinum wire, Cu wire, Epoxy ) heat capacity core jacket. heat capacity core jacket. core, jacket shield. core jacket heat capacity core jacket. Core Core thermistor and platinum, thermistors core
57 epoxy, graphite thermistor radiation resistant mylar film, polystyrene. core (effective mass). core. Core = (core ) (1+ ), :, : Core Core ( % ) g % core g. Core core mg g/cm cm polystyrene 12 mm. 2 mm core core 1.25 mg. core mg. core core core 50 %. core 1 mg. Core Thermistor Epoxy epoxy 0.2 mg. Epoxy
58 0.2 mg epoxy 2 mm. core 0.6 mg., Core thermistor 0.33 mm 4 mm thermistor epoxy 0.4 mg. Core core mylar strip Core thermistor graphite mylar strip thermistor mylar strip 0.8 mm 4 mm cm 2 mylar strip 4 mm 1.75 mm mm. mylar strip 2.0 cm 4.7 cm mm mylar mylar strip. mylar g, mylar strip =0.131 mg., thermistor mylar strip 4 mm 1 mm mm. Mylar strip, mylar strip Epoxy Mylar strip cm 2 epoxy 2.5 mg/cm 2. mylar strip epoxy 0.16 mg 0.2 mg. mylar strip 0.2 mg. Thermistor Thermistor 0.25 mm 2.6 g/cm cal/g o C thermistor
59 . Platinum Thermistor lead mm platinum platinum 21.4 g/cm cal/cal/g-oc., core 4 mm platinum lead thermistor 4 lead. Thermistor platinum lead 0.05 mm #44 2 mm mylar strip platinum lead core core core 2 mm. 8.9 g/cm cal/g o C = 0.14 mg. core cal/ o C. core ( g) ( ) = g core g. Jacket jacket (lid base) core. Jacket base core thermistor., polystyrene jacket jacket
60 thermistor shield 5 cm. core jacket jacket lid jacket jacket core. core jacket aluminized mylar film jacket lid. core aluminized mylar film jacket. core jacket thermistor jacket core mylar film jacket. core jacket g (Core), g (Jacket lid), g (Jacket base) jacket (lid base) g. jacket core jacket. core. ATJ (300 K) cal/g o C core g cal/g o C = cal/ o C.
61 1-1. Core. (Heat Capacity of bare graphite and each impurity in Core.) Component Mass (mg) % of Core Specific Heat (cal/g o C) Heat Capacity (cal/ o C) Core (Graphite+Ash) Pure Graphite Ash Ca K Fe Si V Core Support (polystyrene) Core Support Epoxy for Thermistor embedding Cementing mylar film to core Cementing leads to mylar strips Mylar strips Thermistor Platinum leads Copper leads
62 Jacket base core jacket base. core jacket core jacket base. jacket base (0.3932) ( cal/ o C) = cal/ o C. jacket base. Jacket core aluminized mylar film jacket base mylar film g (jacket base ) epoxy g (jacket base ). jacket base ( g) ( cal/g o C)+( g) (0.320 cal/g o C)+( g)(0.340 cal/g o C) = cal/ o C = cal/ o C. jacket base ATJ. jacket base = g. Jacket lid jacket lid jacket jacket lid (0.6068) ( cal/ o C) = cal/ o C., jacket lid mylar film g (jacket lid ), g (jacket lid ) g, epoxy g. jacket lid ( g) ( cal/g o C) +( g) (0.340 cal/g o C)+( g) (0.32 cal/g o C) =
63 cal/ o C = cal/ o C g Jacket lid = g. Jacket lid, jacket base, shield cap, shield base Medium 6 m aluminized mylar film mylar film emissivity. Stefan-Boltzmann emissivity (1.6).,, (effective emissivity)., emissivity, emissivity,. ( ) Gap Gap Correction (1.7) 60 Co (perturbation). core primary beam. core jacket lid core. scattered beam.
64 2 3 mm. Monte Carlo. (Determination of gap correction factor) (gap correction factor)., core.,, core kerma. core core. core (cross section) primary beam scattering. 1-7 gap.
65 1-7. gap : 1 (core ), 2 (jacket lid base ), 3 (jacket base shield ), 4 ( ). (Schematic view of the calorimeter gaps : gap 1 (around the core), gap 2 (between jacket lid and base), gap 3 (between jacket base and calorimeter body), gap 4 (between calorimeter and added graphite plate).) (5) core, jacket, shield medium 0.05 cm cm thermistor core jacket, jacket shield 5 mm polystyrene 120 core jacket, jacket shield shield medium 6 m aluminized mylar film jacket shield epoxy.
66 ( ) drill core 0.5 mm, 2 mm 0.33 mm thermistor heating thermistor. Thermistor 3 micrometer thermistor. thermistor Digital Voltmeter thermistor 30 M., thermistor mm, 8 mm - 2 cm mm insulation strip core. Thermistor core jacket base jacket shield 1 mm jacket shield thermistor. ( ) Core 3.5 mm, 0.5 mm polystyrene. core 16 mm 120 o 0.5 mm core. ( ) Jacket lid, jacket base, shield cap, shield base medium 6 m aluminized mylar film film jacket lid, shield cap, medium cavity teflon mylar film working time epoxy. mylar film emissivity. Stefan-Boltzmann emissivity.,
67 ,., emissivity, emissivity,. 6 m aluminized mylar film coating emissivity core jacket effective emissivity. jacket lid base shield cap base 1-8. (a) (b) m Al mylar film (a) Jacket Lid Base, (b) Shield cap base. (Picture of Jacket Lid (a) and Base (b) Picture of shield lid and base. Both parts are coated by aluminized mylar film of 6 m.) ( ) Jacket thermistor base core thermistor jacket shield. shield 5 cm. jacket lid jacket jacket core. core jacket aluminized mylar film jacket lid.
68 ( ) Jacket base 9 mm, 1.0 mm polystyrene. jacket 20 mm 120 shield 7.5 mm shield jacket lid shield gap 0.5 mm. 1-9 core jacket thermistor core jacket core-jacket-shield assembly Thermistor Core-Jacket-Shield Assembly. (Picture of Core-Jacket-Shield Assembly after connecting thermistor wires and mounting supports for core and jacket.) ( ) Core jacket lid gap theory 0.5 mm. ( ) Shield base core jacket thermistor cm shield base 2.5 cm, 0.45 cm lucite shield base 20. Shield thermistor shield base shield heater base
69 ., shield heater ( : g, : ) thermistor 3 k, 1/2 Watt carbon resistor 4 mm, 16 mm conductive epoxy. ( ) Shield lid base 6 mm mm. shield align shield medium 1 mm. ( ) Medium 13 cm core-jacket-shield assembly 125 cm 2 graphite block medium 5 cm. Medium core-jacket-shield assembly mm., heater shield thermo-regulator 303 K. heater medium. ( ) Medium fluctuation mm, mm mylar film., pumping mylar film film. ( ) Medium shield aluminized mylar film shield., medium.
70 ( ) Medium (Vacuum Housing) Lucite Perspex (polymethyl methacrylate) medium medium mylar film 14.5 cm, 0.5 cm. core-jacket-shield assembly head case lucite. ( ) head core, jacket shield thermistor 18 lucite rod BNC connector Amphenol connector. pumping system pumping port ground port medium heater thermo-regulator port Core-Jacket-Shield assembly (Blue print of graphite calorimeter.)
71 1-11. Core-Jacket-Shield assembly. (Picture of graphite calorimeter with Core-Jacket-Shield assembly.) (6) Core, Jacket, Shield Core, Jacket, Shield mm. Thermistor platinum mm mm Shield lucite ring. ( ) Wheatstone Brige Core thermistor Core thermistor platinum mm 1 cm mm 4.5 cm core jacket shield. 4.5 cm jacket shield shield lucite ring 7 cm Lucite ring terminal board 10
72 60cm # cm /cm = (a). ( ) Wheatstone Brigde Jacket thermistor Jacket thermistor core mm. Jacket thermistor 4.5 cm core jacket jacket base shield 4.5 cm 7 cm shield lucite ring terminal board 60 cm # (b). ( ) Core Jacket Heater Core Jacket Heater mm. Heater thermistor platinum mm 1 cm mm 6.1 cm jacket shield. 4.5 cm jacket shield shield lucite ring 8.2 cm heater lucite ring Heater 1-12 (c). ( ) Core Jacket Core Jacket mm Moleculoy. Moleculoy # Moleculoy 49 cm Core
73 Jacket. Core cm = 1.25 cm (core jacket base ) cm (Jacket base shield ) cm (Shield hole lucite ring ) Jacket 8.6 cm = 1.5 cm (Jacket base shield ) cm (Shield hole ring ) Shield ring, core, jacket, shield thermistor #36 Lucite rod 2 BNC connector Amphenol connector. core-jacket-shield assembly 1-13.
74 Core Jacket Shield Lucite Terminal Thermistor Ring Board (Vaccuum) 4.5 cm of mm Cu wire 7.0 cm mm dia. wire 60 cm length of #36 Cu wire Total Resistance: 1.01 Total Resistance: 1.58 Total Resistance: cm, mm dia. Cu wire, Total resistance: 1.01 (a) Jacket Shield Lucite Terminal Thermistor Ring Board (Vacuum) 4.5 cm, mm dia. Cu wire 7.0 cm 0.045mm dia. Cu wire 60 cm length, #36 Cu wire Resistance: 1.01 Resistance: 1.60 Resistance: 1.62 (b) Core Jacket Shield Lucite Terminal Thermistor Ring Board (Vaccuum) 6.1 cm, mm dia. Cu wire 8.2 cm, mm Cu wire 60 cm length #36 Cu wire Resistance of wire: 1.37 Resistance: 1.85 Resistance: cm, mm Cu wire, Resistance: 1.01 (c) (a) Core (b) Jacket thermistor (c) heating thermistor. ((a)wiring for Core Bridge Thermistor, (b) Wiring for Jacket Bridge Thermistor, (c) Wiring for Heater Leads.)
75 1-13. Medium Core-Jacket-Shield Assembly. (Photograph of Core-Jacket-Shield Assembly Inserted into Medium with connection of measurement wires.) (7) (Measurement and Control Circuit System) ( ). thermistor Wheatstone bridge arm bridge ( ) bridge thermistor bridge differential output voltage. (1.6) core, jacket shield medium thermistor arm equal-arm Wheatstone bridge core jacket thermistor arm 5. Bridge thermistor bridge differential output voltage Lock-in Amplifier signal GPIB interfacing PC data acquisition monitor output voltage graphic mode
76 . graph data (a) (b) (a) (b). (Schematic Diagram of Circuit for (a) Calibration run and (b) Measurement run.) ( ) (Measurement and Control Box). thermistor Wheatstone bridge arm bridge ( ) bridge thermistor bridge differential output voltage. core, jacket shield medium thermistor arm equal-arm Wheatstone bridge core jacket thermistor arm 5. Bridge thermistor bridge differential output voltage Lock-in Amplifier signal
77 GPIB interfacing PC data acquisition monitor output voltage graphic mode. graph data. bridge (preliminary procedure), (calibration run) (measurement run). bridge C+J mode, C mode, J mode, S mode M mode mode.. C+J mode core thermistor jacket thermistor bridge arm arm,., core jacket thermistor core jacket arm. Bridge C mode bridge 0. J mode S mode. M mode mode bridge. mk, bridge. core heater core. core jacket core., core,. bridge arm 5 Helipot 0.5, 5 5 mode 10 Helipot ( mode coarse control fine control
78 Helipot ) Wheatstone birdeg arm thermistor.. calibration heating., k, decade box contact resistance 1.7 k shunt Lock-In Amplifier. (Photograph of homemade measurement and control box and Lock-in Amplifier.) ( ) Heater thermistor thermistor 1.5 k, heating 20 k small bead thermistor MOS (metalic oxide semiconductor) -. coating response time power sensitivity. Thermistor cm - 25 m, 0.8 cm. thermistor
79 (dissipation constant), thermistor self-heating., thermistor 63.2 % thermal time constant 0.5 sec. heating thermistor Scanning Electron Microscope thermistor thermistor (1.8) 1-16.
80 (a) (b) Resistance of Sensor Thermisotr as a function of T Resistance of Heater Thermistor as a Function of T Resistance (kω) Resistance (kω) Temparature (K) Temperature (K) (c) (d) (a) Thermistor (b) SEM thermistor (c) heating thermistor (d) heating thermistor. ((a) Diagram of Thermistor (b) SEM Picture of Thermistor (c) Temperature behavior of sensor and heater thermistor in the range (d) Characteristics of sensor and heater thermistors.)
81 ( ) core core jacket shield. emissivity core. jacket shield 6 m aluminized mylar film Turbo molecular pump 10-5 torr (Schematic diagram of High Vacuum System connected to Calorimeter.) ( ) Data Aquisition Core, core bridge differential
82 output voltage V out. strip chart graph V out core V out V diff strip chart recorder V out data Lock-In Amplifier PC data graph graph core bridge output V diff least square fit core. Visual Basic. PC Lock-In Amplifier Lock-In Amplifier EG&G Model 5200 PC RS-232 serial port IEEE GPIB port. RS-232 port data acquisition GPIB port., notebook PC GPIB board PCMCIA driver GPIB Measurement and Automation Lock-In Amplifier GPIB address PC PC Lock-In Amplifier 1-19 flow chart.
83 1-18. Visual Basic PC Lock-In Amplifier. (Visual Basic Window showing that PC controls Lock-in Amplifier.) core bridge output V out. (least square fit) V out V diff = (V out ) -(V out ). flow chart 1-20.
84 START NI-GPIB Interface Card Device Initialize Lock-In Amp Receive Serial Polling Data Initilize S earch for N I-G P IB D evice 0 (M aster ID ) NI-GPIB Device 0 Listener Mode Measurement Data Recording Scan GPIB Connect Device LOCK-IN AMP Model 5210 Instrum ent Address 12 Select Device LOCK-IN AMP Active Mode Set LOCK-IN AMP Communication Mode : Serial Polling Set LOCK-IN AMP Control Mode Close GPIB Device Disconnect & NI-GPIB Interface Terminate Control Command & ASCII CODE 13 Setting for Control LOCK-IN AMP Control Command Transfer Completed Program Exit? END Yes No LOCK-IN AMP RESTART Polling OK? No Yes Serial Polling Data & Receive Data CR Terminate code No Polling Completed Lock-In Amp Ok Control Command Correction Value Set & Display Data Lock-In Amplifier PC interfacing flow chart. (Flow chart of computer interfacing with Lock-In Amplifier.)
85 Yes No Yes No No Yes Lock-In Amplifier data flow chart. (Flow chart of Visual Basic Program communicating with Lock-in Amplifier.)
86 ( ) mode core core heater core strip chart recorder (PC) thermistor thermistor core. core thermistor arm bridge thermistor heater thermistor thermistor 3 mw 100 core thermistor thermistor heating cooling process. (a) (b) (a) system (b) Graphic chart recorder core bridge heating cooling. ((a) Photograph of Calorimetric measurement and control system (b) Display of heating and cooling curve on the graphic chart recorder for the calibration run using the equivalent circuit of core bridge.)
87 core jacket 1-22 core heating thermistor core jacket strip chart recorder. core jacket assembly core jacket core jacket emissivity aluminized mylar film. core core core jacket cap aluminized mylar film jacket core + jacket Core Core+Jacket system. (Photograph of Measurement system of thermal behavior of Core and Core+Jacket in vacuum as a function of time.) core jacket core jacket core jacket
88 . core + jacket + shield assembly graphite medium core jacket. core core jacket (a) (b) (c) (a) Core, Jacket and Core+Jacket (b) Core, Jacket (c) Core+Jacket. ((a) Theoretical Thermal behavior of Core, Jacket and Core+Jacket (b) Experimental Thermal behavior of Core and (c) Core+Jacket.) ( ) system bridge output voltage (a) (b).
89 , Lock-In Amplifier, notebook., Belden Cable. (a) (b) (a) system (b) system. ((a) Picture of calorimeter connected with vacuum system inside radiation room (b) Picture of measurement system in the control room.) calibration 60 Co constant voltage source 20 W core (a) core bridge (A B ) V out 0.1 V heating (B E ) graph scale core bridge arm offset graph minimum scale. (E F ) core bridge V out V out V diff (D). V diff core.
90 bridge. bridge bridge core V diff. core bridge core. core V diff, core. core E C ( heating ) output voltage difference V diff, (core balancing resistance) R M (1.9) a, b, c. core core., 60 Co core 1-25 (b). 60 Co (B E ) core D R. M eff core M eff = (core ) (1+ )., core.
91 (a) (b) Bridge Output Voltage. (Temporal Behavior of Bridge Output Voltage in Calibration Run and Measurement Run.) 60 Co 1 m, phantom (core ) core (1.10) P core : gap : : phantom : 60 Co : 60 Co. core, core Co mgy/sec, 0.48 %.. X- (Co-60, X- ). Co-60
92 (BIPM) Co-60 ( 5.2 ) X-. X- (LINAC). Co-60.. ( ) X- (Collimator) X-., target X MeV bremsstrahlung X-. collimation X- collimation. beam flattening filter collimator filter X- collimation collimation X- monitor chamber additional filter X- X-. filter, monitor X- additional filtration. X ( ) (beam quality) Specifier
93 X- (energy width). detector beam quality specifier ( ). beam quality specifier X-. (Linac geometry for high energy X-ray measurement.).. beam quality specifier. MV X- beam quality (tissue phantom ratio)
94 ( 20 cm 10 cm ).. phantom ( ) (MV) (Dose conversion in megavoltage photon beam). (photon fluence) scaling theorem. theorem ( ).,,,,,, -, collision kerma.., Compton (pair production, bremsstrahlung, annihilation radiation ). ( ) X-
95 Co-60 2 MeV. collimator X-., Wheatstone Bridge thermistor.. 60 Co irradiator monitoring. X- Co-60. Co-60 X- (substitution method). 2.. (1.11) (aqueous dosimeter) (dilute solution) H OH (free radical) H 2 H 2 O
96 . (LET : linear energy transfer),. (dense track) reaction (back reaction: ) yield. X- LET yield yield yield LET. LET yield yield LET yield yield. yield G-value X radiation chemical yield, G(X). G-value 100 ev ( )., G(X) moles/j G(X) = G-value N H 2 SO 4 FeSO 4 yield. G(e - ag) G-value G-value. (Radiation chemical yield of free radicals and molecules for several radiations.). (dilute aqueous solution) dosimeter Fricke dosimeter, Dye tpye dosimeter, Benzoic Acid Fluorescence
97 Dosimeter, FeSO 4 Fricke dosimeter (1.12) (1) (2) (3) MeV X- 60 Co 0.2 ev/nm (low LET) G-value (4) (5) 60 Co 0.1 % dosimeter. Fricke dosimeter.. Fricke Dosimeter Fricke dosimeter 40 Gy 400 Gy. Fricke dosimeter 0.8 N H 2 SO 4 FeSO 4 FeSO 4 X-. (1) (1.11) FeSO 4 Ferrous (Fe 2+ ) Ferric (Fe 3+ )., PH Fe 2+ + OH - Fe 3+ + OH - H + O 2 HO 2 Fe 2+ + HO 2 Fe 3+ + HO 2 HO H+ H 2 O 2 Fe 2+ + H 2 O 2 Fe 3+ + OH + OH -
98 , HO 2 radical radical Fe 2+ Fe 3+, OH radical Fe 2+ H 2 O 2 2 Fe 2+. radiation chemical yield G(Fe 3+ ). G(Fe 3+ ) = 2 G(H 2 O 2 ) + 3 G(H) + G(OH) 1-2 G(Fe 3+ ) = 15.6 yield M FeSO 4 (half-life) 14 Fricke dosimeter (aftereffect). (2) Fricke Dosimeter Fricke dosimeter M FeSO 4 Fe(NH 4 ) 2 (SO 4 ) N H 2 SO 4. M 1000 cm 3 (molecular weight), N normality. NaCl NaCl dosimeter. Fricke dosimeter Fricke dosimeter M NaCl M NaCl radiation chemical yield rate ( 10 Gy/ s ) NaCl ferric(fe 3+ ) NaCl. i), ii) NaCl G(Fe 3+ ) ( )., FeSO 4 [Fe 2 (SO 4 ) 3 ]. batch background
99 . (3) (Stability) FeSO 4 [Fe 2 (SO 4 ) 3 ] Fe 2+., 0.01 M FeSO M/day..,. batch background.,. (4) Fricke dosimeter Fe 3+ CeSO 4 (titration) 40 Gy 500 Gy. (absorption spectroscopy) Fe 3+ FeSO 4 spectrophotometer dosimeter Fe nm Fe 2+ (optical absorption coefficient) Fe %. Fe 3+ molar extinction coefficient, 0.69 % /, N H 2 SO 4 (Fe 3+ ) = 2197 liter/mole cm. 224 nm Fe 3+ peak 304 nm sensitivity
100 . (Fe 3+ ) 4565 liter/mole cm 304 nm % Fe 2+. molar extinction coefficient information (1.11)., = molecules/mole (avogadro's number) = (control solution) = Fe 3+ Fe 2+ molar extinction coefficient ( 3040, 25 = 2197, = 1 liter/mole cm) = Fricke (0.8 N H 2 SO kg/liter) = ev/rad = (optical pathlength) G(Fe 3+ ) = Fe 3+ radiation chemical yield., 0.8 N H 2 SO 4 1 cm absorption cell Fricke Dosimeter (Design Criteria) Fricke (Vial) pancake quartz 30 mm, 7 mm 1 mm. teflon Lucite stand spectrophotometer., vial 6 cm 8 cm 2 cm 6 cm 8
101 cm 3 mm polystyrene., (AAPM: American Association of Physicist in Medicine) protocol. Vial Fricke Dosimeter Vial Container. (Photograph of vial and container for the Fricke dosimeter.). (Fricke Dosimeter) System Fricke Dosimeter FeSO 4 Fe 2+ (ferrous) Fe 3+ (ferric). Ferrous Ammonium Sulfate hexahydrate [(NH 4 ) 2 Fe(SO 4 ) 2 6 H 2 O] (99.97 %), Sodium Chloride [NaCl] (100 %) Sulfruric Acid [H 2 SO 4 ] (95.5 %), Sulfruric Acid [H 2 SO 4 ] (51 %)., Millipore. RIOS 5 system MILLI-Q Gradient system
102 RIOS 5 system (Reverse Osmosis) 1 90 % 1 1 (monovalent), (polyvalent), L reservoir 1 MILLI-Q Gradient system Fricke 3. MILLI-Q Gradient system (activated carbon) nuclear (ion exchange resin)., UV lamp polisher cartridge, Fricke flask quartz water system (30 L) pipette acid cleaning system reservoir pipette cleaning. Spectrometer 224 nm 303 nm (optical absorbance). Hood.
103 1-3. Millipore system. (Characteristics of purified water produced by millipore purification system.) pipette cleaning system. (Photograph of reservoir preserving primary purified water and pipette cleaning system.)
104 . Spectrometer Sample Holder Spectrophotometer IAEA Dr. Ken Shortt, NIST Mr. Chris Soares Varian Cary 400 UV-VIS spectrophotometer. Cary 400 (1.13). floating" casting isolate Littrow (monochromator) out of plane (photometric noise) PbS detector 0., nitrogen purging. window back reflection. Cary reference beam attenuator ,. 175 nm 900 nm Fricket nm., G-value molar extinction coefficient spectrometer optical absorbance Temperature Control Unit. Unit sample holder Peltier cooling device Peltier water reservoir., sample holder sample holder. Cary 4000 UV-Scan (step size) 1 mm align
105 .. Spectrophotometer reference side dummy holder double measurement holder optical density., Sample holder Cary 4000 Spectrophotometer sample holder. (Schematic diagram of sample holder for spectrophotometer Cary 4000.). (1) Fricke dosimeter system Fricke dosimeter. ( ) Vial : 19 mm 8.5 mm 3 mm 10 mm pancake vial PTFE. Teflon vial. ( ) Cuvette : Spectrophotometer cuvette( 10 mm, 20 mm, 40 mm) control( ) vial spectrophotometer sample stand
106 vial cuvette. ( ) : Fricke dosimeter. - Ferrous Ammonium Sulfate hexahydrate [(NH 4 ) 2 Fe(SO 4 ) 2 6 H 2 O] (99.97 %) - Sodium Chloride [NaCl] (100 %) - Sulfruric Acid [H 2 SO 4 ] (95.5 %) - Sulfruric Acid [H 2 SO 4 ] (51 %) : ( ) 2 liter quartz flask : quartz. ( ) Bernoulli suction pump : flask beaker water suction pump. ( ) :. Mettler g( : 10 g) g ( : 1 mg). ( ) : Millipore. RIOS 5 system MILLI-Q Gradient system RIOS 5 system (Reverse Osmosis) 1 90 % 1 1 (monovalent), (polyvalent),. 1 MILLI-Q Gradient system Fricke 3. MILLI-Q Gradient system (activated carbon)
107 nuclear (ion exchange resin)., UV lamp polisher cartridge,. ( ) : Laminar Flow. ( ) pipette cleaning system : pipette. ( ), beaker, spatula, bottle, tweezer, funnel Fricke Dosimeter Vial Cuvette. (Photography of vial and cuvette for Fricke dosimeter.) (2) Fricke Dosimeter Fricke radiation chemical yield Fricke,, vial cuvette.
108 -. (Fe) Fricke vial Fricke H 2 SO 4 5. Vial. ( ) 6N NaOH Vial ( grease). NaOH NaOH 12g 100 ml 50 ml. ( ) HCl HNO HCl 36ml HNO 3 12 ml.. ( ) - ). Na 2 Cr 2 O 7 2 g 50ml (Cr ( ) Vial NaOH 10. ( ) Vial -. ( ) Vial 3 4. ( ) ( ). ( ).
109 ( ) 0.4 M H 2 SO 4 vial., H 2 SO 4 (blank) Teflon bottle. vial 25 ppb(ppb : 10 1) (3) Fricke Fricke FeSO 4 NaCl Al foil desiccator. H 2 SO 4 teflon bottle. Fricke. ( ) 2 L quartz flask 5 Millipore water purification 3 3/4 (1500 g). ( ) 95 % H 2 SO 4 beaker. Beaker 5 H 2 SO 4. ( ) 10 Gy. ( ) g FeSO 4. ( ) g
110 NaCl. Fricke (concentration). ( ) Millipore g Fricke. ( ) Fricke (stopper) (air-saturated). ( ) dosimeter ( ). dosimeter. FeSO 4 : mol / L H 2 SO 4 : mol / L NaCl : mol / L FeSO 4 NaCl Mettler % H 2 SO 4 Fe. (Result of mass spectroscopic analysis of Fe resolved into H 2 SO 4 solution.) (Fe) Signal (arbitrary unit) (Fe : 10 ppb) 1400 Teflon bottle 0.4 M H 2 SO 4 20 Vial 0.4 M H 2 SO Vial 0.4 M H 2 SO (4) Vial Fricke Fricke vial vial
111 3 vial. Vial Fricke vial 5 3 rinse FeSO 4 rinse. 3 5 rinse FeSO 4 vial ultrasonic cleaner. vial. Vial FeSO 4 laminar flow. vial FeSO vial Fe 3+. vial vial.. FeSO 4 vial vial beam vial holder alignment vial. vial holder 1-31-(a). (5) vial holder 60 Co 0.12 % %. vial. vial Vial Gy vial
112 . 3 vial 25 Gy, 30 Gy, 40 Gy 60 Co. Vial (b). (6) Cuvette Fricke Spectrophotometer Fricke vial cuvette cuvette sample holder vial cuvette 1 cm, 2 cm, 4 cm cuvette. Cuvette vial., 5 3 rinse cuvette cuvette. (a) (b) (a) Vial holder. (b) Fricke Dosimeter 60 Co. ((a) Photography of vial and holder to stand vial in upright position. (b)photography of irradiation of 60 Co gamma-ray to Fricke Dosimeter.)
113 (7) (Absorbance) Varian Cary 400 UV-Vis. spectrometer Fricke cuvette (optical density). Fricke control ( Fricke ) spectrophotometer dual beam. Dual beam control sample holder cuvette single beam. control cuvette. cuvette control. 3020, 3030, Fricke control (OD) 1-5, spectrophotometer Fricke dosimeter spectrophotometer 3040, Gy Fricke dosimeter (OD) (OD) , molar extinction coefficient
114 ICRU Report 35 (1.14) Fricke = Gy 39.3 Gy Co Fricke Dosimeter. (Results of measurement of optical density of irradiated Fricke dosimeter with different dosage and their uncertainties based on control solution.) Spectrometer system. (Photography of Spectrophotometer and measurement system.)
115 ., molar extinction coefficient, = molecules/mole (avogadro's number) = (control solution) = Fe 3+ Fe 2+ molar extinction coefficient = Fricke (0.8 N H 2 SO kg/liter) = ev/rad, = (optical pathlength) G(Fe 3+ ) = Fe 3+ radiation chemical yield., 0.8 N H 2 SO 4 1 cm absorption cell = = Gy ( = 2197, = 1 liter/mole cm) = = Gy ( = 4565, = 20 liter/mole cm) = = Gy ( ) = Gy ( )
116 2 TLD 1. KLT-300(LiF:Mg,Cu,Na,Si) TL. KLT-300 TL LiF,,,,, TLD. LiF TL.. (activator)., (grain size).. LiF LiF 30. TL (2.1).. (atmosphere). LiF:Mg,Cu,Na,Si TL, TL Mg 0.00 mol% 0.25 mol%, Cu 0.00 mol% 0.07 mol% Na Si 0.00 mol% 1.50 mol%. TL
117 LiF:Mg,Cu,Na,Si TL. LiF, Mg MgSO 4 7H 2 O, Cu CuSO 4 5H 2 O, Na Si Na 2 O 2SiO 2 9H 2 O. ±10-6 g,. 150 (hot plate) LiF 30, -20. (grain size) HCl. 4.5 mm 4.5 mm, 0.8 mm (pellet),. (chamber), , 250 (annealing) (pellet type) LiF:Mg,Cu,Na,Si TL.
118 (a) (b) 2-1. ; (a), (b). (Schematic diagram of the sintering furnace; (a) cross-section, (b) top view.). TL. 2-2 LiF:Mg,Cu,Na,Si TL Mg. Mg 0.00, 0.05, 0.10, 0.15, mol%, Cu Na Si 0.05 mol%, 0.9 mol%. Mg TL 0.20 mol%. Mg mol%. Mg. LiF:Mg,Cu,Na,Si TL Mg LiF:Mg,Cu,P P. Bilski (2.2) W. Shoushan (2.3) Mg 0.2 mol%.
119 Intensity of Main Peak(arb. unit) Cu : 0.05 mol% NaSi : 0.9 mol% Mg (mol%) 2-2. Mg LiF:Mg,Cu,Na,Si. (Dependence of main peak intensity of LiF:Mg,Cu,Na,Si on Mg concentrations.) Cu, Mg 0.20 mol%, Na Si 0.9 mol%, Cu 0.00, 0.01, 0.03, mol%. 2-3 Cu. Cu. Cu 0.05 mol%. Cu LiF:Mg,Cu,Na,Si TL (2.4), LiF:Mg,Cu,P Cu. Cu Y. Nam 0.8 mol% (2.4). LiF:Mg,Cu,P TL Cu P. Bilski (2.2) mol%. W. Shoushan (2.3) mol%.
120 Intensity of Main Peak(arb. unit) Mg : 0.20 mol% NaSi : 0.9 mol% Cu (mol%) 2-3. Cu LiF:Mg,Cu,Na,Si. (Dependence of main peak intensity of LiF:Mg,Cu,Na,Si on Cu concentrations.) Na Si, Mg 0.2 mol%, Cu 0.05 mol% Na Si 0.0, 0.3, 0.6, 0.9, mol%. 2-4 Na Si. Na Si. TL Na Si 1/3. Na Si. TL 0.9 mol%. TL Na Si, Y. Nam 1.8 mol% (2.4).
121 Intensity of Main Peak(arb. unit) Mg : 0.20 mol% NaSi : 0.9 mol% Si (mol%) 2-4. Na Si LiF:Mg,Cu,Na,Si. (Dependence of main peak intensity of LiF:Mg,Cu,Na,Si on Na, Si concentrations.). TL TLD,., TL. 785, 800, 815, 825, 827, TL, TL ,. 832, TL., LiF:Mg,Cu,Na,Si
122 TL TL,, Total Signal (arb. unit) Sintering Temperature( o C) 2-5. LiF:Mg,Cu,Na,Si TL. (Dependence of the TL intensity of LiF:Mg,Cu,Na,Si on sintering temperature.) 2. XRD. KLT-300 LiF:Mg,Cu,Na,Si TL,. HCl. LiF:Mg,Cu,Na,Si TL. LiF:Mg,Cu,Na,Si Mg, Cu Na ICP (inductively coupled plasma), Si EDS (energy dispersive spectroscopy). ICP JY50P (Jobin Yvon, France)
123 EDS INKA ENERGY (Oxford, UK). 2-1., Mg, Na 83 %, Si 67 %, Cu 0.05 mol% mol% 94 %., Cu HCl. Cu. LiF:Mg,Cu,P TL Cu, W. Shoushan (2.3) mol%, P. Bilski (2.2) mol%. LiF:Mg,Cu,Na,Si Cu LiF LiF:Mg,Cu,P W. Shoushan. W. Shoushan, P. Bilski , LiF:Mg,Cu,Na,Si TL TL LiF:Mg,Cu,Na,Si. (Impurity analysis for LiF:Mg,Cu,Na,Si TL detector.) Element Method Initially doped concentrations of dopants (mol%) Finally remaining concentrations of dopants (mol%) Mg ICP Cu ICP Na ICP Si EDS KLT-300 XRD
124 LiF:Mg,Cu,Na,Si TL TL 2-1. (full width at half maximum). XRD(x-ray diffraction pattern). 2-6 x-. SIEMENS D5000(Germany). x- CaCO 3 TL. XRD Li 2 Si 2 O 5 (phase) SiO 2. LiF Na 2 O 2SiO 2 Li 2 Si 2 O 5,. SiO 2. XRD Li 2 Si 2 O 5. XRD,. TL Intensity(arb. unit) 8x10 6 7x10 6 6x10 6 5x10 6 4x10 6 3x10 6 sintered pellet powder 2x10 6 1x Channel number 2-6. LiF:Mg,Cu,Na,Si TL. (The glow curves of powder-type and sintered pellet-type LiF:Mg,Cu,Na,Si TL materials.)
125 A) Li2Si2O 5 LiF LiF LiF Li2Si2O 5 SiO SiO 2 Li2Si2O 5 Li2Si2O 5 SiO 2 SiO Theta-Scale 2000 B) LiF LiF LiF C ac O3 CaCO 3 CaCO 3 CaCO 3 CaCO 3 C ac O3 C ac O Theta-Scale 2-7. LiF:Mg,Cu,Na,Si XRD. A), B). (X-ray diffraction patterns of LiF:Mg,Cu,Na,Si. A) powder. B) sintered pellet.)
126 3. KLT-300(LiF:Mg,Cu,Na,Si) TL TL, TLD TL.. TLD TLD. TLD LiF:Mg,Cu,P., Mg Cu P. McKeever (1991) Mg Cu P (2.5)., Patil Moharil (1995) Cu + (2.6). Bos (1996) (2.7) Bilski (1996) (2.2) Cu P, Chen (1998) (2.8) Shinde (2001) (2.9) Cu. LiF:Mg,Cu,Na,Si TL LiF:Mg,Cu,P. LiF:Mg,Cu,P P Na Si. Na Si LiF:Mg,Cu,P P. LiF:Mg,Cu,Na,Si TL, LiF:Mg,Cu(MC), LiF:Cu,Na,Si(CNS), LiF:Mg,Na,Si(MNS) LiF:Mg,Cu,Na,Si(MCNS) TL (glow curve), TL nm,, TL TL TL 3 TL,.
127 . GPIB. SPEX 1681 SPEX CD2A, RS-232C. A/D TL nm 1 (scan) nm nm ->800 nm -> 300 nm -> 800 nm.,,, 3. Sample Monochromator SPEX 1681 CD-2A TC PMT Power Controller KEITHLEY 195A KEITHLEY 617 Computer(Windows) TL. (Schematic diagram of 3-D TL spectra measuring system.) (1) TL SPEX 1681(Spex, USA) 150 gr/mm nm SPEX gr/mm (dispersion) 20.0 nm/mm. TL, 1.0 mm (resolution) 20 nm, He-Ne
128 30 nm (Schematic diagram of the spectrometer.) (2) TL. TL nm , V 50 W V Cu-Constantan 1 V KEITHLEY 195A GPIB. (power controller) 3kW slidac V
129 . 12bit D/A Converter (Flow diagram of temperature control.) (3) TL. HAMAMATSU R928. na electrometer., nm 50 electrometer. electrometer(keithley 617) A/D.. TL 3 TL 2-11 MC, CNS MNS MCNS. TL. 2-2 MCNS 1, MC 0.311, CNS 0.031, MNS , Mg Cu TL
130 . Mg, 5. Mg 2.. Mg LiF. LiF:Mg,Cu,P Mg McKeever (2.5) Bilski (2.2). Nomalized TL Intensity LiF:Mg,Cu,Na,Si LiF:Cu,Na,Si LiF:Mg,Cu LiF:Mg,Na,Si Temperature(C) MCNS, MC, MNS CNS.. (The normalized TL glow curves for the samples: MCNS, MC, MNS and CNS.) 2-2. MCNS, MC, CNS MNS TL. (The relative TL intensities of the MCNS, MC, CNS and MNS samples.) LiF:Mg,Cu,Na,Si LiF:Mg,Cu LiF:Cu,Na,Si LiF:Mg,Na,Si
131 MCNS, CNS, MC MNS 0.4 /sec TL 3. MCNS 380 nm 360 nm. Na Si MC MCNS 380 nm 360 nm. Cu MNS 400 nm 360 nm. Mg CNS, TL 340 nm., TL MCNS 107, 159, 204, 240 TL. 355 nm, 385 nm, 440 nm 3, 385 nm 355 nm (240 ) 355 nm nm Mg CNS, 120 MCNS nm 385 nm 2. TL MCNS Na Si MC, 100, 154, 204, nm, 385 nm, 441 nm 3, MCNS 385 nm 355 nm 355 nm. Na Si
132 Cu MNS,. 355 nm, 401 nm, 441 nm Cu 385 nm. MCNS 385 nm Cu. Patil Moharil (2.6) LiF:Mg,Cu,P TL Cu + TL. Cu LiF:Mg,P TL 405 nm LiF:Mg,Cu,P 385 nm.. Bos Cu 387 nm Cu 352 nm Cu (2.7), Chen Stoebe EXAFS(extended X-ray absorption fine structure) LiF:Mg,Cu,P Cu + (2.8). McKeever, Bos, Patil Moharil, Chen Stoebe., LiF;Mg,Cu,Na,Si TL Mg, Cu 385 nm Na Si. LiF:Mg,Cu,X TL Mg Cu, X X TL.
133 TL Intensity(arb. unit) Temperature( o C) Wavelength(nm) Temperature(C) Wavelength(nm) MCNS TL nm, (Isometric plot and contour plot of the TL spectra from the MCNS sample. The wavelength was scanned from 300 to 800 nm, while the temperature was raised from room temperature to 300 C at the heating rate of 0.4 C/sec.)
134 TL Intensity(arb. unit) Temperature(C) Wavelength(nm) Temperature(C) Wavelength(nm) CNS TL 3. (Isometric plot and contour plot of the TL spectra from the CNS sample.)
135 0.30 TL Intensity(arb. unit) Te mp era 150 tur e(c ) vel Wa 300 ) (nm h t eng 300 Temperature(C) Wavelength(nm) 그림 MC 시료의 TL 스펙트럼의 3차원 그래프와 등고선형 그래프. (Isometric plot and contour plot of the TL spectra from the MC sample.)
136 0.06 TL Intensity(arb. unit) ) (nm h t g 500 len ve a W Te mp era 100 tur e(c ) Temperature(C) Wavelength(nm) 그림 MNS 시료의 TL 스펙트럼의 3차원 그래프와 등고선형 그래프. (Isometric plot and contour plot of the TL spectra from the MNS sample.)
137 o C TL Intensity (arb. unit) o C 159 o C o C Wavelength (nm) MCNS. (Analysis of the spectra at each peak temperature of the TL glow curve of MCNS sample.) TL Intensity (arb. unit) o C Wavelength (nm) CNS. (Analysis of the spectra at each peak temperature of the TL glow curve of CNS sample.)
138 o C TL Intensity (arb. unit) o C 154 o C o C Wavelength (nm) MC. (Analysis of the spectra at each peak temperature of the TL glow curve of MC sample.) TL Intensity (arb. unit) o C 208 o C Wavelength (nm) MNS. (Analysis of the spectra at each peak temperature of the TL glow curve of MNS sample.)
139 4. TL. (time constant). (2-1) (fading rate). TLD, TLD. TL, (2.10)... (general approximation method).. thermal bleaching.. (computerized glow curve deconvolution: CGCD) TL. LiF:Mg,Cu,Na,Si TL , TL 137 Cs Gy 10 /sec
140 ,., LiF:Mg,Cu,Na,Si TL ,, ev, sec cm 3 /sec 1. TL Intensity(arb. unit) Temperature(K) LiF:Mg,Cu,Na,Si TL.. (Computerized glow curve deconvolution for the LiF:Mg,Cu,Na,Si TL detector. The scattered curve is measured data.)
141 2-3. CGCD TL. (The TL parameters of each deconvoluted glow curve, determined by executing the CGCD method.) Peak number Peak temperature(k) Activation energy (ev) Frequency factor (sec -1 ) (cm 3 /sec) LiF:Mg,Cu,Na,Si TL. IEC (2.11) KLT-300 TL.. (sensitivity) TLD TL (2.12). TL,. TLD TLD-100(LiF:Mg,Ti). TLD. (2-2)
142 ,, TLD-100 TLD. KLT-300 TL, TLD TLD , KLT-300 TL Cs -, 10-2 Gy, 10 TL,., LiF:Mg,Cu,Na,Si TL TLD-100 KLT-300 TL. TL Intensity(arb. unit) LiF:Mg,Cu,Na,Si TLD-100(LiF:Mg,Ti) x Channel number KLT-300 TLD-100. (The glow curves of KLT-300 and TLD-100.). (dose response) TL (2.12).
143 TLD, TLD (TLD Gy ) (supralinear)- (sublinear)- (saturate) -.. (2-3),. TL. TLD Gy.,. KLT-300 TL, 10 10, 137 Cs 10-6, 10-5, 10-4, 10-3, 10-2, 10-1, 1, 10, Gy Gy,, Gy 10 Gy, 10 Gy Gy 10-5 Gy., TL CGCD(computerized glow curve deconvolution).
144 TL Intensity(arb. unit) E-7 1E-6 1E-5 1E-4 1E Dose(Gy) KLT-300. (Dose response of KLT-300 TL detector as a function of absorbed dose.) f(d) E-4 1E Dose(Gy) KLT-300. (Relative dose response function of KLT-300 TL detector.)
145 2-4. KLT-300. (Relative dose response function of KLT-300 TL detector.) Dose(Gy) (energy response) TL TLD... ( -, x- ), ( ) (mass energy absorption coefficient) (2.12). (2-4) (linear absorption coefficient).. (2-5)., (pair production), (Compton scattering) (photoelectric effect)., Z
146 . 15 kev, 15 kev 10 MeV kev., (1.25 MeV 60 Co kev 137 Cs - ) (relative energy response: RER). (2-6) RER 1. TLD (effective atomic number) RER 1, TLD RER, (energy correction filter) RER 1. KLT , kev ANSI (2.13) x- (2.14). 662 kev 137 Cs -. 20, 35, 53, kev x Gy, kev 137 Cs Gy kev 137 Cs kev 1.004, 20 kev IEC 137 Cs 60 Co ±30 %. KLT-300 TL. KLT-300 TL TLD-100, LiF:Mg,Cu,P 73 kev 118 kev
147 . 1.4 LiF:Mg,Cu,Na,Si MCP-N(LiF:Mg,Cu,P) TLD100(LiF:Mg,Ti) Relative TL Intensity(arb. unit) Effective Photon Energy(keV) KLT-300. (Relative energy response of LiF:Mg,Cu,Na,Si TL detector.) 2-5. KLT-300. (Relative energy response of KLT-300 TL detector.) Photon energy(kev) (reproducibility) TLD,,. TL, TL.
148 ,. IEC 10 (coefficient of variation) KLT , Cs Gy, IEC (each dosimeter seperately) 10 (all dosimeter collectively)... 10, 10. (2-7) (confidence interval).,. (2-8). LiF:Mg,Cu,Na,Si TL (coefficient of variation), (each
149 dosimeter separately) 10 (all dosimeters collectively) , IEC. 2-25, TL KLT-300. (Reproducibility of KLT-300 TL detector.) Each dosimeter separately Dosimeter ID D01 D02 D03 D04 D05 D06 D07 D08 D09 D10 Coefficient of variation All dosimeters collectively Coefficient of variation
150 TL Intensity(arb. unit) Reuse cycles KLT-300. (Reproducibility of KLT-300 TL detector.). (lower limit of detection : LLD), (detection threshold). TLD TL (noise), Student's (2.12)., (2-9).,, Student's KLT Cs Gy 5
151 . 5 (Reader calibration factor : RCF). 10 RCF Gy.. Harshaw 4500(Harshaw Bicron, USA), KLT ngy Student's. (Student's distribution.)
152 ICRU (3.1) 5 %.. (3.2),... /.. (, W/e S w,air ) (, P u, k m k att ) IAEA 277 (3.3). IAEA (3.4). 100 kv X-,
153 100 kv X-, 0.66 MeV ( 5 MeV E 0 50 MeV).. ICRU.. D = de/dm (3-1) de dm. (kerma, kinetic energy released in material). K = de tr /dm (3-2) de tr dm. (X). X = K air (1-g)/(W/e) (3-3) K air, g, W/e. IAEA (3.3). ICRU 37 W/e = ± 0.06 J C -1..
154 (Electrometer). (1) 100 kv 300 kv X- ( X- ), Cs , X MeV. 0.1 g cm -2 ( 1 mm) Chamber wall X- ±2 %. Co-60 build-up cap chamber wall build-up cap 0.4 g cm g cm -2. (Cylindrical chamber(thimble type)). Chamber cm 3 7 mm, 25 mm. Chamber wall buildup cap air cavity = 10 MeV Plane parallel chamber 5 MeV chamber MeV cylindrical chamber 1 2 % 10 MeV plane parallel chamber. Plane parallel chamber 1 mm Chamber plate 2 mm, Collecting electrode 20 mm Guard electrode. X- Chamber(12 kv 70 kv) backscatter.
155 3-1.. (Characteristics of ionization chambers used in radiotherapy dosimetry.) Internal Internal Wall Length Radius material (mm) (mm) Cap material CAPINTEC 0.07 cm 3 PR-05P minichamber C-552 Polystylene CAPINTEC 0.14 cm 3 PR-05 minichamber C-552 Polystylene CAPINTEC 0.65 cm 3 PR-06C Farmer type C-552 C-552 CAPINTEC 0.65 cm 3 PR-06C Farmer type C-552 Polystylene CAPINTEC 0.65 cm 3 PR-06C Farmer type C-552 PMMA CAPINTEC 0.60 cm 3 (AAPM) Graphite PMMA EXRADIN 0.5 cm 3 Al (2 mm cap) C-552 C-552 EXRADIN 0.5 cm 3 Al (4 mm cap) C-552 C-552 EXRADIN 0.5 cm 3 T A-150 A-150 EXRADIN 0.05 cm 3 T1 min Shonka A-150 A-150 FAR WEST TECH 0.1 cm 3 IC A-150 A-150 FZH, 0.4 cm 3 TK 01 waterproof Delrin Delrin NE 0.20 cm Tufnol PMMA NE 0.20 cm / Graphite PMMA NE 0.20 cm Graphite Delrin NE 0.60 cm 3 Farmer 2505 '54-'59 a Tufnol PMMA NE 0.60 cm 3 Farmer 2505 '59-'67 a Tufnol PMMA NE 0.60 cm 3 Farmer 2505/A '67-'74 a Nylon 66 PMMA NE 0.60 cm 3 Farmer 2505/3, 3A '71-'79 a Graphite PMMA NE 0.60 cm 3 Farmer 2505/3, 3B '74-present a Nylon 66 PMMA NE 0.60 cm 3 Guarded Farmer Graphite Delrin NE 0.60 cm 3 Robust Farmer 2581(PMMA cap) A-150 PMMA NE 0.60 cm 3 Robust Farmer 2581 (polystyrene cap) A-150 Polystylene NE cm 3 NPL Sec Std Graphite Delrin PTW 0.6 cm (3 mm cap) PMMA PMMA PTW 0.6 cm (4.6 mm cap) PMMA PMMA PTW 0.4 cm PMMA PMMA PTW 0.3 cm 3 Normal M PMMA PMMA PTW 0.1 cm 3 Transit M PMMA PMMA PTW 0.3 cm 3 Waterpr M PMMA PMMA VICTOREEN 0.1 cm 3 Radocon Delrin VICTOREEN 0.3 cm 3 Radocon Polystylene PMMA VICTOREEN 0.30 cm PMMA PMMA VICTOREEN 0.60 cm PMMA PMMA VICTOREEN 1.00 cm PMMA PMMA SSI GRAPHITE Graphite Graphite SSI A A-150 A-150
156 (2) Electrometer charge( current) ( ) electrometer display 4 digit resolution 0.1 % resolution. ± 0.5 % chamber chamber. (3) reference (, ). ( blocks) Charge build-up chamber signal. field size 5 cm..., (perturbation factor),.. (1) ( ),. ( 3-1 a).
157 E max,a :, E p,a : (most probable energy) a : half maximum (spread), a :. a, 0 z, z 4. E max,z, E p,z, z, z a o z E p,o E p,o o. E p,o Isodose curve Practical range R p : (a) ; (0) ; (z) z. (Electron energy spectra and their parameters.)
158 E p,o field size SSD. range(r t ) 85 % range E p,o. E p,o beam beam flattening filter, monitor chamber E p,o. ( ) Range - Energy E p,o o range Range 3-2 R p R 50 ( ). R p : tail R 50 : 50 %, o 15 MeV 12 cm x 12 cm size 20 cm x 20 cm size (An electron beam absorbed dose distribution in a water phantom.) o 10 MeV
159 range plastic slap.. (3-4) R w, R pl = ranges(r t, R 50, R p, etc) in water and plastic = Linear continuous-slowing-down range( range) = ICRU 35 o 10 MeV Parallel plane chamber (Effective point of measurement, 3-5).. 2 E p,o = C 1 + C 2 R p + C 3 R p C 1 : 0.22 MeV, C 2 : 1.98 MeV cm -1, C 3 : MeV cm -2 o = C 4 R 50 : beam size, 5 E 35 MeV C 4 : 2.33 MeV cm -1 z E o (1 - z/r p ) E o o (2) Cs-137 Co-60 Cs MeV, Co MeV, 1.33 MeV 1.25 MeV. (3) X- Target, flattening. X- (, ).
160 ,. X- ( potential"). depth dose data, isodose charts, stopping power ratio, perturbation correction 20 cm, 10 cm 10 x 10 cm field size. TPR Tissue-Phantom ratio (a) - (SCD). (b) - (SSD). (The two experimental set-ups to determine the quality of photon beams.)
161 . 1 2.,. air kerma. (1) (PSDL)., ( Co-60 ) air kerma, K air,c (c : calibration). (1-g) (W/e) c. - g : Co %, X- K a. - W/e : J C -1 for dry air (2) (SSDL) PSDL user - Bragg-Gray ( 3-4 (f) (g)).. Co-60 Calibration quality, c. Cs-137, Co-60,, User's quality, u. PSDL Air kerma Exposure factor SSDL. SSDL N k. Co-60 Free-in-air Source-to-chamber(chamber ) 1 m, 10 x 10 cm field size Source field size
162 . Source collimator 1 m SCD( SSD).
163 3-4. PSDL, SSDL. (The calibration chain for electron and high energy photons from PSDL to SSDL to user.)
164 Air kerma. N k = K air,c /M c (3-5) calibration quality. ( Co-60, index c). (1) Absorbed dose to air kerma factor Air kerma, K air,c,. N D,c = : Absorbed dose to air kerma factor N D,c = N D,u = (2) : Bragg-Gray ( ). = K air,c (1-g)K att K m N D,c = N k (1-g)K att K m (3-6) K m : Co-60 (IAEA-277, Table XVIII) K att : Build-up cap ( ) Bragg-Gray P eff (Effective point of measurement of chamber, EPOM). D w (P eff ) = (S w,air ) u P u (3-7)
165 (S w,air ) : Stopping power ratio water to air 7.2 P u : Perturbation correction factor D w (P eff ) = M u N D (S w,air ) u P u N D,c = N D,u = N D 1.5 %. (perturbation) - Perturbation factor P u - EPOM. EPOM cavity fluence gradient( ) ( 3-5) P P eff air cavity spatial content, P u Section 7.2. Plane parallel chamber. EPOM P( P z ) P eff. (Displacement of the effective point of measurement P eff (depth Zp eff ) from the center P(depth Z p ) of an ionization chamber.)
166 Z Peff - Z P = 0.5 r (for electron) = 0.75 r (for high energy photon) = 0.5 r (for Co-60) = 0.35 r (for Cs-137) = 0 (for. X- ). (1),,,. (aging, zero- drift, warm-up ) (,,, ).,. 3-2.,. Warm-up : warm-up. (Leakage current) :. (Polarity effect) :.. ( charges).. :.
167 3-2.. (Reference conditions of the ionization geometry for absorbed dose measurement using an ionization chamber in a phantom.)
168 P TP = (3-8) P T, Po To (101.3 kpa, 20 ). : A-150 charge. 50 % % 70 %. Dry air Co-60 K h = (Recombination) :.,, charge. Pulse ( ). Two voltage". : V 1 ( bias ), V 2 Q 1, Q 2. V 1 /V 2 3. : Ps V 1. Ps = a o + a 1 (Q 1 /Q 2 ) + a 2 (Q 1 /Q 2 ) 2 : Pulse a i 3-3 Ps 3-6. (2) 3-7. X-. Build-up cap. N D,c (Absorbed dose to air chamber factor),,,. g = 0.003, K att K m = 3-4 N D = N k (1-g)K att K m (3-9)
169 3-3. V1/V2. (Quadratic fit coefficients for pulsed radiation as a function of the voltage ration V1/V2.) Voltage ratio a 0 a 1 a Ps. (The correction factor for recombination P s in continuous radiation.)
170 N D,c D w (P eff ) (Reference water phantom for absorbed dose determination.) ( ) D w (P eff ) = M u N D (S w,air ) u P u (S w,air ) : Spencer-Attix cavity : Berger M. C..(IAEA-277, Table X) P u : Perturbation correction factor(iaea-277, Table XI) : E z.(iaea-277, Table V) P eff :. P eff 0.5r r =, Z Peff - Z P = 0.5 r :.
171 3-4. k m k att k m k att. (Values for k m, k att and km katt for the ionization chambers.) K m K att K m K att CAPINTEC 0.07 cm 3 PR-05P minichamber CAPINTEC 0.14 cm 3 PR-05 minichamber CAPINTEC 0.65 cm 3 PR-06C Farmer type (AE cap) CAPINTEC 0.65 cm 3 PR-06C Farmer type (polystyrene cap) CAPINTEC 0.65 cm 3 cap) PR-06C Farmer type (PMMA CAPINTEC 0.60 cm 3 (AAPM) EXRADIN 0.5 cm 3 Al (2 mm cap) EXRADIN 0.5 cm 3 Al (4 mm cap) EXRADIN 0.5 cm 3 T EXRADIN 0.05 cm 3 T1 min Shonka FAR WEST TECH 0.1 cm 3 IC FZH, 0.4 cm 3 TK 01 waterproof NE 0.20 cm NE 0.20 cm / NE 0.20 cm NE 0.60 cm 3 Farmer 2505 '54-'59 a NE 0.60 cm 3 Farmer 2505 '59-'67 a NE 0.60 cm 3 Farmer 2505/A '67-'74 a NE 0.60 cm 3 Farmer 2505/3, 3A '71-'79 a NE 0.60 cm 3 Farmer 2505/3, 3B '74-present a NE 0.60 cm 3 Guarded Farmer NE 0.60 cm 3 Robust Farmer 2581(PMMA cap) NE 0.60 cm 3 Robust Farmer 2581 (polystyrene cap) NE cm 3 NPL Sec Std PTW 0.6 cm (3 mm cap) PTW 0.6 cm (4.6 mm cap) PTW 0.4 cm PTW 0.3 cm 3 Normal M PTW 0.1 cm 3 Transit M PTW 0.3 cm 3 Waterpr M VICTOREEN 0.1 cm 3 Radocon VICTOREEN 0.3 cm 3 Radocon VICTOREEN 0.30 cm VICTOREEN 0.60 cm VICTOREEN 1.00 cm SSI GRAPHITE SSI A
172 ( ) D w (P eff ) = M u N D (S w,air ) u P u (S w,air ) : 3-5 : D 20 /D 10. P u : P u factor 3-8 : 0.5 mm. : 1. P eff : 0.75 r (for high energy photon) 0.5 r (for Co-60) 0.35 r (for Cs-137) ( ) X- : kev P eff : 0 ( ) D w : M u N k k u ( ) w,air P u N k : air kerma k u : 1. : : X- (IAEA-277, Table XIV) P u : IAEA-277, Table XV : design. ( ) X- D w = M u N D,w : D w : M u N k Bk u ( ) w,air : B : Backscattering factor(iaea-277, Table XVI) k u : 1. IAEA-277, Table XIV
173 3-5. Stopping Power Ratio Water to Air(S w,air ). (The stopping power ratio water to air at the reference depth as a function of the photon energy.) Beam quality D 20 /D 10 a S w,air Ref. depth Cs Co a At SSD = 100 cm: obtained from by a fit to experimental data
174 3-8. P u. (The perturbation factor Pu as a function of the quality of photon beams for different chamber wall materials.).. k m = S air,m ( en / ) m,air : Build-up cap m = S air,wall ( en / ) wall,air + (1- )S air,cap ( en / ) cap,air : : S air,m ( en / ) m,air air cavity : Build-up cap air cavity Electrode Build-up cap Central electrode Pcel. Pcel 3-7.
175 3-6. k m (= s air,m ( en / ) m,air ). (Valuef the the ractor k m (= s air,m ( en / ) m,air ).) Material s air,m (a) ( en / ) m,air (b) k m A-150 (T.E. plastic) C-552 (A.E. plastic) Delrin (CH 2 O) n Graphite ( = 1.7 g/ ) Graphite ( = g/ ) Nylon 66 (C 6 H 11 ON) n PMMA (perspex, lucite) (C 5 H 8 O 2 ) n Polystyrene (C 8 H 8 ) n Tufnol Farmer type p cel. (CORRECTION FACTOR p cel for a Farmer type of chamber.) Electrode radius (mm) Electrons Photons (h ) max > 25 MeV 60 Co and photons (h ) max 25 MeV
176 3-9.. (The fraction of ionization due to electrons arising in the chamber wall as a function of wall thickness for the photon beam given by.) air kerma work sheet.
177 Worksheets for Absorbed Dose Determination WORKSHEET 1 FOR CALCULATING THE ABSORBED DOSE TO AIR CHAMBER FACTOR N D Name : User Date : 1. Ionization chamber Chamber model and serial number : NE 2505/3A, No Cavity inner radius : 3.14 mm Wall material : Graphite ( = 1.82 g/ ), thickness : g/ Buildup cap material : PMMA ( = 1.18 g/ ), thickness : g/ total thickness : g/ 2. Calibration laboratory data Calibration laboratory and date : SSDL, Calibration factor (kerma in air), N k = Gy/scale div given at P O = kpa, T O = 20 and 50 R.H. Polarizing voltage : -250 V, field size : Source chamber distance : Constants W/e = J/C, and g = (for 60 Co gamma radiation). 4. Determination of k att k m 2 Fraction of ionization due to electrons from chamber wall (IAEA-277 Fig. 15), = 0.53 Stopping power ratio air/wall (IAEA-277 Table XV ), S air,wall = Energy absorption coefficient ratio wall/air (IAEA-277 Table XV ), ( µ / ρ en ) wall, air = Fraction of ionization due to electrons from buildup cap, (1- ) = 0.47
178 Stopping power ratio air/cap (IAEA-277 Table XV ), S air,cap = Energy absorption coefficient ratio cap/air (IAEA-277 Table XV ), ( µ en / ρ ) cap, air = k m = α s air, wall ( µ en / ρ ) wall, air + (1 α ) s air, cap ( µ en / ρ ) cap, air = k att = k att k m = Absorbed dose to air calibration factor N D = N K (1-g) k att k m = Gy/div, obtained at kpa, 20, 50 R.H.
179 WORKSHEET 2 FOR CALCULATING THE ABSORBED DOSE TO WATER UNDER REFERENCE CONDITIONS USING ELECTRON BEAMS Name : User Date : 1. Radiation treatment unit : Sagittaire Nominal energy : 19 MeV Depth of the effective point of measurement : 3, Field size : at SSD = 100 Nominal dose rate of the accelerator : 200 monitor units/min ( z z 0.5r) p eff p = 2. Ionization chamber Model and serial number : NE 2505/3A, No Inner radius : 3.14 mm, wall material and thickness : Graphite, g/ Absorbed dose to air chamber factor : N D = Gy/div given at P O = kpa, T O = 20, 50 R.H. Polarizing voltage : -250 V Response change as compared to calibration date derived from checking against radioactive source : O.K. within Electrometer reading correction Pressure, P = kpa Temperature, T = 24.3 Mu o = div / m. u., monitor setting : 200 m. u. Reading, P ( ) = o T = P ( T ) Humidity correction, k h = 1.00 Recombination correction (IAEA-277 Table or ) V 1 = 250 V, V 2 = V, M 1/M 2 =1.095, p s = P TP o u u ptpkh ps = M = M o div / m. u.
180 Electron fluence correction plastic to water (IAEA-277 Table ), h m = 1.0 M u,w = M u h m = div/m.u. 4. Absorbed dose to water Ranges obtained by measurement at SSD = 1m with absorbed dose curves R 50 = 7.4, R p = 9.0 Phantom material (plastics can only be used if a) water b) plastic Eo 10 MeV ) Ranges converted to ranges in water (Eq.(1), IAEA-277 Table ) R 50 =, R p = Most probable energy at the surface 2 p, o p Rp E = R +, E, o = p MeV Mean energy at the surface (IAEA-277 Table ), z / R p = 0.333, E z / Eo ( Table V ) = Eo = MeV Mean energy at depth (z = 3 cm), E z = Stopping power ratio water/air (IAEA-277 Table ), S w,air = Perturbation factor (IAEA-277 Table ), P u = MeV D w ( P eff ) = M u N D 2 sw, air pu = Gy / m. u.
181 WORKSHEET 3 FOR CALCULATING THE ABSORBED DOSE TO WATER UNDER REFERENCE CONDITIONS USING HIGH ENERGY PHOTON BEAMS Name : User Date : 1. Radiation treatment unit : Theratron 80, 60 Co Nominal accelerating potential : MV Depth in water of the effective point of measurement : 5 cm, ( z z 0.5r, Fig.11) p eff p = Field size : at SSD = 80 cm Nominal dose rate of the accelerator : monitor units/min 2. Ionization chamber Model and serial number : NE 2505/3A, No Inner radius : 3.14 mm, wall material and thickness : Graphite, g/ Absorbed dose to air chamber factor : N D = Gy/div given at P O = kpa, T O = 20, 50 R.H. Polarizing voltage : -250 V Response change as compared to calibration date derived from checking against a radioactive source : O.K. within Electrometer reading correction 2 min Reading, 2 Mu o = div / min, monitor setting : m. u. Pressure, P = kpa P ( ) = o T PTP = Temperature, T = 23.8 P ( To ) Humidity correction, k h = Recombination correction (IAEA-277 Table or, or Fig.13) V 1 = 250 V, V 2 = 83.3 V, M 1 /M 2 =1.001, p s = o Mu = Mu ptp kh ps = div / min
182 4. Absorbed dose to water or D20 / D10) = for TPR ( cm at SCD = 1 m (SSD 1 m) Stopping power ratio water/air (IAEA-277 Table ), S w,air = Perturbation factor ((IAEA-277 Fig. 14), P u = D ( P ) = M N s, p = Gy / min w eff u D w air u 2 Quality of the beam, 2
183 WORKSHEET 4 FOR CALCULATING THE ABSORBED DOSE TO WATER UNDER REFERENCE CONDITIONS USING X-RAYS Name : User Date : 1. Radiation treatment unit : Nominal tube potential 200 kv, filtration : 1 mm Cu, 3.8 mm Al Nominal tube current : 10 ma Applicator/field size : 10 cm 10 cm at FSD = 80 cm Quality of the beam to be used, HVL = 1.6 mm of Cu 2. Ionization chamber 2a. Plane parallel (low energy X-rays, kv) Model and serial number : Calibration factor at HVL = mm of (Nominal kv =, filtration : ) N K = Gy/div, N D,w = Gy/div given at P O = kpa, T O =, R.H. Polarizing potential : V, field size : Source-chamber distance : cm Response change as compared to calibration date derived from checking against a radioactive source : 2b. Cylindrical (medium energy X-rays, kv) Model and serial number : PTW M23331 No. 307 Calibration factor at HVL = 1.6 mm of Cu (Nominal kv = 200, Filtration : 3.8 mm Al 1 mm Cu) N K = Gy/C, given at P O = kpa, T O = 20, 60 R.H. Polarizing potential : +500 V, Field size : 10 cm 10 cm
184 Source-chamber distance 100 cm Response change as compared to calibration date derived from checking against a radioactive source : O.K. within % 3. Electrometer reading correction Reading, M o u = C / min Pressure, P = kpa Temperature, T = 21.3 Humidity correction, k h = Recombination correction ((IAEA-277 Fig. 13) : V 1 = V, V 2 = V, M 1/M 2 =, p s = P TP P ( ) = o T = P ( T ) o M u = M o u p TP k h p s = C / min 4. Absorbed dose to water 4a. Low energy X-rays (surface) (i) N D,w available D w = M u N D,w = Gy/min (ii) N k available (a) Energy absorption coefficient ratio water/air (IAEA-277 Table ), (b) Backscatter factor (IAEA-277 Table ), B = (c) Correction for spectral dependence, k u = D w = Mu NK B ku en w, air 4b. Medium energy X-rays (5 cm depth) (a) Energy absorption coefficient ratio water/air (IAEA-277 Table ), ( µ / ρ en w, air ( µ / ρ) = Gy / min (b) Perturbation factor (IAEA-277 Table ), P u = 1.04 (c) Correction for spectral dependence, k u = D w ) = ( µ / ), = ρ en w air 3 = M N ( µ / ρ), P k = Gy / min u K en w air u u
185 2.. (1) ICRU 24 (3.1), X, ICRU ±5 %. ICRU ±2 % (1976). 95 % 2. 5 % %. 1 5 %. ±5 %. (3-D ).,, 3-D., K air, N D,air ( N gas ), D w, D w. Co-60 N k D w., k m k att. N k N D,air ( N gas ).
186 IAEA-277 (3.3) 381 (3.5) 3 4 % (IAEA-277, page 70).. Reich (3.6).. (Graphite)... (PSDL)., (chemical dosimetry) (water and graphite calorimeter). water calorimeter (perturbation). PSDL Co-60 N D,W. (SSDL) PSDL. Co-60 SSDL.. Co-60
187 .. K air. kw X- IAEA-277. X- N d,w PSDL PSDL. X- N d,w X- PSDL SSDL protocol K air.. (2) (3.4).. ( ) (Reduced Uncertainty) 20 PSDL. K air. K air.. K air
188 Co-60 N D,W /N k. 0.8 % BIPM (3.7).. Co (The ratio of Co-60 calibration factor N D,w /N K to demonstrate chamber to chamber variation for a large number of cylindrical chambers commonly used in radiotherapy dosimetry.)
189 ( ) Co-60 K air., 0.7 %.. ( ) K air K air.. (2) (a) X- : 100 kv, HVL 3 mm Al (b) X- : 80 kv, HVL 2 mm Al (c) Co-60 (d) ( ) : 1 50 MeV, TPR 20,10 : ) Calorimeter, 2) (chemical dosimetry), 3) 3. PSDL. PSDL Co-60 PSDL, kv X-.
190 . - graphite cavity chamber Bragg-Gray.. - Graphite calorimeter - Water calorimeter - Water calorimeter with Frick transfer dosimeter - Frick standard kv X- (extrapolation). 3-11(a) Co-60. PSDL. Co-60 K air 3-11(b). PSDL K air graphite cavity chamber 3-8 K air BIPM. (Primary standards used in the comparisons of absorbed dose to water at the BIPM.)
191 3-11. Co-60 Ka. ((a) Results of comparison of standards of absorbed dose to water at the BIPM in Co-60 beam. (b) Results of comparison of standards for air kerma at the BIPM in Co-60 beam.)
192 . N D,W Co-60,. (1) Qo Z ref D W,Qo = M Qo N D,W,Qo (3-10). M Qo, N D,W,Qo.. ( ) (Reference condition) /.. ( ),,,,. ( ) (Influence quantities).,, (aging, zero drift, warm-up) (,, )., Co-60.
193 . k i (k i ). 4. Qo k Q,Qo. (2) k Q,Qo Qo Q D W,Q = M Q N D,W,Qo k Q,Qo (3-11) k Q,Qo Qo Q M Q. k Q,Qo. k Q,Qo = (3-12) k Q,Q0 PSDL.. k Q,Qo = (3-13), S w,air Spenccer-Attix /, W air, P Q (perturbation factor) Bragg-Gray P wall, P cav, P cel P dis. P wall : Chamber wall medium( )
194 P cav : chamber medium( ) P cel : central electrode P dis : P eff. K air. X- Bragg-Gray N D,W,Q k Q,Qo. (3) N k N k - N D,air N D,w. N D,w,Qo = N D,air (S w,air ) Qo P Qo (3-14) N D,w,Qo N D,w N k N D.w.. (1). (a) Co-60 Qo Q k Q,Qo. PSDL. X- Q. (b) Co-60 N D,w,Qo k Q,Qo ( 3-12).
195 .,,, NE 2561 k Q. (Mean values of k Q at various photon beams measured at NPL in the UK for secondary ion chamber NE 2561 ( ) and NE 2611 ( ). The solid line is a sigmoidal fir to the experimental data. The values of k Q are normalized to a TPR 20,10 of 0.568(Co-60 at the NPL). Caluated values of k Q for these chambers are included for comparison ( ).)
196 (2).. (a) (b) (electrometer) (c) (waterproof sleeve) ( ) (a) : 80 kv X-, Co-60,, 10 MeV,.( 3-9 ) -. - : cm mm 25 mm. (b) (central electrode) Air cavity (c) ( ). - Graphite :, - : (d) : ( 10 MeV ),
197 X- SOBP(Spread-out Bragg Peak). - backscatter. - perturbation.. P eff.. Cavity cavity 5 Pancake". ( ) - : Electrometer Power supply. Current charge - 4 digit resolution(, 0.1 % resolution) - 1 response ±0.5 % (Long term stability) - - (+, -). ( ) cm. - 5 g/cm 2 ( X- 10 g/cm 2 ) MeV, X-..(, )
198 3-9.. (Characteristics of cylindrical ionization chamber types.) Ionization chamber type Cavity volume (cm 3 ) Cavity radius (mm) Wall material Build-up material Capintec PR-05P mini C-552 Polystyrene N Water -proop Capintec PR-06C/G C-552 Polystyrene N Exradin A2 Spokas (2mm cap) C-552 C-552 Y Exradin A1 mini Shonka (2mm cap) C-552 C-552 Y Far West Tech IC A-150 A-150 N FZH TK Delrin Delrin Y Nuclear Assoc C-552 Y Nuclear Assoc C-552 Y Nuclear Assoc C-552 Y Nuclear Assoc C-552 Delrin Y NE Tufnol Delrin Y NE 2505 Famer Tufnol PMMA N NE 2505/A Famer Nylon 66 PMMA N NE 2571 Famer Graphite Derin N PTW micro PMMA PMMA Y PTW rigid PMMA PMMA N PTW rigid PMMA PMMA N PTW Farmer PMMA PMMA N SNC Farmer PMMA PMMA N Victoreen Radocon Delrin N Victoreen Radocon Polystyrene PMMA N Victoreen PMMA PMMA N Scdx-Wellhofer IC C-552 Y Scdx-Wellhofer IC C-552 Y Scdx-Wellhofer IC C-552 Y
199 ( ) -. - PMMA (1.0 mm ) mm gap. - buildup PTW W mm N D,W. -. ( ) Z ref (g/cm 2 ) cavity, (perturbation). Q Qo k Q,Qo.. k Q,Qo. k Q,Qo.. (g/cm 2 ) (cm) x (g/cm 3 ). ( ) PDD Z ref. cavity volume, X-, X- ( Buildup foil).
200 cavity cavity. Cavity cavity k Q,Qo P cav. Z ref cavity Z ref k Q,Qo P dis,. (.) ( k Q,Qo. - Appendix II ). (.) P dis. Co-60, P dis k Q,Qo. gradient Z ref. Z ref 0.5 r cyl 0.75 r cyl. r cyl cavity. P wall k Q,Qo. Q......
201 .. X- Z ref. (3) ( ).. Qo 2-3, damage ( ) Co-60 PSDL SSDL. Co-60 5 g/cm 2 D w 5 g/cm 2 N D,w N D,w = D w /M (3-15). M. Co ( ) kv X- (1) X-. kv X- PSDL
202 (Reference conditions recommended for the calibration of ion chamber in Co-60 in standard laboratories.) Influence quantity Phantom material Phantom size Source chamber distance (SCD) Air temperatur Air pressure Reference point of the ionization chamber Reference value or reference characteristic Water 30 x 30 x 30 (approximately) kpa For cylindrical chambers, on the chamber axis at the centre of the cavity volume; for plane- parallel chambers on the inner surface of the entrance window, at the centre of the window. Depth in phantom of the reference point of the chamber 5g/ 2 Field size at the position of the reference point of the chamber 10 x 10 Relative humidity 50 % Polarizing voltage and polarity Dose rate No reference values are recommended, but the value used should be stated in the calibration certificate. No reference values are recommended, but the dose rate used should always be stated in the calibration certificate. It should also be stated whether a recombination correction has or has not been applied and, if so, the value should be stated. K air. X- X-. ( ). N D,W,Q N D,W,Qo k Q,Qo.
203 ( ). (4) ( ) Qo N D,W,Qo. 3. D W,Q = M Q N D,W,Qo k Q,Qo (3-16) M Q ki, k Q,Qo Qo Q.. ( ) Electrometer 2 power. Charge 2 5 Gy pre-irradiation. 20. Leakage. 0.1 %. leakage (±) 1 %. ( ).
204 . k i., P TP = (3-17) P T Po To (101.3 kpa, 20 ) % %. Dry air k h = (Co-60). Electrometer electrometer k ele ki k ele nc/rgd (nc/nc). electrometer k ele. sheet k ele 1. (k Q,Qo P eff.). X-..
205 . k pol. = (3-18) M + M electrometer M (+ -) electrometer... k pol.. k s. Pulsed (3-19) M 1 M 2 V 1 V 2. a i k s 1.03.
206 3-11. V 1 /V 2 k s. (Quadratic fit coefficients for the calculation of k s by the 'Two Voltage' technique in pulsed and pulsed-scanned radiation as a function of the voltage ratio V 1 /V 2.) V 1/V 2 Pulsed Pulsed-scanned a 0 a 1 a 2 a 0 a 1 a (3-20) Continuous (Co-60 ). (3-21) ( X- )... k s. Q Qo. (3-22) Qo, k s,qo 1
207 pulsed.. Co-60 (1) Dosimetry ( ) ( ) Co-60 medium. (t win ) cm. (g/cm 2 ). PMMA PMMA = 1.19 g/cm 3 polestylene = 1.06 g/cm 3 PMMA ( polestylene ) x (t win ). 1.0 mm PMMA. gap ( mm)... (2) ( ) ( ), Z ref, D W. D W = M N D,W (3-23)
208 M Z ref 3-12 (, electrometer, ). Co-60 timer M. ( ) Z max (Z max ). SSD PDD, SAD TMR. (3) Co-60 Co Co-60. (Reference conditions for the determination of absorbed dose to water in Co-60 gamma ray.) Influence quantity Phantom material Chamber type Reference value or reference characteristics Water Cylindrical or plane parallel Measurement depth, Z ref 5g/ 2 (or 10g/ 2 ) Reference point of the chamber Position of the reference point of the chamber SSD or SCD Field size For cylindrical chambers, on the central axis at the centre of the cavity volume. For plane- parallel chambers, on the inner surface of the window at its centre. For cylindrical and plane-parallel chambers, at the measurement depth. 80 or x 10
209 3-13. Co-60. (Determination of the absorbed dose to water in a 60 Co ray beam.) Determination of the absorbed dose to water in a 60 Co ray beam user Date 1. Radiation treatment unit and reference conditions for D w determination 60 Co therapy unit : Reference phantom : water Set-up : SSD SAD Reference field size : 10 x 10 ( x ) Reference distance : Reference depth Z ref : g/ 2 2. Ionization chamber and electrometer Ionization chamber model : Serial No. : Type: cyl pp Chamber wall/window material : thickness : g/ 2 Waterproof sleeve/cover material : thickness : g/ 2 Phantom winow material : thickness : g/ 2 Absorbed dose to water calibration factor N D,w = Gy/nC Gy/rdg Ref. conditions for calibration P o : kpa T o : Rel. humidity % Polarizing potential V 1 : V Calibration polarity : +ve -ve corrected for polarity User polarity : +ve -ve Calibration laboratory : Date Electrometer model : Serial No. Calibrated separately form chamber : yes no Range setting If yes, calibration laboratory : Date
210 continued 3. Dosimeter reading and correction for influence quantities Uncorrected dosimeter reading at V 1 and user polarity : nc rdg Corresponding time : min Ratio of dosimeter reading and time : M l = nc/min rdg/min (i) Pressure P : kpa Temperature T : Rel. humidity % (ii) Electrometer calibration factor k elec : nc/dg dimensionless k elec= (iii) Polarity correction rdg at + V 1 : M + = rdg at - V 1 : M + = (iv) Recombination correction (two voltage method) Polarizing voltages : V 1(normal) = V V 1(reduced) = V Readings at each V : M 1 = V M 2= V Voltage ratio V 1/V 2 = Ratio readings M 1/M 2= Corrected dosimeter reading at the voltage V 1 : M = M 1/K TP K elec K pol K s = nc/min rdg/min 4. Absorbed dose rate to water at the reference dopth Z ref D w(z ref) = M N D,W = Gy/min 5. Absorbed dose rate to water at the depth of dose maximum Z max Depth of dose maximum : Z max = 0.5 g/ ) SSD set-up Percentage depth dose at Z ref for a 10 * 10 field size : PDD ( Z ref= g/ ) = % Absorbed dose rate calibration at Z max : D w (Z max ) = 100D w (Z ref )/PDD(Z ref ) = ) SAD set-up TMR at Z ref for a 10 * 10 field size : TMR(Z ref = g/ ) = Absorbed dose rate calibration at Z max : D w(z max) = D w(z ref)/tmr(z ref) = Gy/ min Gy/ min
211 . (1) Dosimetry ( ) cavity.. (Z ref ). ( ) Co-60 medium. (t win ) cm. (g/cm 2 ). PMMA PMMA = 1.19 g/cm 3 polestylene = 1.06 g/cm 3 PMMA ( polestylene ) x (t win ). 1.0 mm PMMA. gap ( mm)... (2) ( ) Q TPR 20,10 (Tissue-Phantom Ratio). SCD 100 cm, 10 x 10 cm cm. TPR 20,10.
212 TPR 20,10.. TPR 20,10 SSD 100 cm, 10 x 10 cm PDD. TPR 20,10 = PDD 20, (3-24) TPR 20,10 SSD 100 cm, 10 x 10 cm 10 cm PDD(10). TPR 20,10 = PDD(10) PDD(10) 2 (3-25) ( ) TPR 20, TPR 20,10, (ratio) /..
213 (Experimental set-up for the determination of the beam quality Q (TPR 20,10 ).)
214 3-14. (TPR 20,10 ). (Reference conditions for the determination of photon beam quality (TPR 20,10 ).) Influence quantity Phantom material Chamber type Reference value or reference characteristics Water Cylindrical or plane parallel Measurement depth 20 g/ 2 (or 10 g/ 2 ) Reference point of the chamber Position of the reference point of the chamber For cylindrical chambers, on the central axis at the centre of the cavity volume. For plane- parallel chambers, on the inner surface of the window at its centre. For cylindrical and plane-parallel chambers, at the measurement depth. SCD 100 Field size at SCD 10 x (Reference conditions for the determination of absorbed dose to water in high energy photon beams.) Influence quantity Phantom material Chamber type Reference value or reference characteristics Water Cylindrical or plane parallel Measurement depth, z ref For TPR 20,10) 0.7, 10 g/ 2 (or 5 g/ 2 ) For TPR 20,10) 0.7, 10 g/ 2 Reference point of the chamber On the central axis at the centre of the cavity volume. Position of the reference point of the chamber At the measurement depth, Z ref SSD/SCD 100 Field size 10 x 10
215 (3) ( ) ( ) 3. Z ref Q. D W,Q = M Q N D,W,Qo k Q,Qo (3-26) k Q,Qo Qo Q M Q. ( ) Z max (Z max ). SSD PDD, SAD TMR. (4) k Q,Qo ( ) Co-60 Qo Co-60 k Q,Qo k Q N D,W,Qo N D,W. k Q Q(, TPR 20,10 ) Andero (3.8) mm PMMA. 1 mm k Q 0.1 %. k Q. k Q k Q II. k Q
216 . Co-60 Q Co-60 TPR 20,10 TPR 20,10 Co-60. Co-60 TPR 20, Co-60., Co-60 TPR 20,10. ( ) N D,W,Qo k Q,Qo. Q k Q,Qo N D,W,Qo k Q,Qo (3-27). N D,W,Qo k Q,Qo. k Q,Qo = (3-27) (5) 3-17.
217 3-16. TPR 20,10 k Q. (Calculated value of k Q for high energy photon beams for various cylindrical ion chambers as a function of beam quality TPR 20,10.) Ionization chamber type Beam quality TPR 20, Capintec PR-05P mini Capintec PR-06C/G Farmer Exradin A2 Spokas Far West Tech. IC FZH TK Nuclear Assoc Nuclear Assoc Nuclear Assoc Nuclear Assoc NE NE 2505 Farmer NE 2505/A Farmer PTW micro PTW rigid PTW 23332rigid SNC Farmer Victoreen Radocon Victoreen Radocon Scdx-Wellhofer IC Scdx-Wellhofer IC Scdx-Wellhofer IC
218 3-14. k Q. (Sigmoidal fits of calculated values of k Q for various ion chambers commonly used for reference dosimetry, as a function of photon beam qualities, Q (TPR 20,10 ).)
219 (Determination of the absorbed dose to water in a high energy photon beam.) Determination of the absorbed dose to water in a high energy photon beam user Date 1. Radiation treatment unit and reference conditions for D w,q determination Accelerator : Nominal Acc. potential : MV Nominal dose rate : MU/min Beam quality, Q (TPR 20,10 ) : Reference phantom : water Set-up : SSD SAD Reference field size : 10 x 10 ( x ) Reference distance : Reference depth z ref : g/ 2 2. Ionization chamber and electrometer Ionization chamber model : Serial No. : Type: cyl pp Chamber wall/window matrial : thickness : g/ 2 Waterproof sleeve/cover matrial : thickness : g/ 2 Phantom winow matrial : thickness : g/ 2 Absorbed dose to water C. F. N D,w = Gy/nC Gy/rdg Ref. conditions for calibration P o : kpa T o : Rel. humidity % Polarizing potential V 1 : V Calibration polarity : +ve -ve corrected for polarity User polarity : +ve -ve Calibration laboratory : Electrometer model : Calibrated separately form chamber : yes no If yes, calibration laboratory : Date Serial No. Range setting Date
220 Continued 3. Dosimeter reading and correction for influence quantities Uncorrected dosimeter reading at V 1 and user polarity : Corresponding accelerator monitor units : Ratio of dosimeter reading and monitor units: M 1 = nc rdg nc/mu rdg/mu (i) Pressure P : kpa Temperature T : Rel. humidity % (ii) Electrometer calibration factor k elec : nc/dg dimensionless k elec= (iii) Polarity correction rdg at + V 1 : M + = rdg at - V 1 : M + = (iv) Recombination correction (two voltage method) Polarizing voltages : V 1(normal) = V V 1(reduced) = V Readings at each V : M 1 = V M 2= V Voltage ratio V 1 /V 2 = Ratio readings M 1 /M 2 = Use IAEA-277, Table 4 for a beam of type: pulsed pulsed-scanned a o= a 1= a 2= Corrected dosimeter reading at the voltage V 1 : M = M 1/K TP K elec K pol K s = nc/mu rdg/mu MU 4. Absorbed dose to water at the reference depth Z ref Beam quality correction factor for the user quality Q:K Q,Q0= taken from Table 9(IAEA-277) Other, specify : D w,q (Z ref ) = M Q N D,W,Qo K Q,Qo = Gy/MU 5. Absorbed dose to water at the depth of dose maximum Z max Depth of dose maximum : Z max = (i) SSD set-up Percentage depth dose at Z ref for a 10 x 10 field size : PDD (Z ref = g/ ) = % Absorbed dose calibration of monitor at Z max : D w,q(z max) = 100D w,q(z ref)/pdd(z ref) = (ii)sad set-up TMR at Z ref for a 10 x 10 field size : TMR (Z ref = g/ ) = Absorbed dose rate calibration at Z max : D w,q (Z max ) = D w,q (Z ref )/TMR(Z ref ) = g/ Gy/ min Gy/MU
221 . N k N D,W IAEA 277 N k N D,air IAEA 398 N D,W.. Co-60, N k. (cavity air) N D,W. k air Co-60. = N k (1-g) k att k m k cel (3-28) g, k att k m IAEA 277. k cel Co-60 N k electrode. N k Co-60 k air M. N D,air M. N D,air = N k (1-g) k att k m k cel (3-29) N D air". N D = k air (1-g) k att k m k cel (3-30) k cel IAEA. N D cavity. 1 mm electrode (NE-2571)
222 N D,air IAEA Co-60. Co-60 N D,air Q N D,air Q. = M Q N D,air (3-31) D W.Q Gragg-Gray. D W,Q (P eff ) = M Q N D,air (S W,air ) Q P Q (3-32) M Q Q S W,air /, P Q Q P eff. P dis D W,Q (P eff ) = M Q N D,air (S W,air ) Q P Q (3-33) P Q = [P cav P dis P wall P cel ] Q (3-34) IAEA 398 IAEA
223 Co-60 k air %. N k ( k M, P wall ) ((a) In IAEA TRS-277 the effective point of measurement of a cylindrical ion chamber is positioned at the reference depth Z ref where the absorbed dose is required. (b) Except in electron and heavy ion beams, in IAEA TRS-398 the center of a cylindrical chamber is cositioned at the reference depth Z ref and the absorbed dose is determined at this point.)
224 3-16. Ka N D,w Co-60. (The ratio of absorbed dose to water in Co-60 determined with calibration factors in terms of absorbed dose to water, N D,w and with calibration factors in terms of air kerma, N K.)
225 . k Q,Qo (1) k Q,Qo (3-35).. Bragg-Gray k Q,Qo (3-36). k Q,Qo = (3-35) k Q,Qo = (3-36) ICRU 37 (3.9). ICRU 49 (3.10). (W air /e) J/C.., Monte Carlo 1. Co-60 S w,air, W air P k Q,Qo. (2) Co-60 Qo k Q. ( ) Co-60 S w,air Co-60 S w,air = Andreo. (I value) 0.5 % Co %.
226 ( ) Co-60 W air W air W air /e. Dry air Co-60 W air /e J/C Niatel (3.11) 0.2 %. ( ) Co-60 P Q (Perturbation factor) Bragg-Gray. P i 1. P Q P Q = [P cav P dis P wall P cel ] Q (3-37) P dis P cel. Co-60 P cav P cav medium( ). Z ref ( 5 g/cm 2 ) Co-60 P cav 1.( 0.1 %) Co-60 P dis Z ref Z ref. Johansson (3.12). P dis = r cyl (3-38) r cyl mm. P dis 0.3 %. Z ref 0.2 %.
227 Co-60 P wall P wall medium.. P wall. (3-39) 0.5 mm PMMA. S med,air Andreo, Cunningham.. (t w ) = 1 - e tw (3-40) (t s ) = e ts (1 - e ts ) (3-41) t w t s (g/cm 2 ). Andreo P wall 0.5 %. Co-60 P cel P cel electrode. electrode Farmer 1mm electrode Co %. 1 mm electrode P cel %.
228 ( ) Co P dis, P wall, P cel S w,air P Q P dis, P wall, P cel S w,air P Q. (Values for the factors P dis, P wall and P cel and for the Product S w,air P Q in Co-60 gamma radiation for various cylindrical ionization chamber.) Ionization chamber type P dis P wall P cel S w,air P Q Capintec PR-05P mini Capintec PR-06C/G Farmer Exradin A2 Spokas Exradin A1 mini Shonka Far West Tech IC FZH TK Nuclear Assoc Nuclear Assoc Nuclear Assoc Nuclear Assoc NE NE 2505 Famer NE 2505/A Famer NE 2571 Famer PTW micro PTW rigid PTW rigid PTW Farmer SNC Farmer Victoreen Radocon Victoreen Radocon Victoreen Scdx-Wellhofer IC Scdx-Wellhofer IC Scdx-Wellhofer IC
229 3-19. Co-60 (3-39). (Estimated relative standard uncertainties of the parameters entering into the denominator of Eq.(3-39) at the Co-60 beam quality.) Component Cylindrical, u c (%) Chamber Type Plane-parallel, u c (%) S w,air Assignment of S w,air to beam quality W air/e P cav P dis P wall P cel Combined standard uncertainty (3) Co-60 (3-39). Co-60 k Q. ( ) S w,air Spencer-Attix S w,air Andreo. Co-60 S w,air Co-60 I 0.5 %. 0.3 %. ( ) W air W air Co %.
230 0.5 %. ( ) P Q.. P cav % ). Co-60 P cav 1. ( 0.1 P dis k Q. Johansson 0.3 %. MV. Co-60 k Q 0.4 %. P wall Co-60 (3-39). Co-60 P wall 0.5 %. P cel. Co-60. Co % ( ) 3-20 k Q 1.0 %.
231 3-20. k Q. (Estimated relative standard uncertainties of the calculated values for k Q for high energy photon beams.) Component u c (%) S w,air relative to Co-60 Assignment of S w,air to beam quality W air/e relative to Co-60 P cav in Co-60 and in high energy photons P dis relative to Co-60 P wall relative to Co-60 P cel relative to Co Combined standard uncertainty in k Q 1.0
232 3.. (1) 4 25 MeV.. (variance reduction technique) (megavoltage) ( ) ( ). MCNP(Monte Carlo N-Particle). (3.19). MCNPX 6 MV Siemens MX2 10 MV Varian Clinac 2100C.. (2) - MCNPX. 6 MV Siemens MX2 10 MV Varian Clinac 2100C 3-17,,,,,. BEAM (3.18)
233 (cascade).,,, (phase space file) cm. PDD. Siemens MX2 6.7 MeV 0.25 MeV FWHM, Varian Clinac 2100C 11 MeV cm 3. (PDD: percentage depth dose) cm 3, 10 cm cm 3. *F8 (cut-off) 0.01 MeV 0.1 MeV. EPDL(Livermore Evaluated Photon Data Library) (3.22) 1keV 100 GeV MCPLIB02. ETRAN(Electron TRANsport) (3.23) Integrated Tiger Series(ITSv3.0) (3.24) 1keV 1GeV EL GHz MS-Windows. (Scanditronix Wellh fer Blue Phantom). 5.8 mm, 6 mm (Scanditronix Wellh fer CC13).
234 (a) (b) Linac head. (Schematic diagram of linac head. (a) 6 MV Siemens MX2 (b) 10 MV Varian Clinac 2100C.) (3) ( ) 100 cm 3cm , (bin) 0.1 MeV. 3%. (energy weighted mean energy) Siemens MX2 Varian Clinac 2100C 1.93 MeV 2.97 MeV. 1/3 (3.25).
235 (Calculated photon energy spectra. (a) The 6 MV beam from the Siemens MX2; (b) The 10 MV beam from the Varian Clinac 2100C.)
236 ( ) (PDD). PDD %. (SSD: Source Surface Distance). 1% MCNPX PDD ±2%, 15%. (buildup region) (3.26). PDD 3-21, 10 MV BJR suppl. 25 (3.27) (Comparison of some of the beam quality parameters. The PDDs of the 6 MV and 10 MV beam were obtained for a 99 cm 2 field at 90 cm SSD and a cm 2 field at 100 cm SSD respectively. D 10, d 80 and d m are a PDD at 10 cm depth, a depth of an 80% dose and a depth of a peak dose, respectively.) Parameter 6 MV Siemens MX2 10 MV Varian Clinac 2100C Calculation Measurement Calculation Measurement BJR suppl. 25 D 10 (%) d 80 (cm) d m (cm)
237 (Comparison of the calculated and measured depth dose curves. (a) The 6 MV beam from the Siemens MX2; (b) The 10 MV beam from the Varian Clinac 2100C.)
238 ( ) cm. 1. 5cm 1% % 50% ±2%, (20% 10% ) 7%. (spatial resolution), % 20% 1mm. (4) MCNPX 6 MV Siemens MX2 10 MV Varian Clinac 2100C, PDD. PDD MCNPX.., MCNPX.
239 (Comparison of the calculated and measured cross profiles. (a) The 6 MV beam from the Siemens MX2; (b) The 10 MV beam from the Varian Clinac 2100C.)
240 . TLD / (KCCH). Co-60 (N K ), (Absorbed dose to air factor (N D,air )). IAEA-277,. N K 1.5 %. N K. (1) (N D,air ) N D,air. ( ) ( ) Chamber model and serial number : PTW N30006, No. 192 Cavity inner radius : 3.05 mm Wall material : PMMA thickness : g/ Buildup cap material : PMMA thickness : g/ total thickness : g/ ( ) Calibration laboratory data Calibration laboratory and date : A Calibration factor (kerma in air), N k = Gy/scale div ( : 1.1 %)
241 given at P O = kpa, T O = 22 and 50 R.H. Polarizing voltage : -400 V, field size : Source chamber distance : 100 ( ) Constants k att k m = W/e = J/C 1-g = (for 60 Co gamma radiation). k m : k att : (B.C. ) ( ) Absorbed dose to air calibration factor D air,u = K air,c (1-g)k att k m : IC N D,air = N k (1-g)k att k m P T,P : = x 10-2 obtained at kpa, 22, 50 R.H Polarizing voltage : -400 V, field size : (2). Co ( ) Dw Radiation treatment unit : Theratron 780, 60 Co : 5 cm : 0.6 r Field size : at SSD = 80 cm ( ) Chamber model and serial number : PTW N30006, No. 192
242 Wall material : PMMA thickness : g/ Electrometer model : PTW UNIDOS 10005, No Absorbed dose to air chamber factor : N D = Gy/div at P O = kpa, T O = 22, 50 R.H. Polarizing voltage : 400 V ( ) Electrometer Reading Mu = 5.00(div/min) Pressure, P = kpa Temperature, T = 24.7 Po = P Humidity correction k h = Recombination correction (IAEA-277 Table or, or Fig.13) V 1 = 250 V, V 2 = 83.3 V, M 1 /M 2 =1.001, p s = P TP ( T) = ( T ) o ( ) Stopping power ratio water/air (IAEA-277 Table ), S w,air = Perturbation factor, P qall = Central electrode correction P cel = D ( P ) = M N s, p Gy w eff u D w air u = / min D w ( Zmax) = Gy / min
243 (Water absorbed dose with the photon energies) Energy SSD Dw(Zref) Dw(Zmax) Co Gy/min at 5cm Gy/min 6 MV Gy/100 mu at 5cm Gy/100 mu 10 MV Gy/100 mu at 10cm Gy/100 mu 15 MV Gy/100 mu at 10cm Gy/100 mu. TLD (1) TLD ( 20 MeV ) ( ) TLD KLT-300(LiF:Mg,Cu,Na,Si, Korea), GR-200((LiF:Mg,Cu,P, China) MCP-N((LiF:Mg,Cu,P, Poland) 3 TL 1.25 MeV(Co-60) 21 MV (Microtron). IAEA/WHO TL (element correction factor (ECF)) TL. ECF TL. Co MV. ( ) KLT GR-200 MCP-N GR mm, MCP-N
244 0.9 mm. TLD ECF Cs-137. TL Co-60, 6 MV, 10 MV 21 MV, IAEA (30 x 30 x 30 cm) TL. Perspex Co-60 6 MV 10 x 10 x 10 cm, 10 MV and 21 MV 10 x 10 x 20 cm.. TLD TLD. (Radiation field characteristics to be used in the energy response experiments of the TL pellets.) Radiation Energy Radiation source TPR S w,air Phantom Used Co Co Teletherapy Unit T780(AECL, Canada) x30x30 Water 10x10x10 PMMA 6 MV Linac, Mevatron (Siemens, USA) x30x30 Water 10x10x10 PMMA 10 MV Microtron, MM22 (Scanditronix, Sweden) x30x30 Water 10x10x20 PMMA 21 MV Microtron, MM22 (Scanditronix, Sweden) x30x30 Water 10x10x20 PMMA TLD source-surface distance(ssd) = 1 m, 2 Gy Z ref Co-60, 6 MV 10 MV 5 cm, 21 MV 10 cm. TLD glow curves N 2 10 /sec TLD (Harshaw Model 4500).
245 (Experimental set-up for energy reponses of the TLDs.) ( ) (effective point of measurement) D W,Q (P eff ) IAEA-277. D W,Q (P eff ) = MN k (1-g)k att k m (S W,air ) Q P Q (3-42) M PTW 30006, N k Co-60 air kerma, (S W,air ) Q Q. IAEA-277. PTW Co-60 N k N k = x 10-2 Gy/nC, KLT-300 Co , TLD Co Gy KLT-300 Co-60 6%
ISO17025.PDF
ISO/IEC 17025 1999-12-15 1 2 3 4 41 42 43 44, 45 / 46 47 48 49 / 410 411 412 413 414 5 51 52 53 54 / 55 56 57 58 / 59 / 510 A( ) ISO/IEC 17025 ISO 9001:1994 ISO 9002:1994 B( ) 1 11 /, / 12 / 1, 2, 3/ (
More information歯1.PDF
200176 .,.,.,. 5... 1/2. /. / 2. . 293.33 (54.32%), 65.54(12.13%), / 53.80(9.96%), 25.60(4.74%), 5.22(0.97%). / 3 S (1997)14.59% (1971) 10%, (1977).5%~11.5%, (1986)
More information<313630313032C6AFC1FD28B1C7C7F5C1DF292E687770>
양성자가속기연구센터 양성자가속기 개발 및 운영현황 DOI: 10.3938/PhiT.25.001 권혁중 김한성 Development and Operational Status of the Proton Linear Accelerator at the KOMAC Hyeok-Jung KWON and Han-Sung KIM A 100-MeV proton linear accelerator
More information#Ȳ¿ë¼®
http://www.kbc.go.kr/ A B yk u δ = 2u k 1 = yk u = 0. 659 2nu k = 1 k k 1 n yk k Abstract Web Repertoire and Concentration Rate : Analysing Web Traffic Data Yong - Suk Hwang (Research
More information` Companies need to play various roles as the network of supply chain gradually expands. Companies are required to form a supply chain with outsourcing or partnerships since a company can not
More information2
02 1 1 22 36 38 46 5 1 54 61 65 77 81 2 _ 3 4 _ 5 6 _7 8 _ 9 1 0 _ 11 1 2 _ 13 1 4 _ 15 1 6 _ 17 1 8 _ 19 2 0 _ 21 2 2 www.kats.go.kr www.kats.go.kr _ 23 Scope of TC/223 Societal security International
More information04-다시_고속철도61~80p
Approach for Value Improvement to Increase High-speed Railway Speed An effective way to develop a highly competitive system is to create a new market place that can create new values. Creating tools and
More information- iii - - i - - ii - - iii - 국문요약 종합병원남자간호사가지각하는조직공정성 사회정체성과 조직시민행동과의관계 - iv - - v - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - α α α α - 15 - α α α α α α
More informationOutput file
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 An Application for Calculation and Visualization of Narrative Relevance of Films Using Keyword Tags Choi Jin-Won (KAIST) Film making
More informationPJTROHMPCJPS.hwp
제 출 문 농림수산식품부장관 귀하 본 보고서를 트위스트 휠 방식 폐비닐 수거기 개발 과제의 최종보고서로 제출 합니다. 2008년 4월 24일 주관연구기관명: 경 북 대 학 교 총괄연구책임자: 김 태 욱 연 구 원: 조 창 래 연 구 원: 배 석 경 연 구 원: 김 승 현 연 구 원: 신 동 호 연 구 원: 유 기 형 위탁연구기관명: 삼 생 공 업 위탁연구책임자:
More informationDBPIA-NURIMEDIA
27(2), 2007, 96-121 S ij k i POP j a i SEXR j i AGER j i BEDDAT j ij i j S ij S ij POP j SEXR j AGER j BEDDAT j k i a i i i L ij = S ij - S ij ---------- S ij S ij = k i POP j a i SEXR j i AGER j i BEDDAT
More information......30..1....
The Comparison the Output dose of a Linear Accelerator Photon Beams by Using the Ionization Chamber IC-10 Series Through TG-21 Protocol to Postal Monitoring Output of MDACC for One and Half Decade Tae
More informationKAERIAR hwp
- i - - ii - - iii - - iv - - v - - vi - Photograph of miniature SiC p-n and Schottky diode detector Photograph SiC chip mounted on a standard electrical package Photograph of SiC neutron detector with
More information<28BCF6BDC320323031352D31332920B0E6B1E2B5B520C1F6BFAABAB020BFA9BCBAC0CFC0DAB8AE20C1A4C3A520C3DFC1F8C0FCB7AB5FC3D6C1BE2830312E3036292E687770>
수시과제 2015-13 경기도 지역별 여성일자리 정책 추진 전략 연구책임자 : 최 윤 선 (본원선임연구위원) : 남 승 연 (본원연구위원) 연 구 지 원 : 이 상 아 (본원위촉연구원) 연 구 기 간 : 2015. 9 ~12 2015 발 간 사 여성 일자리는 사회 내 여성과 남성간의 차이를 좁히고 개개인의 삶을 윤택하게 만드는 중요 한 부분입니다. 이에 정부는
More information전용]
A Study of select the apropos processing mechanical method by the presume of transformation of teeth s surface degree ABSTRACT This study has been tried to select the apropos processing method by the
More information11¹Ú´ö±Ô
A Review on Promotion of Storytelling Local Cultures - 265 - 2-266 - 3-267 - 4-268 - 5-269 - 6 7-270 - 7-271 - 8-272 - 9-273 - 10-274 - 11-275 - 12-276 - 13-277 - 14-278 - 15-279 - 16 7-280 - 17-281 -
More information±èÇö¿í Ãâ·Â
Smartphone Technical Trends and Security Technologies The smartphone market is increasing very rapidly due to the customer needs and industry trends with wireless carriers, device manufacturers, OS venders,
More information09È«¼®¿µ5~152s
Korean Journal of Remote Sensing, Vol.23, No.2, 2007, pp.45~52 Measurement of Backscattering Coefficients of Rice Canopy Using a Ground Polarimetric Scatterometer System Suk-Young Hong*, Jin-Young Hong**,
More information목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i
11-1480523-000748-01 배경지역 ( 백령도 ) 에서의 대기오염물질특성연구 (Ⅲ) 기후대기연구부대기환경연구과,,,,,,, Ⅲ 2010 목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i 목차 Ⅳ ii 목차 iii 목차 iv 목차 μg m3 μg m3 v 목차 vi Ⅰ. 서론 Ⅰ μm μg m3 1 Ⅰ. 서론 μg m3 μg m3 μg m3 μm 2
More information서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소
2012 년도기초과학연구소 대학중점연구소심포지엄 마이크로파센서를이용한 혈당측정연구 일시 : 2012 년 3 월 20 일 ( 화 ) 14:00~17:30 장소 : 서강대학교과학관 1010 호 주최 : 서강대학교기초과학연구소 Contents Program of Symposium 2 Non-invasive in vitro sensing of D-glucose in
More informationGEAR KOREA
GEAR Original Equipment Manufacturing Gears Support your various needs with our world class engineering skill and the newest manufacturing facilities. 1 2 Nissei creates high-quality high-precision gears
More information유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012
11-1480523-001163-01 유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012 목 차 ⅰ ⅲ ⅳ Abstract ⅵ Ⅰ Ⅱ Ⅲ i 목 차 Ⅳ ii 목 차 iii 목 차 iv 목 차 v Abstract vi Abstract σ ε vii Abstract viii Ⅰ. 서론 Ⅰ. 1 Ⅰ. 서론.
More information00내지1번2번
www.keit.re.kr 2011. 11 Technology Level Evaluation ABSTRACT The Technology Level Evaluation assesses the current level of industrial technological development in Korea and identifies areas that are underdeveloped
More information- i - - ii - - iii - - iv - - v - - vi - - 1 - - 2 - - 3 - 1) 통계청고시제 2010-150 호 (2010.7.6 개정, 2011.1.1 시행 ) - 4 - 요양급여의적용기준및방법에관한세부사항에따른골밀도검사기준 (2007 년 11 월 1 일시행 ) - 5 - - 6 - - 7 - - 8 - - 9 - - 10 -
More information슬라이드 제목 없음
물리화학 1 문제풀이 130403 김대형교수님 Chapter 1 Exercise (#1) A sample of 255 mg of neon occupies 3.00 dm 3 at 122K. Use the perfect gas law to calculate the pressure of the gas. Solution 1) The perfect gas law p
More informationMicrosoft PowerPoint - ch03ysk2012.ppt [호환 모드]
전자회로 Ch3 iode Models and Circuits 김영석 충북대학교전자정보대학 2012.3.1 Email: kimys@cbu.ac.kr k Ch3-1 Ch3 iode Models and Circuits 3.1 Ideal iode 3.2 PN Junction as a iode 3.4 Large Signal and Small-Signal Operation
More informationDBPIA-NURIMEDIA
Printed in the Republic of Korea "/"-:5*$"- 4$*&/$& 5&$)/0-0(: Vol. 18, No. 5, 425-430, 2005» 677*4 Ÿ w sƒ ½»x Á Á½ k w y w, w y œw Some considerations for the analytical approaches to measure atmospheric
More information09김정식.PDF
00-09 2000. 12 ,,,,.,.,.,,,,,,.,,..... . 1 1 7 2 9 1. 9 2. 13 3. 14 3 16 1. 16 2. 21 3. 39 4 43 1. 43 2. 52 3. 56 4. 66 5. 74 5 78 1. 78 2. 80 3. 86 6 88 90 Ex e cu t iv e Su m m a r y 92 < 3-1> 22 < 3-2>
More information°í¼®ÁÖ Ãâ·Â
Performance Optimization of SCTP in Wireless Internet Environments The existing works on Stream Control Transmission Protocol (SCTP) was focused on the fixed network environment. However, the number of
More information82-01.fm
w y wz 8«( 2y) 57~61, 2005 J. of the Korean Society for Environmental Analysis p w w Á Á w w» y l Analysis of Influence Factors and Corrosion Characteristics of Water-pipe in Potable Water System Jae Seong
More information歯49손욱.PDF
2002 14 C Inventory An Estimation of 14 C Inventory on Each Unit of Wolsong NPP,,, 103-16 14 C 14 C Inventory 14 C Inventory 14 C 14 C, [Inventory] = [ 14 C ] - [ 14 C ] 14 C 14 C 13 C, 14 N 17 O [ 13
More informationCan032.hwp
Chromosomal Alterations in Hepatocellular Carcinoma Cell Lines Detected by Comparative Genomic Hybridization Sang Jin Park 1, Mahn Joon Ha, Ph.D. 1, Hugh Chul Kim, M.D. 2 and Hyon Ju Kim, M.D. 1 1 Laboratory
More information<32382DC3BBB0A2C0E5BED6C0DA2E687770>
논문접수일 : 2014.12.20 심사일 : 2015.01.06 게재확정일 : 2015.01.27 청각 장애자들을 위한 보급형 휴대폰 액세서리 디자인 프로토타입 개발 Development Prototype of Low-end Mobile Phone Accessory Design for Hearing-impaired Person 주저자 : 윤수인 서경대학교 예술대학
More informationTHE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2018 Oct.; 29(10), 799 804. http://dx.doi.org/10.5515/kjkiees.2018.29.10.799 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) Method
More informationVol.257 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M
2017.11 Vol.257 C O N T E N T S 02 06 38 52 69 82 141 146 154 M O N T H L Y P U B L I C F I N A N C E F O R U M 2 2017.11 3 4 2017.11 6 2017.11 1) 7 2) 22.7 19.7 87 193.2 160.6 83 22.2 18.4 83 189.6 156.2
More informationÆ÷Àå½Ã¼³94š
Cho, Mun Jin (E-mail: mjcho@ex.co.kr) ABSTRACT PURPOSES : The performance of tack coat, commonly used for layer interface bonding, is affected by application rate and curing time. In this study, bonding
More informationDevelopment of culture technic for practical cultivation under structure in Gastrodia elate Blume
Development of culture technic for practical cultivation under structure in Gastrodia elate Blume 1996. : 1. 8 2. 1 1998. 12. : : ( ) : . 1998. 12 : : : : : : : : : : - 1 - .. 1.... 2.. 3.... 1..,,.,,
More information12È«±â¼±¿Ü339~370
http://www.kbc.go.kr/ k Si 2 i= 1 Abstract A Study on Establishment of Fair Trade Order in Terrestrial Broadcasting Ki - Sun Hong (Professor, Dept. of Journalism & Mass Communication,
More information강의지침서 작성 양식
정보화사회와 법 강의지침서 1. 교과목 정보 교과목명 학점 이론 시간 실습 학점(등급제, P/NP) 비고 (예:팀티칭) 국문 정보화사회와 법 영문 Information Society and Law 3 3 등급제 구분 대학 및 기관 학부(과) 전공 성명 작성 책임교수 법학전문대학원 법학과 최우용 2. 교과목 개요 구분 교과목 개요 국문 - 정보의 디지털화와 PC,
More information07_À±¿ø±æ3ÀüºÎ¼öÁ¤
232 233 1) 2) Agenda 3) 4) 234 Invention Capital Agenda 5) 6) 235 7) 8) 9) 236 10) 11) 237 12) 13) 14) 15) knowledge 16) 17) 238 239 18) 240 19) 241 20) 242 243 244 21) 245 22) 246 23) 247 24) 248 25)
More informationDBPIA-NURIMEDIA
The e-business Studies Volume 17, Number 6, December, 30, 2016:275~289 Received: 2016/12/02, Accepted: 2016/12/22 Revised: 2016/12/20, Published: 2016/12/30 [ABSTRACT] SNS is used in various fields. Although
More information- i - - ii - - iii - - iv - - v - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - α α - 20 - α α α α α α - 21 - - 22 - - 23 -
More information<BFA9BAD02DB0A1BBF3B1A4B0ED28C0CCBCF6B9FC2920B3BBC1F62E706466>
001 002 003 004 005 006 008 009 010 011 2010 013 I II III 014 IV V 2010 015 016 017 018 I. 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 III. 041 042 III. 043
More information(
317 318 319 320 1 3 5 5 5 5 2 321 : 1.,,,,, 06 2. X-ray beam penetration (density) (contrast) 03 3. patch coating, precipitation, flaking 03 4. centering 03 5. Esophagus, cardia, fundus, body, angle, antrum,
More information4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1
: LabVIEW Control Design, Simulation, & System Identification LabVIEW Control Design Toolkit, Simulation Module, System Identification Toolkit 2 (RLC Spring-Mass-Damper) Control Design toolkit LabVIEW
More information002-022~41-기술2-충적지반
Improvement cases of waterproofing and auxiliary construction methods in alluvium soil tunnel In the past, subway tunnel is mostly applied to rock tunnel in order to secure the safety. But, in recent years,
More informationWOMA Pumps - Z Line
High-Pressure Plunger Pumps Z-Line (up to 1500 bar) 150 Z 250 Z 400 Z 550 Z 700 Z 1000 Z High-Pressure Plunger Pump Type 150 Z 211 133 250 615 100 95 Discharge 60 -Konus 9.5 deep M12x17 deep 322 255 331
More information(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re
EMF Health Effect 2003 10 20 21-29 2-10 - - ( ) area spot measurement - - 1 (Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern
More information2017.09 Vol.255 C O N T E N T S 02 06 26 58 63 78 99 104 116 120 122 M O N T H L Y P U B L I C F I N A N C E F O R U M 2 2017.9 3 4 2017.9 6 2017.9 7 8 2017.9 13 0 13 1,007 3 1,004 (100.0) (0.0) (100.0)
More informationDBPIA-NURIMEDIA
e- 비즈니스연구 (The e-business Studies) Volume 17, Number 1, February, 28, 2016:pp. 293~316 ISSN 1229-9936 (Print), ISSN 2466-1716 (Online) 원고접수일심사 ( 수정 ) 게재확정일 2015. 12. 04 2015. 12. 24 2016. 02. 25 ABSTRACT
More informationo. - ;,, -. -.. -. -. -. o (SI ). - ; (kgf/mm 2 ) -,. -. -,, - HRC, HV, HBW, o. -. O 3 - (Primary procedure) ; ISO - (Primary machine) ; NMI - (Primary reference materials) ; NMI o (ISO) (TC 164, Mechanical
More information국립국어원 2011-01-28 발간 등록 번호 11-1371028-000350-01 신문과 방송의 언어 사용 실태 조사 연구 책임자: 남영신 국립국어원 2011-01-28 발간 등록 번호 11-1371028-000350-01 신문과 방송의 언어 사용 실태 조사 연구 책임자: 남영신 2011. 11. 16. 제 출 문 국립국어원장 귀하 2011년 신문과 방송의
More informationCoriolis.hwp
MCM Series 주요특징 MaxiFlo TM (맥시플로) 코리올리스 (Coriolis) 질량유량계 MCM 시리즈는 최고의 정밀도를 자랑하며 슬러리를 포함한 액체, 혼합 액체등의 질량 유량, 밀도, 온도, 보정된 부피 유량을 측정할 수 있는 질량 유량계 이다. 단일 액체 또는 2가지 혼합액체를 측정할 수 있으며, 강한 노이즈 에도 견디는 면역성, 높은 정밀도,
More informationDBPIA-NURIMEDIA
The e-business Studies Volume 17, Number 6, December, 30, 2016:237~251 Received: 2016/11/20, Accepted: 2016/12/24 Revised: 2016/12/21, Published: 2016/12/30 [ABSTRACT] Recently, there is an increasing
More information歯Trap관련.PDF
Rev 1 Steam Trap Date `000208 Page 1 of 18 1 2 2 Application Definition 2 21 Drip Trap, Tracer Trap, 2 22 Steam Trap 3 3 Steam Trap 7 4 Steam Trap Sizing 8 41 Drip Trap 8 42 Tracer Trap 8 43 Process Trap
More information... 수시연구 국가물류비산정및추이분석 Korean Macroeconomic Logistics Costs in 권혁구ㆍ서상범...
... 수시연구 2013-01.. 2010 국가물류비산정및추이분석 Korean Macroeconomic Logistics Costs in 2010... 권혁구ㆍ서상범... 서문 원장 김경철 목차 표목차 그림목차 xi 요약 xii xiii xiv xv xvi 1 제 1 장 서론 2 3 4 제 2 장 국가물류비산정방법 5 6 7 8 9 10 11 12 13
More informationCrt114( ).hwp
cdna Microarray Experiment: Design Issues in Early Stage and the Need of Normalization Byung Soo Kim, Ph.D. 1, Sunho Lee, Ph.D. 2, Sun Young Rha, M.D., Ph.D. 3,4 and Hyun Cheol Chung, M.D., Ph.D. 3,4 1
More information<31325FB1E8B0E6BCBA2E687770>
88 / 한국전산유체공학회지 제15권, 제1호, pp.88-94, 2010. 3 관내 유동 해석을 위한 웹기반 자바 프로그램 개발 김 경 성, 1 박 종 천 *2 DEVELOPMENT OF WEB-BASED JAVA PROGRAM FOR NUMERICAL ANALYSIS OF PIPE FLOW K.S. Kim 1 and J.C. Park *2 In general,
More information한국성인에서초기황반변성질환과 연관된위험요인연구
한국성인에서초기황반변성질환과 연관된위험요인연구 한국성인에서초기황반변성질환과 연관된위험요인연구 - - i - - i - - ii - - iii - - iv - χ - v - - vi - - 1 - - 2 - - 3 - - 4 - 그림 1. 연구대상자선정도표 - 5 - - 6 - - 7 - - 8 - 그림 2. 연구의틀 χ - 9 - - 10 - - 11 -
More informationManufacturing6
σ6 Six Sigma, it makes Better & Competitive - - 200138 : KOREA SiGMA MANAGEMENT C G Page 2 Function Method Measurement ( / Input Input : Man / Machine Man Machine Machine Man / Measurement Man Measurement
More informationPowerChute Personal Edition v3.1.0 에이전트 사용 설명서
PowerChute Personal Edition v3.1.0 990-3772D-019 4/2019 Schneider Electric IT Corporation Schneider Electric IT Corporation.. Schneider Electric IT Corporation,,,.,. Schneider Electric IT Corporation..
More informationePapyrus PDF Document
Trans. of the Korean Hydrogen and New Energy Society(2013. 4), Vol. 24, No. 2, pp. 136~141 DOI: http://dx.doi.org/10.7316/khnes.2013.24.2.136 흡기관 분사식 수소 SI기관의 희박과급 적용에 관한 연구 이광주 1 ㆍ이종구 1 ㆍ이종태 2 1 성균관대학교
More information대한한의학원전학회지24권6호-전체최종.hwp
小兒藥證直訣 의 五臟辨證에 대한 小考 - 病證과 處方을 중심으로 1 2 慶熙大學校大學校 韓醫學科大學 原典學敎室 ㆍ 韓醫學古典硏究所 白裕相1,2*1)2) A study on The Diagnosis and Treatment Using The Theory of Five Organs in Soayakjeungjikgyeol(小兒藥證直訣) 1 Dept. of Oriental
More information02 Reihe bis 750 bar GB-9.03
Water as a tool High-Pressure Plunger Pumps 02-Line (up to 750 bar) 252 702 1002 1502 1852 2502 Technical Data High-Pressure Plunger Pump Type 252 / 702 approx. 1.8 l approx. 50 kg net 45 mm/1.77 inch
More information12(4) 10.fm
KIGAS Vol. 12, No. 4, December, 2008 (Journal of the Korean Institute of Gas) l x CNG» v m s w ½ Á y w» œw (2008 9 30, 2008 12 10, 2008 12 10 k) Numerical Analysis for Temperature Distribution and Thermal
More informationVol.258 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M
2017.12 Vol.258 C O N T E N T S 02 06 35 57 89 94 100 103 105 M O N T H L Y P U B L I C F I N A N C E F O R U M 2 2017.12 3 4 2017.12 * 6 2017.12 7 1,989,020 2,110,953 2,087,458 2,210,542 2,370,003 10,767,976
More informationecorp-프로젝트제안서작성실무(양식3)
(BSC: Balanced ScoreCard) ( ) (Value Chain) (Firm Infrastructure) (Support Activities) (Human Resource Management) (Technology Development) (Primary Activities) (Procurement) (Inbound (Outbound (Marketing
More information본문01
Ⅱ 논술 지도의 방법과 실제 2. 읽기에서 논술까지 의 개발 배경 읽기에서 논술까지 자료집 개발의 본래 목적은 초 중 고교 학교 평가에서 서술형 평가 비중이 2005 학년도 30%, 2006학년도 40%, 2007학년도 50%로 확대 되고, 2008학년도부터 대학 입시에서 논술 비중이 커지면서 논술 교육은 학교가 책임진다. 는 풍토 조성으로 공교육의 신뢰성과
More information232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특
한국도시행정학회 도시행정학보 제25집 제4호 2012. 12 : pp.231~251 생활지향형 요소의 근린주거공간 분포특성 연구: 경기도 시 군을 중심으로* Spatial Distribution of Daily Life-Oriented Features in the Neighborhood: Focused on Municipalities of Gyeonggi Province
More informationl l l l l l l l l Lee, Geon Kook None This project was designed to establish the Tumor Bank of National Cancer Center in 2000. From the first tumor sample in 2000, the total of tumor and tumor-related
More information05-08 087ÀÌÁÖÈñ.hwp
산별교섭에 대한 평가 및 만족도의 영향요인 분석(이주희) ꌙ 87 노 동 정 책 연 구 2005. 제5권 제2호 pp. 87118 c 한 국 노 동 연 구 원 산별교섭에 대한 평가 및 만족도의 영향요인 분석: 보건의료노조의 사례 이주희 * 2004,,,.. 1990. : 2005 4 7, :4 7, :6 10 * (jlee@ewha.ac.kr) 88 ꌙ 노동정책연구
More information현대패션의 로맨틱 이미지에 관한 연구
한지닥섬유제품의인체생리반응및쾌적성평가 임순 Evaluation of Thermal Physiological Responses and Comfort in Dox Fabric Soon Im Professor, Dept. of Fashion Industry, Incheon National University This study performed the evaluation
More information03신경숙내지작업
57~82 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 A Study on the Educational Use of Dolmen Construction Technology Kyung-sug Shin (Research Centre of Dolmens in Northeast Asia)
More informationVol.259 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M
2018.01 Vol.259 C O N T E N T S 02 06 28 61 69 99 104 120 M O N T H L Y P U B L I C F I N A N C E F O R U M 2 2018.1 3 4 2018.1 1) 2) 6 2018.1 3) 4) 7 5) 6) 7) 8) 8 2018.1 9 10 2018.1 11 2003.08 2005.08
More information서론
- i - - ii - - iii - - iv - - v - - vi - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - -
More information<BCF6BDC3323030392D31385FB0EDBCD3B5B5B7CEC8DEB0D4C5B8BFEEB5B5C0D4B1B8BBF3BFACB1B85FB1C7BFB5C0CE2E687770>
... 수시연구 2009-18.. 고속도로 휴게타운 도입구상 연구 A Study on the Concept of Service Town at the Expressway Service Area... 권영인 임재경 이창운... 서 문 우리나라는 경제성장과 함께 도시화가 지속적으로 진행되어 지방 지역의 인구감소와 경기의 침체가 계속되고 있습니다. 정부의 다각 적인
More information<31342D3034C0E5C7FDBFB52E687770>
아카데미 토론 평가에 대한 재고찰 - 토론승패와 설득은 일치하는가 - 장혜영 (명지대) 1. 들어가는 말 토론이란 무엇일까? 토론에 대한 정의는 매우 다양하다. 안재현 과 오창훈은 토론에 대한 여러 정의들을 검토한 후 이들을 종합하 여 다음과 같이 설명하고 있다. 토론이란 주어진 주제에 대해 형 식과 절차에 따라 각자 자신의 의견을 합리적으로 주장하여 상대
More informationJournal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: NCS : * A Study on
Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp.157-176 DOI: http://dx.doi.org/10.21024/pnuedi.28.3.201809.157 NCS : * A Study on the NCS Learning Module Problem Analysis and Effective
More information( )Jkstro011.hwp
비인강암의방사선치료결과및생존율에관한예후인자분석 2005 2 1 2005 3 28. :, Tel: 053)250-7665, Fax: 053)250-7984 E-mail: jhkim@dsmc.or.kr 정영연외 2 인 : 비인강암의예후인자분석 정영연외 2 인 : 비인강암의예후인자분석 Carcinoma of the nasopharynx treated by radiotherapy
More information<B3EDB9AEC1FD5F3235C1FD2E687770>
오용록의 작품세계 윤 혜 진 1) * 이 논문은 생전( 生 前 )에 학자로 주로 활동하였던 오용록(1955~2012)이 작곡한 작품들을 살펴보고 그의 작품세계를 파악하고자 하는 것이다. 한국음악이론이 원 래 작곡과 이론을 포함하였던 초기 작곡이론전공의 형태를 염두에 둔다면 그의 연 구에서 기존연구의 방법론을 넘어서 창의적인 분석 개념과 체계를 적용하려는
More information00½ÃÀÛ 5š
The Career of Christian Counselor and the Management of Counseling Center Yeo Han Koo 1) 1 17 2011 29 2) 3) 30 4) 5) 6) 7) 2 3 1999 99 2006 23 45 2007 17 19 4 17 2011 95 148 5 100 2014 26 6 29 17 2004
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationProduct A4
2 APTIV Film Versatility and Performance APTIV Film Versatility and Performance 3 4 APTIV Film Versatility and Performance APTIV Film Versatility and Performance 5 PI Increasing Performance PES PPSU PSU
More information¹Ìµå¹Ì3Â÷Àμâ
MIDME LOGISTICS Trusted Solutions for 02 CEO MESSAGE MIDME LOGISTICS CO., LTD. 01 Ceo Message We, MIDME LOGISTICS CO., LTD. has established to create aduance logistics service. Try to give confidence to
More informationOutput file
connect educational content with entertainment content and that production of various contents inducing educational motivation is important. Key words: edutainment, virtual world, fostering simulation
More informationSlide 1
Clock Jitter Effect for Testing Data Converters Jin-Soo Ko Teradyne 2007. 6. 29. 1 Contents Noise Sources of Testing Converter Calculation of SNR with Clock Jitter Minimum Clock Jitter for Testing N bit
More information대경테크종합카탈로그
The Series Pendulum Impact 601 & 602 Analog Tester For Regular DTI-602B (Izod) DTI-601 (Charpy) DTI-602A (Izod) SPECIFICATIONS Model DTI-601 DTI-602 Type Charpy for plastics lzod for plastics Capacity
More informationMicrosoft PowerPoint - AC3.pptx
Chapter 3 Block Diagrams and Signal Flow Graphs Automatic Control Systems, 9th Edition Farid Golnaraghi, Simon Fraser University Benjamin C. Kuo, University of Illinois 1 Introduction In this chapter,
More information민속지_이건욱T 최종
441 450 458 466 474 477 480 This book examines the research conducted on urban ethnography by the National Folk Museum of Korea. Although most people in Korea
More information<BFACB1B85F323030352D30335FB0E6C1A6C0DAC0AFB1B8BFAA2E687770>
연구보고서 2005-03 경제자유구역에서의 보건의료시장 개방의 파급효과와 정책방향 2005 韓 國 保 健 社 會 硏 究 院 머 리 말 우리나라는 2003년 경제자유구역의지정및운영에관한법률 을 제정하여 인천, 부산-진해, 광양만 등 3개 지역에 경제자유구역 개발을 추진하고 있다. 이 법에 는 경제자유구역에 외국 의료기관이 진출할 수 있다는 내용이 규정되어 있으
More informationKAERI/AR-636/2002 : 技術現況分析報告書 : 방사선 계측기술 및 중성자 계측기 기술 개발 현황
KAERI Radiation Gas ions - electrons + Gas-filled Detector Power Supply V Voltmeter Log(Pulse Height) Ionisation Chamber Proportional Counter Geiger-Müller Counter High initial Ionisation Low
More information1
北 地 区 青 少 年 境 研 会 Международный детский симпозиум по проблемам экологии региона Северо-Восточной Азии. 1 2 5 6 7 9 1. 2. 11 12 13 13 14 15 16 . (Nature) 100.. 90%.. 3000 10% 385. 1 1, 500 2kg.........
More information14.fm
Journal of the Korean Ceramic Society Vol. 44, No. 2, pp. 93~97, 2007. Preparation of High Purity Si Powder by SHS Chang Yun Shin, Hyun Hong Min, Ki Seok Yun, and Chang Whan Won Engineering Research Center
More information03 장태헌.hwp
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2013 Aug.; 24(8), 772 780. http://dx.doi.org/10.5515/kjkiees.2013.24.8.772 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) HEMP
More information1. 서론 1-1 연구 배경과 목적 1-2 연구 방법과 범위 2. 클라우드 게임 서비스 2-1 클라우드 게임 서비스의 정의 2-2 클라우드 게임 서비스의 특징 2-3 클라우드 게임 서비스의 시장 현황 2-4 클라우드 게임 서비스 사례 연구 2-5 클라우드 게임 서비스에
IPTV 기반의 클라우드 게임 서비스의 사용성 평가 - C-Games와 Wiz Game 비교 중심으로 - Evaluation on the Usability of IPTV-Based Cloud Game Service - Focus on the comparison between C-Games and Wiz Game - 주 저 자 : 이용우 (Lee, Yong Woo)
More information大学4年生の正社員内定要因に関する実証分析
190 2016 JEL Classification Number J24, I21, J20 Key Words JILPT 2011 1 190 Empirical Evidence on the Determinants of Success in Full-Time Job-Search for Japanese University Students By Hiroko ARAKI and
More information01김경회-1차수정.hwp
한국민족문화 57, 2015. 11, 3~32 http://dx.doi.org/10.15299/jk.2015.11.57.3 장복선전 에 나타난 이옥의 문제의식 고찰 - 심노숭의 사가야화기, 정약용의 방친유사 와의 비교를 중심으로 1)김 경 회 * 1. 들어가며 2. 장복선의 행적 비교 1) 입전 동기 2) 장복선의 처지 3) 장복선의 구휼 및 연대 3. 장복선의
More informationJournal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A Research Trend
Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp.295-318 DOI: http://dx.doi.org/10.21024/pnuedi.28.4.201812.295 * A Research Trend on the Studies related to Parents of Adults with Disabilities
More information04_이근원_21~27.hwp
1) KIGAS Vol. 16, No. 5, pp 21~27, 2012 (Journal of the Korean Institute of Gas) http://dx.doi.org/10.7842/kigas.2012.16.5.21 실험실의 사례 분석에 관한 연구 이근원 이정석 한국산업안전보건공단 산업안전보건연구원 (2012년 9월 5일 투고, 2012년 10월 19일
More informationJournal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc
Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp.251-273 DOI: http://dx.doi.org/10.21024/pnuedi.27.2.201706.251 : 1997 2005 Research Trend Analysis on the Korean Alternative Education
More information