12 김명섭 B-RN (2).hwp

Size: px
Start display at page:

Download "12 김명섭 B-RN (2).hwp"

Transcription

1 논문 합성곱신경망기반웹응용트래픽분류모델설계 지세현, 백의준 *, 신무곤 *, 채병민 **, 문호원 **, 김명섭 Design of Web Application Traffic Classification Model Based on Convolution Neural Network Se-Hyun Ji, Ui-Jun Baek *, Mu-Gon Shin *, Byeong-Min Chae **, Ho-Won Moon **, Myung-Sup Kim 요 약 네트워크관리의기본역할은사용자에게적합한 QoS(Quality of Service) 를제공하는것이다. 적합한 QoS를제공하고안전한네트워크환경을만들기위해정확한응용트래픽분류는필수적이다. 기존의트래픽분류기법으로는포트기반의분류기법, 페이로드기반의분류기법, 통계정보기반의분류기법이있다. 그러나동적인포트혹은암호화된페이로드를갖는패킷을발생시키는응용의등장으로인해기존의트래픽분류기법의한계점이발생하고있다. 기존의트래픽분류기법에대한한계점을해결하기위해본논문은 10종류의웹응용트래픽 (Baidu, Bing, Daum, Google, Kakaotalk, Nate, Naver, Yahoo, Youtube, Zum) 에대해머신러닝알고리즘중하나인합성곱신경망 (Convolution Neural Network) 알고리즘을적용한응용트래픽분류모델설계방법을제안한다. 제안한모델의학습분류정확도는 100%, 검증분류정확도는 99.6% 의성능을달성하였다. 키워드 : 트래픽분류, 머신러닝, 합성곱신경망, 응용트래픽 Key Words : Traffic Classification, Machine Learning, Convolution Neural Network, Application Traffic ABSTRACT The basic role of network management is to provide quality of service suitable for users. Accurate application traffic classification is essential to provide adequate quality of service and to ensure a secure network environment. The existing traffic classification methods are port-based classification methods, payload-based classification methods and statistic information-based classification methods. However, due to the emergence of applications that generate packets with dynamic ports or encrypted payloads, the limitations of existing traffic classification techniques are occurred. In this paper, in order to address these limitations, we propose an application traffic classification model applying the convolution neural network algorithm which is one of the machine learning algorithms for 10 kinds of web application traffic(baidu, Bing, Daum, Google, Kakaotalk, Nate, Naver, Yahoo, Youtube, Zum). The proposed model achieves 100% train classification accuracy and 99.4% validation classification accuracy. 이논문은 2016 년도국방과학연구소와한화시스템 ( 주 ) 의재원을받아수행된연구임 (UE161105ED) First Author : Department of Computer and Information Science, Korea University, sxzer@korea.ac.kr, 학생회원 Corresponding Author : Department of Computer and Information Science, Korea University, tmskim@korea.ac.kr, 종신회원 * Department of Computer and Information Science, Korea University, {pb1069, tm0309}@gmail.com, 학생회원 ** Hanwha Systems, {byeonmin.chae, moon1000}@hanwha.com 논문번호 : B-RN, Received January 22, 2019; Revised March 13, 2019; Accepted April 11,

2 Ⅰ. 서론오늘날의네트워크는고속화와더불어다양한서비스와응용이개발됨에따라트래픽이다양해지고있으며이러한상황에발맞춰효율적으로네트워크를운용하기위한방안이연구되고있다. 네트워크사용자는고품질의서비스를제공받고, 네트워크운영자는서비스제공의신뢰성확보및서비스의안정적인제공을위해네트워크를관리하는것이필요하다 [1][2]. 네트워크관리의기본역할은사용자에게적합한 QoS(Quality of Service) 를제공하는것이다. 적합한 QoS를제공하기위해정확한응용트래픽분류를하는것은필수적이다 [3]. 다양한트래픽분류기법들이연구되고있는가운데아직까지트래픽을응용단위로완벽하게분류해내는방법론은개발되지않았다. 응용트래픽을분류하기위한보편적인기법으로는표1과같다. 포트시그니처, 페이로드시그니처, 통계정보시그니처기반트래픽분류기법이있다. 시그니처기반분류기법은특정응용프로그램에서발생시킨트래픽을분석하여다른응용프로그램과구분지을수있는시그니처라고하는특정응용만의특징을추출하고, 이를통해트래픽을분류하는방법이다. 포트시그니처기반의분류기법은두개이상의포트또는임의의포토를설정할수있는기능을제공하는응용등복잡한구조를갖는응용이등장함에따라정확한분류를어렵게하고있다. 페이로드시그니처기반의분류기법은분석률과정확도측면에서가장높은분석성능을보이지만수작업으로시그니처를추출하는어려움이있고, 응용프로그램의변화에신속하게대처할수없으며, 암호화된페이로드를갖는응용에대해서는분류를수행할수없다. 통계정보시그니처기반의분류기법은암호화된트래픽을분류할수있지만, 통계정보를사용할경우특정응용프로그램에서사용한프로토콜에의존적인시그니처가생성될가능성이높다. 앞서언급한세가지분류방법은모두시그니처가 매칭되는트래픽만을분류한다. 분류되지않는트래픽을줄이기위해많은시그니처를사용하여야하며, 이는처리시간의증가를야기한다 [4]. 본논문에서는기존의분류기법의한계점을극복하기위한머신러닝알고리즘중하나인합성곱신경망 (Convolution Neural Network) 기반웹응용트래픽분류모델설계방법을제안한다. 설계방법을통해완성된모델은페이로드시그니처분류기법과는대조적으로자동으로특징을추출하는것이수월하고, 웹응용을분류하기위해학습을통해웹응용의고유성을반영하는고차원의패턴을추출한다 [5]. 본논문은 10개의웹응용트래픽을대상으로머신러닝알고리즘중하나인합성곱신경망알고리즘을적용한모델을설계하고, 10개의응용에대한분류실험의결과를통해제안하는방법의적합성을검증한다. 본논문은서론에이어 2장에서는합성곱신경망에대해기술하고, 3장에서는제안하는방법론에대해기술한다. 4장에서는실험을통해제안하는방법론의적합성을검증하고, 마지막으로 5장에서는결론및향후연구를기술한다. Ⅱ. 합성곱신경망본장에서는제안하는모델의기반인합성곱신경망의구조와, 합성곱신경망에서수행하는연산에대하여설명한다. 2.1 합성곱신경망구조합성곱신경망이란기존의 Neural Network에 Convolution연산이합쳐진기술로이미지처리에강력 표 1. 시그니처기반트래픽분류 Table 1. Traffic classification based on signature 1114 Signature Example Properties Port Payload 80:HTTP 21:FTP GET host 고정된포트번호사용페이로드내의특정한패턴사용 Statistic Packet Size 통계정보사용 그림 Fig 1. 합성곱신경망구조 1. Structure of Convolution Neural Network

3 논문 / 합성곱신경망기반웹응용트래픽분류모델설계 한성능을보이는알고리즘이다. 합성곱신경망의구조는그림 1과같다. Convolution연산, Activation Function, Pooling연산을통해 Feature Map을추출하는 Convolution Layer와 Neural Network, Activation Function으로이루어진 Fully Connected Layer로구성된다. 2.2 Convolution연산합성곱신경망에서수행하는첫번째로수행되는 Convolution연산은입력데이터로부터특징추출을수행한다. 그림 2와같이입력받은데이터로부터임의의 Convolution Filter와의 Convolution연산을통해 Convolved Map을생성한다. 그림 4. Padding기법 Fig. 4. Padding Method 2.5 Activation Function Activation Function은 Convolution연산을통해추출된 Convolved Map의정략적인값을비선형값으로바꿔주는과정에서적용되는함수이고, 함수를적용시켜나온결과는 Feature Map이다. 그림 2. Convolution 연산과정 Fig. 2. Convolution Operation Process 2.6 Fully Connected Layer Fully Connected Layer는그림 5와같이 Convolution Layer의연산을통해나온 Feature Map 의값에대해 N개의모든 Neural Network와의연산을한다. Neural Network와의연산을통해나온값에대해 Activation Function을적용한최종값을통해최종적인분류를수행한다. 2.3 Pooling연산 Pooling연산은데이터의크기를인위적으로줄이는기법으로, Convolution연산을통해나온 Convolved Map에대해그림 3과같이 Pooling Kernel안의영역에서하나의값을뽑아내는연산을수행한다. 그림 5. Fully Connected Layer 연산과정 Fig. 5. Fully Connected Layer Operation Process Ⅲ. 웹응용트래픽분류모델설계 그림 3. Pooling연산과정 Fig. 3. Pooling Operation Process 2.4 Padding기법 Padding기법은합성곱신경망내의연산을수행하기전, 그림 4와같이입력데이터주변을특정값으로채워늘리는것이다. 이는데이터의크기가줄어드는것을방지하기위함이다. 본장에서는합성곱신경망알고리즘을적용한웹응용트래픽분류모델설계방법에대하여설명한다. 3.1 Design Overview 본논문에서제안하는웹응용트래픽분류모델의설계과정은그림 6과같다. Pre-Processing, Model Training, Model Validation과정을통해분류모델을완성한다. 1115

4 그림 6. 웹응용트래픽분류모델설계 Fig. 6. Design of Web Application Traffic Classification 3.2 Pre-Processing 본절에서는합성곱신경망의학습데이터를생성하기위한 Pre-Processing과정에대해단계별로기술한다 Traffic Capture Microsoft에서제공하는 MS Network Monitor프로그램의 Traffic Capture기능을통해웹응용트래픽수집을한다. 그림 7과같이정교한트래픽수집을위해대상웹서버의 IP정보를기반으로패킷들을필터링하여수집한다. 수집된트래픽은패킷단위로구성된 cap파일의형태로저장이된다. 그림 8. Flow with Packet 개념 Fig. 8. Concept of Flow with Packet Extract Payload Flow with Packet의구조에서헤더를제외한데이터부분만추출하기위한단계이다. Flow with Packet 의페이로드의형태는그림 9와같다. 각각의 Flow with Packet의페이로드의크기는일정하지않기때문에본연구에서는합성곱신경망의대표적인모델중하나인 Mnist 숫자분류모델의입력이미지의크기와일치시키기위해페이로드의 784bytes의크기만추출을하고 [6], 페이로드의크기가 784bytes보다작은경우다시처음의페이로드값부터채워나가는방법을취하였다. 그림 9. Flow with Packet 의 Payload Fig. 9. Payload in Flow with Packet s Format 그림 7. 트래픽수집 Fig. 7. Traffic Capture Cap to Flow with Packet Traffic Capture과정을통해패킷단위로구성된 cap 파일을 Flow with Packet형태로구성하기위한단계이다. 그림 8에서의 Flow with Packet은 Client PC와 Application Server간의하나의세션에서발생하는패킷들의집합이다 Payload to Image Extract Payload과정을통해추출된페이로드의각 byte는 0~255사이의값을갖는다. 0~255 사이의값을흑백의음영이미지를만드는단계이다. Payload to Image과정을통해그림 10과같이합성곱신경망에쓰이는학습데이터가완성이된다. 페이로드의값을이미지로표현한학습데이터는고차원의패턴을추출하기위한이미지이므로, 단순하게육안으로식별하기에는어려움이있다. 1116

5 논문 / 합성곱신경망기반웹응용트래픽분류모델설계 표 2. Hyper-parameter 구성 Table 2. Hyper-parameter Set Activation Function Convolution Filter Size Sigmoid, Tanh, ReLU, Leaky_ReLU, Softmax 3x3, 5x5, 7x7 그림 10. 웹응용트래픽의 Payload 이미지 Fig. 10. Web Application Traffic s Payload Image 3.3 Model Training 본절에서는합성곱신경망모델의학습과정에대해기술한다. 합성곱신경망은 Pre-Processing과정을통해완성된웹응용트래픽의페이로드이미지를입력받아학습한다 Hyper-parameter Properties Hyper-parameter는학습모델을구성하는데임의로설정할수있는모든요소이다. 본연구에서합성곱신경망의학습에쓰이는 Hyper-parameter는그림 11 과같으며이는 Convolution Filter의크기, Activation Function의선정, Pooling연산선정, Padding기법선정, Neural Network의수이다. Pooling Methods Max Pooling, Average Pooling Padding Options Zero Padding, No Padding Number of Neural Network 256, 512, Model Validation Model Training과정으로부터완성된최종모델에대해학습에쓰이지않은데이터를통해나온분류정확도를바탕으로검증을하는단계이다. Ⅳ. 실험 본장에서는제안하는방법론을적용하기위해 Google에서제공하는 Tensorflow를이용하여모델을구성한다. 구성된합성곱신경망기반웹응용트래픽분류모델에대해 10개의웹응용트래픽을대상으로분류실험을진행하여방법론의적합성을검증한다. 그림 11. 합성곱신경망의 Hyper-parameter Fig. 11. Hyper-parameter for Convolution Neural Network Hyper-parameter Optimization Hyper-parameter Optimization은합성곱신경망을구성하는 Hyper-parameter를임의로선정한후, 각 Hyper-parameter의모든조합을구성하여모델들을구성, 각모델의학습결과로나온분류정확도를바탕으로최적의 Hyper-parameter조합을찾는과정이다. 본연구에서쓰이는 Hyper-parameter구성은표 2와같이구성하였으며. 모든경우의 Hyper-parameter조합중에서학습분류정확도를바탕으로가장성능이좋은 1개의모델을선정하였다. 4.1 Data Set MS Network Monitor를통해수집한 10개의웹응용트래픽의정보는표 3과같다. 443번포트와 80번포트를사용하는웹응용트래픽을대상으로수집을하였고수집된실험트래픽의 443번포트와 80번포트 표 3. 웹응용트래픽데이터 Table 3. Web Application Data Set Web Application Traffic 443 port (%) 80 port (%) Baidu Bing Daum Google Kakaotalk Nate Naver Yahoo Youtube Zum Number of Train Set Number of Validation Set

6 표 4. 합성곱신경망모델학습실험결과 Table 4. Convolution Neural Network Model Train Experiment Result Model No. Convolution Filter Size & Number Convolution Activation Function Pooling Option Padding Option Neural Network Activation Function Number of Neural Network Train Accuracy 1 5x5x32 Leaky_ReLU No Padding Max Pooling Leaky_ReLU % 2 5x5x32 Leaky_ReLU Padding Max Pooling Leaky_ReLU % 3 7x7x32 Leaky_ReLU Only Pooling Max Pooling Leaky_ReLU % 4 7x7x32 ReLU Padding Max Pooling Leaky_ReLU % 5 7x7x32 ReLU Only Conv. Max Pooling Leaky_ReLU % 에대한비율을나타내었다. 각웹응용별 1300개의페이로드이미지중 1000개의이미지를모델의학습에사용하였고, 300개의페이로드이미지를검증에사용하였다. 4.2 학습실험 Hyper-parameter Optimization과정을거친후나온 1440가지의조합중에서높은분류정확도를나타낸상위 5개의합성곱신경망분류모델의학습결과는표 4와같다. Filter의크기는 5x5크기의필터보다 7x7 크기의필터가높은성능을나타내었고, 필터의개수는모든 Model에동일하게 32개씩사용하였다. Pooling Option에서 Padding의경우데이터의주변을 0으로채워놓는 Zero-Padding기법을적용하였고, Only Pooling 은 Convolution 과정혹은 Pooling 과정에만 Padding 을적용한것이다. Pooling기법의경우최댓값을추출하는 Max Pooling기법이우수한성능을나타내었다. Convolution Activation Function은 ReLU와 Leaky_ReLU가좋은성능을보였고, Neural Network Activation Function의경우 Leaky_ReLU가최적의함수이다. 마지막으로 Neural Network의수가많은모델이더좋은성능을나타내었고, 그중에서도 Model 5의 Hyper-parameter조합이 100% 의학습분류정확도를나타내었다. 4.3 모델검증실험학습과정을거친상위 5개의모델의성능을검증하기위한실험이다. 학습에사용되지않은각웹응용별 300개의이미지를학습을마친모델의검증데이터로사용한결과는표 5와같다. 학습결과가좋은모델일수록좋은검증분류정확도를나타내었으며, Model 5 가 99.57% 로가장높은정확도를나타내었다. 표 5. 합성곱신경망모델검증실험결과 Table 5. Experimental Results for Convolution Neural Network Model Validation Model No. Validation Accuracy % % % % % Ⅴ. 결론및향후연구 본논문에서는기존의트래픽분류기법의한계점을극복하고자 Pre-Processing, Model Training, Model Validation과정을통한합성곱신경망기반응용트래픽분류모델설계방법을제안하였다. 기존의분류기법중가장높은분석률과정확도를나타내는페이로드시그니처기반분류기법은 443번포트를사용하는암호화된페이로드를갖는응용에대해서시그니처추출의어려움이있어분류를할수없으나, 본논문에서는 443번포트를사용하는 10개의웹응용에대해육안으로는구분하기힘든페이로드이미지를학습시켜분류하는실험을통해기존페이로드시그니처분류기법의한계점을극복하였다. 본연구에서제시한 Hyper-parameter의모든조합에대해학습실험을진행하였고, 검증실험결과를통해 Model 5의 Hyper-parameter조합을통해합성곱신경망을설계하는것이 10개의웹응용트래픽을분류하는데있어적절하다는것을검증하였다. 향후연구로는더많은종류의웹응용트래픽을대상으로분류하는실험을진행하여, 그에맞는모델을설계하는것에대해연구할계획이다. 1118

7 논문 / 합성곱신경망기반웹응용트래픽분류모델설계 References [1] J. Park, S. Yoon, J. Park, S. Lee, and M. Kim, Statistic signature based application traffic classification, J. KICS, vol. 34, no. 11, pp , Nov [2] K.-S. Shim, Y.-H. Goo, J. T. Park, and M.-S. Kim, A study on the automatic payload signature generation based on clustering for service-specific traffic classification, in Proc. Symp. KICS, pp , Jun [3] Y.-H. Goo, K.-S. Shim, S. Lee, B. D. Sija, and M.-S. Kim, A traffic-classification method using the correlation of the network flow, J. KIISE, vol. 44, no. 4, pp , Apr [4] S.-H. Ji, J.-T. Park, E.-J. Baek, and M.-S. Kim, Malicious traffic detection based on convolution neural network, for secure network construction, in Proc. Symp. KICS, pp , Jun [5] J.-B. Kim, H.-K. Lim, J.-S. Heo, and Y.-H. Han, Packet payload-based network traffic classification using convolutional neural network, KIPS 2018 Spring Conf., May [6] W. Wang, X. Zeng, X. Ye, Y. Sheng, and M. Zhu, Malware traffic classification using convolutional neural networks for representation learning, in 31st ICOIN, Accepted, 지세현 (Se-Hyun JI) 2018년 : 고려대학교컴퓨터정보 학과학사 2018년 ~ 현재 : 고려대학교컴퓨 터정보학과석사과정 < 관심분야 > 네트워크관리및보 안, 트래픽모니터링및분석 [ORCID: ] 백의준 (Ui-Jun Baek) 2018년고려대학교컴퓨터정보학과학사 2018년 ~ 현재 : 고려대학교컴퓨터정보학과석사과정 < 관심분야 > 네트워크관리및보안, 트래픽모니터링및분석 [ORCID: ] 신무곤 (Mu-Gon Shin) 2019년 : 고려대학교컴퓨터정보학과학사 2019년 ~ 현재 : 고려대학교컴퓨터정보학과석사과정 < 관심분야 > 네트워크관리및보안, 트래픽모니터링및분석 [ORCID: ] 채병민 (Byeong-Min Chae) 2007년 : 충남대학교물리학과학사 2012년 : 충남대학교컴퓨터공학과석사 2007년 ~2008년 : 삼성전자연구원 2008년 ~ 현재 : 한화시스템연구원 < 관심분야 > 네트워크관리및보안, 트래픽모니터링및분석 [ORCID: ] 문호원 (Ho-Won Moon) 2000년 : 한양대학교수학과학사 2000년 ~2011년 : 삼성전자연구원 2011년 ~ 현재 : 한화시스템연구원 < 관심분야 > 네트워크관리및보안, 트래픽모니터링및분석, 라우팅 [ORCID: ] 1119

8 김명섭 (Myung-Sup Kim) 1998년 : 포항공과대학교전자계산학과학사 2000년 : 포항공과대학교전자계산학과석사 2004년 : 포항공과대학교전자계산학과박사 2006년 :Dept. of ECS, Univ of Toronto Canada 2006년 ~ 현재 : 고려대학교컴퓨터정보학과교수 < 관심분야 > 네트워크관리및보안, 트래픽모니터링및분석, 멀티미디어네트워크 [ORCID: ] 1120

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4) THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2018 Oct.; 29(10), 799 804. http://dx.doi.org/10.5515/kjkiees.2018.29.10.799 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) Method

More information

À±½Â¿í Ãâ·Â

À±½Â¿í Ãâ·Â Representation, Encoding and Intermediate View Interpolation Methods for Multi-view Video Using Layered Depth Images The multi-view video is a collection of multiple videos, capturing the same scene at

More information

°í¼®ÁÖ Ãâ·Â

°í¼®ÁÖ Ãâ·Â Performance Optimization of SCTP in Wireless Internet Environments The existing works on Stream Control Transmission Protocol (SCTP) was focused on the fixed network environment. However, the number of

More information

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a low-resolution Time-Of- Flight (TOF) depth camera and

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA 무선 센서 네트워크 환경에서 링크 품질에 기반한 라우팅에 대한 효과적인 싱크홀 공격 탐지 기법 901 무선 센서 네트워크 환경에서 링크 품질에 기반한 라우팅에 대한 효과적인 싱크홀 공격 탐지 기법 (A Effective Sinkhole Attack Detection Mechanism for LQI based Routing in WSN) 최병구 조응준 (Byung

More information

08김현휘_ok.hwp

08김현휘_ok.hwp (Regular Paper) 21 3, 2016 5 (JBE Vol. 21, No. 3, May 2016) http://dx.doi.org/10.5909/jbe.2016.21.3.369 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a) An Audio Coding Technique Employing the Inter-channel

More information

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018)   ISSN (Special Paper) 23 2, 2018 3 (JBE Vol. 23, No. 2, March 2018) https://doi.org/10.5909/jbe.2018.23.2.246 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) CNN a), a), a) CNN-Based Hand Gesture Recognition

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA 논문 10-35-03-03 한국통신학회논문지 '10-03 Vol. 35 No. 3 원활한 채널 변경을 지원하는 효율적인 IPTV 채널 관리 알고리즘 준회원 주 현 철*, 정회원 송 황 준* Effective IPTV Channel Control Algorithm Supporting Smooth Channel Zapping HyunChul Joo* Associate

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11), THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2015 Nov.; 26(11), 985991. http://dx.doi.org/10.5515/kjkiees.2015.26.11.985 ISSN 1226-3133 (Print)ISSN 2288-226X (Online) Analysis

More information

09권오설_ok.hwp

09권오설_ok.hwp (JBE Vol. 19, No. 5, September 2014) (Regular Paper) 19 5, 2014 9 (JBE Vol. 19, No. 5, September 2014) http://dx.doi.org/10.5909/jbe.2014.19.5.656 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a) Reduction

More information

<4D F736F F D20C3D6C1BE202D D E7420B1E2B9DD20B4DCB8BB20C8A3BDBAC6AE20BFEEBFB5C3BCC1A620C0DAB5BF20C6C7BAB02E646F63>

<4D F736F F D20C3D6C1BE202D D E7420B1E2B9DD20B4DCB8BB20C8A3BDBAC6AE20BFEEBFB5C3BCC1A620C0DAB5BF20C6C7BAB02E646F63> HTTP User-Agent 기반단말호스트운영체제자동판별 허민 *, 이현신, 김명섭고려대학교컴퓨터정보학과 {grrrhm, hyunshin-lee, tmskim}@korea.ac.kr 요 약 인터넷을접속하는단말의종류가다양해지면서인터넷접속단말의운영체제정보는트래픽분석에유용하게활용될수있다. 해당단말의운영체제정보를판별하기위한방법으로수동형방법과능동형방법이있으며, 이중수동형방법이탐지속도가빨라실시간네트워크트래픽분석에적합하다.

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12), THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2016 Dec.; 27(12), 1036 1043. http://dx.doi.org/10.5515/kjkiees.2016.27.12.1036 ISSN 1226-3133 (Print) ISSN 2288-226X (Online)

More information

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770> 한국지능시스템학회 논문지 2010, Vol. 20, No. 3, pp. 375-379 유전자 알고리즘을 이용한 강인한 Support vector machine 설계 Design of Robust Support Vector Machine Using Genetic Algorithm 이희성 홍성준 이병윤 김은태 * Heesung Lee, Sungjun Hong,

More information

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp.99-117 DOI: http://dx.doi.org/10.21024/pnuedi.28.1.201803.99 2015 * A Analysis of the Characters and Issues about the 2015 Revised Social

More information

(JBE Vol. 24, No. 2, March 2019) (Special Paper) 24 2, (JBE Vol. 24, No. 2, March 2019) ISSN

(JBE Vol. 24, No. 2, March 2019) (Special Paper) 24 2, (JBE Vol. 24, No. 2, March 2019)   ISSN (Special Paper) 24 2, 2019 3 (JBE Vol. 24, No. 2, March 2019) https://doi.org/10.5909/jbe.2019.24.2.234 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) SIFT a), a), a), a) SIFT Image Feature Extraction

More information

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770> Journal of the Korea Academia-Industrial cooperation Society Vol. 13, No. 2 pp. 866-871, 2012 http://dx.doi.org/10.5762/kais.2012.13.2.866 증강현실을 이용한 아동교육프로그램 모델제안 권미란 1*, 김정일 2 1 나사렛대학교 아동학과, 2 한세대학교 e-비즈니스학과

More information

10 이지훈KICS2015-03-068.hwp

10 이지훈KICS2015-03-068.hwp 논문 15-40-05-10 The Journal of Korean Institute of Communications and Information Sciences '15-05 Vol.40 No.05 http://dx.doi.org/10.7840/kics.2015.40.5.851 가로등 인프라를 활용한 안전한 스마트 방범 시스템 차 정 화, 이 주 용 *, 이

More information

김기남_ATDC2016_160620_[키노트].key

김기남_ATDC2016_160620_[키노트].key metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational

More information

인문사회과학기술융합학회

인문사회과학기술융합학회 Vol.5, No.5, October (2015), pp.471-479 http://dx.doi.org/10.14257/ajmahs.2015.10.50 스마트온실을 위한 가상 외부기상측정시스템 개발 한새론 1), 이재수 2), 홍영기 3), 김국환 4), 김성기 5), 김상철 6) Development of Virtual Ambient Weather Measurement

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2018 Feb.; 29(2), 93 98. http://dx.doi.org/10.5515/kjkiees.2018.29.2.93 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) UHF-HF

More information

05(533-537) CPLV12-04.hwp

05(533-537) CPLV12-04.hwp 모바일 OS 환경의 사용자 반응성 향상 기법 533 모바일 OS 환경의 사용자 반응성 향상 기법 (Enhancing Interactivity in Mobile Operating Systems) 배선욱 김정한 (Sunwook Bae) 엄영익 (Young Ik Eom) (Junghan Kim) 요 약 사용자 반응성은 컴퓨팅 시스템에서 가장 중요 한 요소 중에 하나이고,

More information

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016)   ISSN 228 (JBE Vol. 1, No. 1, January 016) (Regular Paper) 1 1, 016 1 (JBE Vol. 1, No. 1, January 016) http://dx.doi.org/10.5909/jbe.016.1.1.60 ISSN 87-9137 (Online) ISSN 16-7953 (Print) a), a) An Efficient Method

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3), THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2014 Mar.; 25(3), 304310. http://dx.doi.org/10.5515/kjkiees.2014.25.3.304 ISSN 1226-3133 (Print)ISSN 2288-226X (Online) Analysis

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6), THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2016 Jun.; 276), 504511. http://dx.doi.org/10.5515/kjkiees.2016.27.6.504 ISSN 1226-3133 Print)ISSN 2288-226X Online) Near-Field

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3), THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2017 Mar.; 28(3), 163 169. http://dx.doi.org/10.5515/kjkiees.2017.28.3.163 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) PCB

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA The e-business Studies Volume 17, Number 4, August, 30, 2016:319~332 Received: 2016/07/28, Accepted: 2016/08/28 Revised: 2016/08/27, Published: 2016/08/30 [ABSTRACT] This paper examined what determina

More information

I

I I II III (C B ) (C L ) (HL) Min c ij x ij f i y i i H j H i H s.t. y i 1, k K, i W k C B C L p (HL) x ij y i, i H, k K i, j W k x ij y i {0,1}, i, j H. K W k k H K i i f i i d ij i j r ij i j c ij r ij

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA The e-business Studies Volume 17, Number 6, December, 30, 2016:237~251 Received: 2016/11/20, Accepted: 2016/12/24 Revised: 2016/12/21, Published: 2016/12/30 [ABSTRACT] Recently, there is an increasing

More information

디지털포렌식학회 논문양식

디지털포렌식학회 논문양식 ISSN : 1976-5304 http://www.kdfs.or.kr Virtual Online Game(VOG) 환경에서의 디지털 증거수집 방법 연구 이 흥 복, 정 관 모, 김 선 영 * 대전지방경찰청 Evidence Collection Process According to the Way VOG Configuration Heung-Bok Lee, Kwan-Mo

More information

완전자동화페이로드시그니쳐업데이트시스템 Fully Automatic Payload Signature Update System 심규석, 구영훈, 이성호, 김명섭고려대학교컴퓨터정보학과 {kusuk007, gyh0808, 요 약 오늘날네트워

완전자동화페이로드시그니쳐업데이트시스템 Fully Automatic Payload Signature Update System 심규석, 구영훈, 이성호, 김명섭고려대학교컴퓨터정보학과 {kusuk007, gyh0808, 요 약 오늘날네트워 완전자동화페이로드시그니쳐업데이트시스템 Fully Automatic Payload pdate System 심규석, 구영훈, 이성호, 김명섭고려대학교컴퓨터정보학과 {kusuk7, gyh88, gaek5}@korea.ac.kr, 요 약 오늘날네트워크자원을사용하는응용이증대되면서네트워크관리를위한트래픽분석에서현재연구단계의한계가드러나고그런한계를해결하기위한다양한연구가진행되고있다.

More information

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770> Journal of the Korea Academia-Industrial cooperation Society Vol. 15, No. 2 pp. 1051-1058, 2014 http://dx.doi.org/10.5762/kais.2014.15.2.1051 멤리스터의 전기적 특성 분석을 위한 PSPICE 회로 해석 김부강 1, 박호종 2, 박용수 3, 송한정 1*

More information

歯1.PDF

歯1.PDF 200176 .,.,.,. 5... 1/2. /. / 2. . 293.33 (54.32%), 65.54(12.13%), / 53.80(9.96%), 25.60(4.74%), 5.22(0.97%). / 3 S (1997)14.59% (1971) 10%, (1977).5%~11.5%, (1986)

More information

,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3

,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3 Depth layer partition 2D 3D a), a) 3D conversion of 2D video using depth layer partition Sudong Kim a) and Jisang Yoo a) depth layer partition 2D 3D. 2D (depth map). (edge directional histogram). depth

More information

09È«¼®¿µ 5~152s

09È«¼®¿µ5~152s Korean Journal of Remote Sensing, Vol.23, No.2, 2007, pp.45~52 Measurement of Backscattering Coefficients of Rice Canopy Using a Ground Polarimetric Scatterometer System Suk-Young Hong*, Jin-Young Hong**,

More information

45-51 ¹Ú¼ø¸¸

45-51 ¹Ú¼ø¸¸ A Study on the Automation of Classification of Volume Reconstruction for CT Images S.M. Park 1, I.S. Hong 2, D.S. Kim 1, D.Y. Kim 1 1 Dept. of Biomedical Engineering, Yonsei University, 2 Dept. of Radiology,

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA 박건수 *, 서태영 **, 김종욱 *** ". 요약 Abstract The induction melting furnace using electric generator has been introduced since 1920s, and it began to be widely applied to industrial applications due to increasing

More information

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for 2003 Development of the Software Generation Method using Model Driven Software Engineering Tool,,,,, Hoon-Seon Chang, Jae-Cheon Jung, Jae-Hack Kim Hee-Hwan Han, Do-Yeon Kim, Young-Woo Chang Wang Sik, Moon

More information

1217 WebTrafMon II

1217 WebTrafMon II (1/28) (2/28) (10 Mbps ) Video, Audio. (3/28) 10 ~ 15 ( : telnet, ftp ),, (4/28) UDP/TCP (5/28) centralized environment packet header information analysis network traffic data, capture presentation network

More information

딥러닝 첫걸음

딥러닝 첫걸음 딥러닝첫걸음 4. 신경망과분류 (MultiClass) 다범주분류신경망 Categorization( 분류 ): 예측대상 = 범주 이진분류 : 예측대상범주가 2 가지인경우 출력층 node 1 개다층신경망분석 (3 장의내용 ) 다범주분류 : 예측대상범주가 3 가지이상인경우 출력층 node 2 개이상다층신경망분석 비용함수 : Softmax 함수사용 다범주분류신경망

More information

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2 VSB a), a) An Alternative Carrier Phase Independent Symbol Timing Offset Estimation Methods for VSB Receivers Sung Soo Shin a) and Joon Tae Kim a) VSB. VSB.,,., VSB,. Abstract In this paper, we propose

More information

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월 지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., 2004 5 2009 12 KOSPI200.,. * 2009. 지능정보연구제 16 권제 1 호 2010 년 3 월 김선웅 안현철 社 1), 28 1, 2009, 4. 1. 지능정보연구제 16 권제 1 호 2010 년 3 월 Support

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., - THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2018 Jun.; 29(6), 457463. http://dx.doi.org/10.5515/kjkiees.2018.29.6.457 ISSN 1226-3133 (Print)ISSN 2288-226X (Online) Sigma-Delta

More information

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018)   ISSN (Special Paper) 23 2, 2018 3 (JBE Vol. 23, No. 2, March 2018) https://doi.org/10.5909/jbe.2018.23.2.186 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a) Robust Online Object Tracking via Convolutional

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA The e-business Studies Volume 17, Number 6, December, 30, 2016:21~34 Received: 2016/12/04, Accepted: 2016/12/27 Revised: 2016/12/19, Published: 2016/12/30 [ABSTRACT] With the development of the Internet,

More information

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI:   : Researc Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp.251-273 DOI: http://dx.doi.org/10.21024/pnuedi.27.2.201706.251 : 1997 2005 Research Trend Analysis on the Korean Alternative Education

More information

2 : (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, (JBE

2 : (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, (JBE 2: (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, 2019 7 (JBE Vol. 24, No. 4, July 2019) https://doi.org/10.5909/jbe.2019.24.4.623

More information

Output file

Output file 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 An Application for Calculation and Visualization of Narrative Relevance of Films Using Keyword Tags Choi Jin-Won (KAIST) Film making

More information

???? 1

???? 1 The Korean Journal of Applied Statistics (2013) 26(1), 201 208 DOI: http://dx.doi.org/10.5351/kjas.2013.26.1.201 A Note on Model Selection in Mixture Experiments with Process Variables Jung Il Kim a,1

More information

패킷 역전 및 중복 문제를 해결한 통계기반 트래픽 분석 시스템

패킷 역전 및 중복 문제를 해결한 통계기반 트래픽 분석 시스템 패킷역전및중복문제를해결한통계기반트래픽분석시스템 Statistics-based Traffic Analysis System without Out-of-order and Retransmission Problem 이수강, 안현민, 심규석, 김명섭 고려대학교컴퓨터정보학과 {sukanglee, queen6, kusuk007, tmskim}@korea.ac.kr 요 약

More information

<C7A5C1F620BEE7BDC4>

<C7A5C1F620BEE7BDC4> 연세대학교 상경대학 경제연구소 Economic Research Institute Yonsei Universit 서울시 서대문구 연세로 50 50 Yonsei-ro, Seodaemun-gS gu, Seoul, Korea TEL: (+82-2) 2123-4065 FAX: (+82- -2) 364-9149 E-mail: yeri4065@yonsei.ac. kr http://yeri.yonsei.ac.kr/new

More information

0125_ 워크샵 발표자료_완성.key

0125_ 워크샵 발표자료_완성.key WordPress is a free and open-source content management system (CMS) based on PHP and MySQL. WordPress is installed on a web server, which either is part of an Internet hosting service or is a network host

More information

<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770>

<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770> 327 Journal of The Korea Institute of Information Security & Cryptology ISSN 1598-3986(Print) VOL.24, NO.2, Apr. 2014 ISSN 2288-2715(Online) http://dx.doi.org/10.13089/jkiisc.2014.24.2.327 개인정보 DB 암호화

More information

<4D6963726F736F667420576F7264202D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>

<4D6963726F736F667420576F7264202D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5> 주간기술동향 2016. 5.18. 컴퓨터 비전과 인공지능 장혁 한국전자통신연구원 선임연구원 최근 많은 관심을 받고 있는 인공지능(Artificial Intelligence: AI)의 성과는 뇌의 작동 방식과 유사한 딥 러닝의 등장에 기인한 바가 크다. 이미 미국과 유럽 등 AI 선도국에서는 인공지능 연구에서 인간 뇌 이해의 중요성을 인식하고 관련 대형 프로젝트들을

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7), THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 16 Jul.; 27(7), 64662. http://dx.doi.org/./kjkiees.16.27.7.646 ISSN 1226-3133 (Print)ISSN 2288-226 (Online) 2D Microwave Image

More information

±è¼ºÃ¶ Ãâ·Â-1

±è¼ºÃ¶ Ãâ·Â-1 Localization Algorithms Using Wireless Communication Systems For efficient Localization Based Services, development of accurate localization algorithm has to be preceded. In this paper, research trend

More information

<31362DB1E8C7FDBFF82DC0FABFB9BBEA20B5B6B8B3BFB5C8ADC0C720B1B8C0FC20B8B6C4C9C6C32E687770>

<31362DB1E8C7FDBFF82DC0FABFB9BBEA20B5B6B8B3BFB5C8ADC0C720B1B8C0FC20B8B6C4C9C6C32E687770> Journal of the Korea Academia-Industrial cooperation Society Vol. 13, No. 4 pp. 1525-1531, 2012 http://dx.doi.org/10.5762/kais.2012.13.4.1525 저예산 독립영화의 구전 마케팅을 위한 스마트폰 모바일 애플리케이션 모델 개발 연구 김혜원 1* 1 청운대학교

More information

09구자용(489~500)

09구자용(489~500) The Study on the Grid Size Regarding Spatial Interpolation for Local Climate Maps* Cha Yong Ku** Young Ho Shin*** Jae-Won Lee**** Hee-Soo Kim*****.,...,,,, Abstract : Recent global warming and abnormal

More information

04김호걸(39~50)ok

04김호걸(39~50)ok Journal of Environmental Impact Assessment, Vol. 22, No. 1(2013) pp.39~50 Prediction of Landslides Occurrence Probability under Climate Change using MaxEnt Model Kim, Hogul* Lee, Dong-Kun** Mo, Yongwon*

More information

#Ȳ¿ë¼®

#Ȳ¿ë¼® http://www.kbc.go.kr/ A B yk u δ = 2u k 1 = yk u = 0. 659 2nu k = 1 k k 1 n yk k Abstract Web Repertoire and Concentration Rate : Analysing Web Traffic Data Yong - Suk Hwang (Research

More information

02손예진_ok.hwp

02손예진_ok.hwp (JBE Vol. 20, No. 1, January 2015) (Special Paper) 20 1, 2015 1 (JBE Vol. 20, No. 1, January 2015) http://dx.doi.org/10.5909/jbe.2015.20.1.16 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) UHD MMT a),

More information

#유한표지F

#유한표지F www.yuhan.ac.kr www.yuhan.ac.kr 대 학 요 람 2008 422-749 경기도 부천시 소사구 경인로 636(괴안동 185-34) Tel : 02)2610-0600 / 032)347-0600 유 한 대 학 대학요람 2008 2008 대학요람 설립자 유일한 박사의 숭고한 정신과 철학을 실천하는 대학 눈으로 남을 볼 줄 아는 사람은 훌륭한

More information

UDP Flooding Attack 공격과 방어

UDP Flooding Attack 공격과 방어 황 교 국 (fullc0de@gmail.com) SK Infosec Co., Inc MSS Biz. Security Center Table of Contents 1. 소개...3 2. 공격 관련 Protocols Overview...3 2.1. UDP Protocol...3 2.2. ICMP Protocol...4 3. UDP Flood Test Environment...5

More information

<31325FB1E8B0E6BCBA2E687770>

<31325FB1E8B0E6BCBA2E687770> 88 / 한국전산유체공학회지 제15권, 제1호, pp.88-94, 2010. 3 관내 유동 해석을 위한 웹기반 자바 프로그램 개발 김 경 성, 1 박 종 천 *2 DEVELOPMENT OF WEB-BASED JAVA PROGRAM FOR NUMERICAL ANALYSIS OF PIPE FLOW K.S. Kim 1 and J.C. Park *2 In general,

More information

10(3)-09.fm

10(3)-09.fm w y wz 10«3y 253~258 (2010.12.) Journal of Korean Society of Urban Environment ³ w Á» Á Á y w y œw (2010 11 22, 2010 12 9 k) Study on Determine of Detention Pond in Small Developed Area In-Soo Chang ½

More information

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: NCS : * A Study on

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI:   NCS : * A Study on Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp.157-176 DOI: http://dx.doi.org/10.21024/pnuedi.28.3.201809.157 NCS : * A Study on the NCS Learning Module Problem Analysis and Effective

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA 한국소음진동공학회 2015추계학술대회논문집년 Study of Noise Pattern and Psycho-acoustics Characteristic of Household Refrigerator * * ** ** Kyung-Soo Kong, Dae-Sik Shin, Weui-Bong Jeong, Tae-Hoon Kim and Se-Jin Ahn Key Words

More information

04 최진규.hwp

04 최진규.hwp THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2015 Aug.; 26(8), 710717. http://dx.doi.org/10.5515/kjkiees.2015.26.8.710 ISSN 1226-3133 (Print)ISSN 2288-226X (Online) RF ESPAR

More information

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI:   3 * The Effect of H Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp.577-601 DOI: http://dx.doi.org/10.21024/pnuedi.28.4.201812.577 3 * The Effect of Home-based Activities Using Traditional Fairy Tales

More information

Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제

Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, 2018 1 1.1 Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 6.5에서 찾아볼 수 있다. http://incompleteideas.net/book/bookdraft2017nov5.pdf

More information

시스템, 네트워크모니터링을통한보안강화 네트워크의미래를제시하는세미나 세미나 NetFocus 2003 : IT 관리자를위한네트워크보안방법론 피지피넷 /

시스템, 네트워크모니터링을통한보안강화 네트워크의미래를제시하는세미나 세미나 NetFocus 2003 : IT 관리자를위한네트워크보안방법론 피지피넷 / 시스템, 네트워크모니터링을통한보안강화 네트워크의미래를제시하는세미나 세미나 NetFocus 2003 : IT 관리자를위한네트워크보안방법론 피지피넷 / 팀장나병윤!dewymoon@pgpnet.com 주요내용 시스템모니터링! 패킷크기와장비의 CPU 및 Memory 사용량! SNMP를장비의상태관찰 비정상적인트래픽모니터링! Packet 분석기의다양한트래픽모니터링도구를이용한비정상적인트래픽관찰!

More information

04-다시_고속철도61~80p

04-다시_고속철도61~80p Approach for Value Improvement to Increase High-speed Railway Speed An effective way to develop a highly competitive system is to create a new market place that can create new values. Creating tools and

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6), THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2016 Jun.; 27(6), 495 503. http://dx.doi.org/10.5515/kjkiees.2016.27.6.495 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) Design

More information

09오충원(613~623)

09오충원(613~623) A Study of GIS Service of Weather Information* Chung-Weon Oh**,..,., Web 2.0 GIS.,.,, Web 2.0 GIS, Abstract : Due to social and economic value of Weather Information such as urban flooding, demand of Weather

More information

정보기술응용학회 발표

정보기술응용학회 발표 , hsh@bhknuackr, trademark21@koreacom 1370, +82-53-950-5440 - 476 - :,, VOC,, CBML - Abstract -,, VOC VOC VOC - 477 - - 478 - Cost- Center [2] VOC VOC, ( ) VOC - 479 - IT [7] Knowledge / Information Management

More information

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp Journal of Next-generation Convergence Information Services Technology Vol.4, No.1, June (2015), pp. 1-8 차세대컨버전스정보서비스기술논문지 KT 올레스퀘어 미디어파사드 콘텐츠 개발 Media Fasade Contents Development of KT Olleh Square 김동조

More information

(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, (JBE Vol. 22, No. 2, March 2017) ISSN

(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, (JBE Vol. 22, No. 2, March 2017)   ISSN (JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, 2017 3 (JBE Vol. 22, No. 2, March 2017) https://doi.org/10.5909/jbe.2017.22.2.234 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a), a) Real-time

More information

이도경, 최덕재 Dokyeong Lee, Deokjai Choi 1. 서론

이도경, 최덕재 Dokyeong Lee, Deokjai Choi 1. 서론 이도경, 최덕재 Dokyeong Lee, Deokjai Choi 1. 서론 2. 관련연구 2.1 MQTT 프로토콜 Fig. 1. Topic-based Publish/Subscribe Communication Model. Table 1. Delivery and Guarantee by MQTT QoS Level 2.1 MQTT-SN 프로토콜 Fig. 2. MQTT-SN

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA The e-business Studies Volume 17, Number 6, December, 30, 2016:275~289 Received: 2016/12/02, Accepted: 2016/12/22 Revised: 2016/12/20, Published: 2016/12/30 [ABSTRACT] SNS is used in various fields. Although

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA 논문 10-35-08-15 한국통신학회논문지 '10-08 Vol.35 No. 8 건설생산성 향상을 위한 건설현장 내 RFID 네트워크 시스템 적용 방안 준회원 김 신 구*, 정회원 이 충 희*, 이 성 형*, 종신회원 김 재 현* Method of RFID Network System Application for Improving of Construction

More information

04 김영규.hwp

04 김영규.hwp THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 214 Nov.; 25(11), 1121 1127. http://dx.doi.org/1.5515/kjkiees.214.25.11.1121 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) Planar

More information

6-윤성호KICS hwp

6-윤성호KICS hwp 논문 13-38B-05-06 한국통신학회논문지 '13-05 Vol.38B No.05 http://dx.doi.org/10.7840/kics.2013.38b.5.368 인터넷응용트래픽분석을위한행위기반시그니쳐추출방법 윤성호, 김명섭 Behavior Based Signature Extraction Method for Internet Application Traffic

More information

<31372DB9DABAB4C8A32E687770>

<31372DB9DABAB4C8A32E687770> 김경환 박병호 충북대학교 도시공학과 (2010. 5. 27. 접수 / 2011. 11. 23. 채택) Developing the Traffic Severity by Type Kyung-Hwan Kim Byung Ho Park Department of Urban Engineering, Chungbuk National University (Received May

More information

00º½Çмú-¾Õ

00º½Çмú-¾Õ 547-8( 307 ) TEL (02)458-3078, 3079 / FAX (02)458-3047, 3077 NICE , (),, ( 1) NICE 1. Biochemical Engineering in 21st Century in the era of Life Science and Technology 09:00 ~ 09:15 Opening Remarks: President

More information

ch3.hwp

ch3.hwp 미디어정보처리 (c) -4 한남대 정보통신멀티미디어학부 MCCLab. - -...... (linear filtering). Z k = n i = Σn m Σ j = m M ij I ji 컨볼루션 영역창 I I I I 3 I 4 I 5 I 6 I 7 I 8 x 컨볼루션 마스크 M M M M 3 M 4 M 5 M 6 M 7 M 8 I 입력 영상 Z 4 = 8 k

More information

012임수진

012임수진 Received : 2012. 11. 27 Reviewed : 2012. 12. 10 Accepted : 2012. 12. 12 A Clinical Study on Effect of Electro-acupuncture Treatment for Low Back Pain and Radicular Pain in Patients Diagnosed with Lumbar

More information

1 : (Sunmin Lee et al.: Design and Implementation of Indoor Location Recognition System based on Fingerprint and Random Forest)., [1][2]. GPS(Global P

1 : (Sunmin Lee et al.: Design and Implementation of Indoor Location Recognition System based on Fingerprint and Random Forest)., [1][2]. GPS(Global P (JBE Vol. 23, No. 1, January 2018) (Regular Paper) 23 1, 2018 1 (JBE Vol. 23, No. 1, January 2018) https://doi.org/10.5909/jbe.2018.23.1.154 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a) Design

More information

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: A Study on the Opti

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI:   A Study on the Opti Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp.127-148 DOI: http://dx.doi.org/11024/pnuedi.27.4.201712.127 A Study on the Optimization of Appropriate Hearing-impaired Curriculum Purpose:

More information

???? 1

???? 1 The Korean Journal of Applied Statistics (2014) 27(1), 13 20 DOI: http://dx.doi.org/10.5351/kjas.2014.27.1.013 Maximum Tolerated Dose Estimation by Stopping Rule and SM3 Design in a Phase I Clinical Trial

More information

FMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2

FMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2 FMX FMX 20062 () wwwexellencom sales@exellencom () 1 FMX 1 11 5M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2 FMX FMX D E (one

More information

bn2019_2

bn2019_2 arp -a Packet Logging/Editing Decode Buffer Capture Driver Logging: permanent storage of packets for offline analysis Decode: packets must be decoded to human readable form. Buffer: packets must temporarily

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE May; 27(5),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE May; 27(5), THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2016 May; 27(5), 454462. http://dx.doi.org/10.5515/kjkiees.2016.27.5.454 ISSN 1226-3133 (Print)ISSN 2288-226X (Online) Research

More information

14.531~539(08-037).fm

14.531~539(08-037).fm G Journal of the Korea Concrete Institute Vol. 20, No. 4, pp. 531~539, August, 2008 š x y w m š gj p { sƒ z 1) * 1) w w Evaluation of Flexural Strength for Normal and High Strength Concrete with Hooked

More information

논문 KNOM Review '19-01 Vol.22 No.01 기계학습기반비트코인네트워크트랜잭션수예측에 관한연구 지세현, 백의준 *, 신무곤 *, 박준상 **, 김명섭 A

논문 KNOM Review '19-01 Vol.22 No.01   기계학습기반비트코인네트워크트랜잭션수예측에 관한연구 지세현, 백의준 *, 신무곤 *, 박준상 **, 김명섭 A 논문 19-22-01-08 https://doi.org/10.22670/knom.2019.22.1.68 기계학습기반비트코인네트워크트랜잭션수예측에 관한연구 지세현, 백의준 *, 신무곤 *, 박준상 **, 김명섭 A Study on the Prediction of Number of Bitcoin Network Transactions Based on Machine

More information

03-서연옥.hwp

03-서연옥.hwp 농업생명과학연구 49(4) pp.31-37 Journal of Agriculture & Life Science 49(4) pp.31-37 Print ISSN 1598-5504 Online ISSN 2383-8272 http://dx.doi.org/10.14397/jals.2015.49.4.31 국가산림자원조사 자료를 적용한 충남지역 사유림경영율 추정 서연옥

More information

TTA Verified : HomeGateway :, : (NEtwork Testing Team)

TTA Verified : HomeGateway :, : (NEtwork Testing Team) TTA Verified : HomeGateway :, : (NEtwork Testing Team) : TTA-V-N-05-006-CC11 TTA Verified :2006 6 27 : 01 : 2005 7 18 : 2/15 00 01 2005 7 18 2006 6 27 6 7 9 Ethernet (VLAN, QoS, FTP ) (, ) : TTA-V-N-05-006-CC11

More information

WAN에서 다자간 통신을 위한 계층적 오류복구 기법

WAN에서 다자간 통신을 위한 계층적 오류복구 기법 인터넷트래픽분석을위한행위기반시그니쳐생성방법론개발과적용에관한연구 윤성호 O, 김명섭고려대학교컴퓨터정보학과 {sungho_yoon, tmskim}@korea.ac.kr A Study of the Development and Application of Behavior-based Signature Creation Method for Internet Traffic Identification

More information

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구 Siamese Neural Network 박천음 강원대학교 Intelligent Software Lab. Intelligent Software Lab. Intro. S2Net Siamese Neural Network(S2Net) 입력 text 들을 concept vector 로표현하기위함에기반 즉, similarity 를위해가중치가부여된 vector 로표현

More information

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: * Suggestions of Ways

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI:   * Suggestions of Ways Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp.65-89 DOI: http://dx.doi.org/10.21024/pnuedi.29.1.201903.65 * Suggestions of Ways to Improve Teaching Practicum Based on the Experiences

More information

07.045~051(D04_신상욱).fm

07.045~051(D04_신상욱).fm J. of Advanced Engineering and Technology Vol. 1, No. 1 (2008) pp. 45-51 f m s p» w Á xá zá Ÿ Á w m œw Image Retrieval Based on Gray Scale Histogram Refinement and Horizontal Edge Features Sang-Uk Shin,

More information

07변성우_ok.hwp

07변성우_ok.hwp 2 : (Regular Paper) 19 5, 2014 9 (JBE Vol. 19, No. 5, September 2014) http://dx.doi.org/10.5909/jbe.2014.19.5.631 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a), b) Metadata Management System Implementation

More information