데이터 구조의 개요
|
|
- 인표 양
- 5 years ago
- Views:
Transcription
1 자료구조와알고리즘 충북대학교 소프트웨어학과이충세
2 문의사항 csrhee@cbnu.ac.kr 전화 : 강의자료 : web.cbu.ac.kr/~algor 참조 2
3 알고리즘 : 주제 기초자료구조 알고리즘의분석기법 트리와그래프 점화식 알고리즘기법분할정복, 동적프로그램, Greedy 방법 3
4 . 데이터와데이터객체.. 데이터의개념 * 정보 (information) : 어떤목적을가진활동에직접또는간접적인도움을주는지식 * 데이터 (data) : 정보라는제품의생산에입력되는원재료자원-> 사실 (fact), 개념 (concept), 명령 (instruction) 의총칭 * 데이터형 (data type) : 프로그래밍언어의변수 (variable) 들이가질수있는데이터의종류 - a collection of objects and a set of operations that act on those objects 4
5 FORTRAN : 정수형 (integer), 실수형 (real), 논리형 (logical), 복소수형 (complex), 배정도실수형 (double precision) 등 PL/I : 문자형 (character) SNOBOL : 문자열 (character string) LISP : 리스트 (list) 또는 s-수식 (s-expression) Pascal : 정수형, 실수형, 논리형 (boolean), 문자형및배열 5
6 ..2 데이터와전산학전산학의연구범위 * 데이터를저장하는기계 (machine) * 데이터취급에관련된내용을기술하는언어 (language) * 원시데이터로부터생성할수있는여러종류의정제된데이터를기술하는기초내용 * 표현되는데이터에대한구조 6
7 ..3 데이터객체 * 데이터객체 : 데이터형의실체를구성하는집합 (set) 의원소 (element) * 변수 (variable) : 데이터객체의명칭 * 정수형데이터객체 : D = {,-2, -, 0,, 2, } * 길이가 30자이내인영문자문자열 (alphabetic character string) 의데이터객체 : D = {, A,, Z, AA, } 7
8 .2 데이터구조의개념.2. 데이터구조 * 데이터구조 (data structure) 란 : 데이터객체의집합및이들사이의관계를기술-> 데이터객체의원소에적용될연산 (operation) 이수행되는방법을보여줌 - the organized collections of data to get more efficient algorithms 8
9 .2.2 데이터구조의표현 * 추상적데이터형 (abstract data type) D: 데이터구조의정의영역 (domain) 의집합 F: 함수 (function) 집합 A: 공리 (axiom) 집합 d = (D, F, A) - a data type that is organized in such a way that the specification of the objects and the specification of the operations on the objects is separated from the representation of the objects and the implementation of the operations 9
10 Abstract data type structure Natural_Number is objects: an ordered subrange of the integers starting at zero and ending at the maximum integer (INT_MAX) on the computer functions: for all x, y Nat_Number; TRUE, FALSE Boolean and where +, -, <, and == are the usual integer operations Nat_NoZero() ::= 0 Boolean Is_Zero(x) ::= if (x) return FALSE else return TRUE Nat_No Add(x,y) ::= if ((x + y) <= INT_MAX) return x + y else return INT_MAX Boolean Equal(x, y) ::= if ( x == y) return TRUE else return FALSE Nat_No Successor(x) ::= if ( x == INT_MAX) return x else return x + Nat_No Subtract(x, y) ::= if ( x < y) return 0 else return x y end Natural_Number 0
11 데이터객체 natno={0,,2, } 일때, * 함수집합 F의정의 ZERO( ) -> natno ISZERO(natno) -> boolean SUCC(natno) -> natno ADD(natno, natno) -> natno EQ(natno, natno) -> boolean
12 * 공리집합 A의정의 ISZERO(ZERO)::=true ISZERO(SUCC(x))::=false ADD(ZERO, y)::=y ADD(SUCC(x),y)::=SUCC(ADD(x,y)) EQ(x, ZERO)::=if ISZERO(x) then true else false EQ(ZERO, SUCC(y))::=false EQ(SUCC(x), SUCC(y))::=EQ(x,y) 2
13 .3 데이터구조의영역.3. 데이터구조론 * 데이터구조론 : 데이터처리시스템에서취급하는데이터객체들을기억공간내에표현하고저장하는방법과, 데이터상호간의관계를파악하여수행할수있는연산과관련된알고리즘을연구하는학문 3
14 .3.2 데이터구조의형태 선형구조 (linear structure, sequential structure): 데이터상호간에 :의관계를가진것-> 연접리스트, 연결리스트, 스택, 큐등 비선형구조 (non-linear structure): 데이터상호간에 :n 또는 n:m의관계를가진것-> 트리, 그래프 파일구조 (file structure): 레코드의집합체로이루어지는특수한형태의데이터구조 4
15 .3.3 데이터구조의선택 - 처리능률 : 어떤데이터구조를선택함에따라영향을크게받음 - 데이터구조를선택하는기준 * 데이터의양 * 데이터의활용빈도 * 데이터의갱신정도 * 데이터처리를위하여사용가능한기억용량 * 데이터처리시간의제한 * 데이터처리를위한프로그래밍의용이성 5
16 알고리즘과프로그램 2 2. 알고리즘 2.2 프로그램 2.3 프로그램의분석 6
17 2. 알고리즘 An example of software development in action Specification : a precise description of the problem Design : formulating the steps to solve the problem Implementation : the actual source code to carry out the design 2.. 알고리즘의개념 * 주어진문제해결을위하여실행되는명령어들의유한집합 -> 데이터변환을위해서적용 되는잘정의된방법 7
18 Specification and implementation Celsius ToFahrenheit public static double celsiustofahrenheit(double c) Convert a temperature from Celsius degree to Fahrenheit degree Parameters: c a temperature in Celsius degrees Precondition: c >= Returns(Postcondition): the temperature c converted to Fahrenheit degree Throws: IllegalArgumentException indicates that c is less than the smallest Celsius temperature( ) Public static double celsiustofahrenheit(double c) { final double MINIMUM_CELSIUS = if ( c < MINIMUM_CELSIUS) throw new IllegalArgumentEXception( Argument + c + is too small. ); return (9.0/5.0) * c + 32; } 8
19 알고리즘이만족해야할조건 입력 (input) 출력 (output) 명확성 (definiteness) 유한성 (finiteness) 효과성 (effectiveness) 9
20 2..2 알고리즘과전산학 컴퓨터 : 데이터변환을위해사용하는수단 - > 알고리즘 전산학의연구영역 * 컴퓨터시스템의기계구성과조직형태 * 언어의설계와번역 * 알고리즘의기초 ( 추상적컴퓨터모델 ) * 알고리즘의분석 20
21 알고리즘 Finite number od instruction to solve a problem : well defined The theoretical study of computerprogram performance and resource usage. What s more important than performance 2
22 알고리즘의고려사항 What s more important than performance? modularity correctness maintainability functionality robustness user-friendliness programmer time simplicity extensibility reliability 22
23 2.2 프로그램 2.2. 프로그램작성절차 * 요구사항 (requirement) 의정의 * 설계 (design) * 평가 (evaluation) * 상세화및코딩 (refinement and coding) * 검증 (verification) * 문서화 (documentation) 23
24 2.2.2 프로그램의작성요령 하향식방법 (top-down method) 논리적모듈 (module) 부프로그램 (subprogram) 을사용 순차 (sequencing), 분기 (branching), 반복 (repeating) 등세가지표준논리제어구조 GOTO문의사용을피한다 연상이름 (mnemonic-name) 문서화 24
25 2.2.3 순환기법 순환 (recursion): 자기자신을호출하도록구성하는것 -> 프로그램을단순화하고이해하기용이할경우가많음 순환프로그램의작성단계 * 순환관계파악 * 알고리즘구성 * 프로그램언어로기술 25
26 The tree-recursive process Fibo 4 Fibo 3 Fibo 2 Fibo 2 Fibo Fibo Fibo 0 0 Fibo Fibo 0 0 Int Fibo(int n) { if (n <= ) return n; return (Fibo(n-) + Fibo(n-2)); } 26
27 2.3 프로그램의분석 2.3. 프로그램의평가기준 * 바른수행 * 정확한동작 * 설명서 * 부프로그램 * 해독 27
28 다른평가기준 프로그램의수행에필요한기억장치의용량 -> 비교적용이 프로그램의연산시간 -> 매우어려움 * 기계 * 기계의명령어의집합 * 명령어의수행시간 * 컴파일러의번역시간 -> 정확한판정이불가능 -> 명령문의수행빈도수를계산 28
29 2.3.2 분석기법 Big oh 표시법 : 두함수T(n) 과 f(n) 이있을때, n>=n0을만족하는모든 n에대하여 T(n) <= C* f(n) 인양의상수 C와 n0가존재하면 T(n)=O(f(n)) 이라고정의 Big omega notation : 만일양의상수 C와 n0가존재하여 n>=n0인모든 n에대해서 T(n) >=C* f(n) 이성립하면 T(n)=Ω(f(n)) 으로나타냄 양의상수 C, C2, n0가존재하여모든 n>=n0에대해서 C f(n) <= T(n) <=C2 f(n) 이성립하면 T(n)=Θ(f(n)) 이라한다. 29
30 3. How to Measure Complexities How good is our measure of work done to compare algorithms? How precisely can we compare two algorithms using our measure of work? Measure of work # of passes of a loop # of basic operations Time complexity c (measure of work) 30
31 Big Oh Notation 3
32 For solving a problem P, suppose that two algorithms A and A 2 need 0 6 n and 5n basic operations, respectively, i.e. A A 2 basic operations 0 6 n 5n Which one is better? What are their time complexities? 32
33 Now, suppose that algorithms A and A 2 need the following amount of time: time complexity A 0 6 n O(n) A 2 n 2 O(n 2 ) Which one is better? A is better if n > 0 6 A 2 is better if n < 0 6 T(n) Then, why time complexity? Suppose that n Then, n 2 2 grows n much faster than 0 6 n. i.e., lim n 6 0 n 0 6 n Under the assumption that n A is better than A 2 Asymptotic growth rate!!! Time complexity (measure of work) compares and classifies algorithms by the asymptotic growth rate. 33
34 N = {0,, 2, } N + = {, 2, 3, } R = the set of real numbers R + = the set of positive real numbers R * = R + {0} f: N R * and g: N R * g is: Ω (f): g grows at 34
35 Definition: Let f: N R *. O(f) is the set of functions, g: N R * such that for some c R + and some n 0 N, g(n) c f(n) for all n n 0. O(f) is usually called big oh of f, oh of f, or order of f. Note: In other books, g(n) = O(f(n)) if and only if there exist two positive constants c and n 0 such that g(n) c f(n) for all n n 0 Under the assumption that f: N R * and g: N R *, two definitions have What is it? a minor difference. g( n) * How to check lim : = c, c R g O( f ) n f ( n) note : By L'Hopital's rule g( n) g'( n) lim = lim n f ( n) n f '( n) n 2, 0 5 n 2 - n, n , 0 3 n 2 + n - O(n 2 ) Is 0 0 n O(n 2 )? 35
36 Definition: Let f: N R *. Ω(f) is the set of functions, g: N R * such that for some c R + and some n 0 N, g(n) c f(n) for all n n 0. Ω(f) is usually called big omega g( n) of f or omega of f. lim c > 0 f ( n) g( n) lim f n Note: In other books, or g Ω( f n g(n) = Ω(f(n)) ( n ) if and only if there exist two positive constants c and n 0 such that g(n) c f(n) for all n n 0 How to check : ) 36
37 Definition: Let f: N R *. θ(f) = O(f) Ω(f). θ(f) is usually called theta of f or order of f. Note: (Alternative definition of θ(f)) lim g( n) = c, c R + g(n) n f = ( n) θ(f(n)) if and only if there exist two positive constants c and c 2 and n 0 such that c f(n) g(n) c 2 f(n) for all n n 0 How to check : g θ ( f ) 37
38 Definition: Let f: N R *. o(f) = O(f) - θ(f). o(f) is usually called little oh of f. g( n) lim 0 f ( n ) n How to check : g(n) o(f(n)) n - 5, n, n 2, 0 0 n n + 0 9, n 2-9 o(n 3 ) 38
39 Definition: Let f: N R *. ω(f) = Ω(f) - θ(f). ω(f) is usually called little omega of f lim g( n) f n ( n ) How n,0 to ncheck 0 n + 0: g(n) = ω(f(n)) 3 +, n 9 ω(n) Note: g ( n) o( f ( n)) f ( n) ω(g(n)) 39
40 How important is time complexity? 40
41 4
42 T = a fixed amount of time S = the maximum input size that a particular algorithm can handle within T Suppose that our computer speed T ( n) S Snew increases by ta factor t. log n S ( S) f(s) = n the S number of steps executed in 2 ts2 2 T nby the S3 old ts3 computer. n 2 S4 S4 + logt f(s new ) = the number of steps executed in T by the new computer f(s new ) = t f(s) 42
43 Properties of O, Ω, θ Let f, g, h: N R *. Then, P: (Transitivity) f O(g) and g O(h) f O(h) How about Ω, θ, o, ω? P2: f O(g) g Ω(f) f o(g) g ω(f) Duality P3: f θ(g) g θ(f) P4: θ is an equivalence relation P5: O(f+g) = O(max{f, g}) How about Ω, θ, o, ω? [Proof] Exercise. (Homework) 43
44 Transformability Definition: (Lower bound) A lower bound in time complexity for solving a problem P is said to be time required to solve P. (Alternatively) A (tight) lower bound in time complexity for solving a problem is the least amount of time to solve the most difficult instance of the problem. Definition: (Upper bound) An upper bound in time complexity for 44
45 Definition: (Transformability) A problem A is said to be transformable into a problem B if the following is true: () The input to the problem A can be converted into a suitable A τ ( n) input to the problem B. (2) The problem B is solved. B (3) The output of the problem B is transformed into a correct solution of the problem A. 45
46 A τ ( n) Theorem: (Lower bound via transformability) If a problem A requires L(n) time and if, then the problem A B τ ( n) B requires at least L(n) - O(τ(n)) time. [Proof] Exercise. (Homework) (Hint: by contradiction) B Theorem: (Upper bound via 46
47 Example: (Lower bound via transformability) A: Given a set of n real numbers, sort them. Ω (nlogn) B: Given a set L of vertical segments and a pair of points p and q, find the shortest path between p and q avoiding L. p q () input transform (A B) O(n) input to A input to B {x, x 2,, x n } {l, 2 l,, l n } x i ((x, i -c), (x, i +c)) = l i x x 3 x 2 O(n) c 0 -c l l 3 l 2 p x x min max p = ( x q = ( x = min{ x } i = max{ x } min max i i i c,0) + c,0) q 47
48 (2) Suppose that B is solved p q l l 4 l 3 l 2 l 5 x i ((x, i -c), (x, i +c)) = I i Solution: (x - c, 0), (x, c), (x 4, c), (x 3, c), (x 2, c), (x 5, c), (x 5 + c, 0) p q (3) Output transform O(n) Drop p and q from the solution. Read off each x-coordinate. What do you obtain? The sorted list The solution of A. L B A O( n) n log n B = Ω( n logn) O( n) = Ω( n logn) 48
49 Searching an Ordered List BIN: Given a value x and an array of L containing n entries in the non- decreasing order, find an index of x in the list or, if x L, return 0 as the answer. SEQ: L is an unordered array. Is BIN = SEQ? No!!! A solves SEQ A solves BIN 49
50 Review What is a lower bound in time complexity for solving SEQ? Ω(n) Any optimal algorithm for solving SEQ? Yes, sequential search. q( n + ) + ( q) n What 2 is time complexity for the sequential search algorithm? O(n) in the worst case, in average case 50
51 What is a lower bound in time complexity for solving BIN? Ω(n). Why? What if considering only searching time? BIN-D: Given L & x, is x L? L = (x, x 2,, x n ) W = {(x, x 2,, x n ) x i < x i+ x j =x for some j} i and 5
52 Alternative proof: Adversary argument (from book) α= {A algorithm A solves BIN-D} Take any A α. Let d A = the depth of decision tree for A. A lower bound is Ω(log 2 n) d A log 2 n We need to show d A log 2 n!!! 52
53 N A = # of nodes in the decision tree for A Then, d A log 2 N A. Why? If N A n, then d A log 2 n, Claim : N A n. 53
54 In order to prove that N A n, let each node of the decision tree be i x:l(i) labeled i at the node. j x:l(j) 54
55 Suppose that N A < n for a contradiction. Then, there is no node which is labeled i for some i n. x Let S = (S, S 2,, S i,, S n ) be a sorted list, where Lk = ( Lk (), Lk (2), Lk ( n)) for k =,2 () S j < S j+ in all j n (2) S i = x Now, we make two list L and L 2 : 55
56 56 ) ( (2) () ) ( (2) () n i L n i L S S S S S n i x x i L ) 2( x i L = ) (
57 By construction, () L and L 2 are sorted, (2) L (j) = L 2 (j) j i, and (3) L (i) = x and L 2 (i) x Since no node in the decision tree is labeled i, the algorithm A gives the same answer for different input L and L 2. The algorithm A is wrong # N A n d A log 2 N A log 2 n 57
58 Can we modify the sequential search algorithm for obtaining a better time bound to solve BIN? L x... () (2) (3)... (n) x Now, L is in the non-decreasing order!!! L( i) x > L( i) continue x < L( i) stop (i) Improvement is here!! 58
59 Compare x to the every k th elements in L!!! ( (k) (2k) n ) + comparisons in the worst case k k Why? ( k ) elements x > L((r-)k) x < L(rk) 59
60 How about the average case? () (2). (i).. x L( i) x > L( i) continue x < L( i) stop g g2 g3 gi g n L () L (2) L ( i ) L (i) L(n) g i = x < L() L( i ) < x > L( n) x < L( i) if i = if 2 i n if i = n + index = 0 x g i for some i I i = {input L x = L(i)}, i =, 2,, n I n+i = {input L x g }, i i =, 2,, n+ t(i ) j = # of comparisons for I, j j =, 2,, 2n+ p(i ) j = probability that L I, j j =, 2,, 2n+ 60
61 Assumption: () P(x L) = /2 (2) x is equally likely to be in L(i) if x L (3) x is equally likely to be in g i if x L A = = = 2n+ i= n PI ( ) ti ( ) i n+ PI ( )( ti) + PI ( )( ti ) i= i= n PI ( )( ti) + PI ( )( ti ) + PI ( )( ti ) i i n+ i n+ i 2n+ 2n+ i= i= n n n 2n i 2( n+ ) i 2( n+ ) i= i= = + + ( ) = i i i n+ i n+ i = + + n 4 ( n + ) 4 2 n+ 2n ( n+ ) n g g2 g3 gi g n L () L (2) L ( i ) L (i) L(n) 6
62 62 Binary Search Divide and Conquer!!! Binary search tree Array ) O(log ) ( () ) 2 ( ) ( 2 n n T c T n T c n T = = + = ) 2 ( : + n L x
63 Average-case Analysis I i = {input L x = L(i)}, i =, 2,, n I n+i = {input L x g i }, i =, 2,, n+ t(i j ) = # of comparisons for I j, j =, 2,, 2n+ p(i j ) = probability that L I j, j =, 2,, 2n+ Assumptions: () p(i ) j = /(2n+) 2n+ An ( ) = (2) PI ( ) n ti = ( 2) k -, k i= = 2n + i 2n+ i= i # of comp. # of node ti ( i )...? k 2 k- x L k comparison k 2 k x L 63
64 64 2 ) ( 2 )2 ( ) ( 2 2 ) ( ) ( 2 ) ( 2 ) ( ) ( ) ( = = + + = + = = = + + = = + = + = n n k n k n k i n I t I t n I t n I t I p n A k k i i n n i i n i i n i i n i i i 2 Now, n = k 2 + = n k ) ( log 2 + = n k 2 ) ( log ) ( n n A See P22 in the textbook
2002년 2학기 자료구조
자료구조 (Data Structures) Chapter 1 Basic Concepts Overview : Data (1) Data vs Information (2) Data Linear list( 선형리스트 ) - Sequential list : - Linked list : Nonlinear list( 비선형리스트 ) - Tree : - Graph : (3)
More informationchap x: G입력
재귀알고리즘 (Recursive Algorithms) 재귀알고리즘의특징 문제자체가재귀적일경우적합 ( 예 : 피보나치수열 ) 이해하기가용이하나, 비효율적일수있음 재귀알고리즘을작성하는방법 재귀호출을종료하는경계조건을설정 각단계마다경계조건에접근하도록알고리즘의재귀호출 재귀알고리즘의두가지예 이진검색 순열 (Permutations) 1 장. 기본개념 (Page 19) 이진검색의재귀알고리즘
More informationchap01_time_complexity.key
1 : (resource),,, 2 (time complexity),,, (worst-case analysis) (average-case analysis) 3 (Asymptotic) n growth rate Θ-, Ο- ( ) 4 : n data, n/2. int sample( int data[], int n ) { int k = n/2 ; return data[k]
More informationpublic key private key Encryption Algorithm Decryption Algorithm 1
public key private key Encryption Algorithm Decryption Algorithm 1 One-Way Function ( ) A function which is easy to compute in one direction, but difficult to invert - given x, y = f(x) is easy - given
More informationDiscrete Mathematics
이산수학 () 알고리즘 (Algorithms) 0 년봄학기 강원대학교컴퓨터과학전공문양세 Algorithms The foundation of computer programming. ( 컴퓨터프로그래밍의기초 / 기반이다.) Most generally, an algorithm just means a definite procedure for performing some
More information김기남_ATDC2016_160620_[키노트].key
metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational
More informationMicrosoft PowerPoint - Chap1-전반부 [호환 모드]
05666 데이터구조 (Data Structure) 2011 년봄학기 숙명여자대학교멀티미디어과학과 박영호 05666 데이터구조론강좌개요 담당교수 : 박영호 ( 내선 : 2077-7297, yhpark@sm.ac.kr, 새함관 508 호, 010-6417-5541) 강의시간 교재 : C 로쓴자료구조, 이석호역, 교보, 2008 년판 (Fundamentals of
More informationPage 2 of 6 Here are the rules for conjugating Whether (or not) and If when using a Descriptive Verb. The only difference here from Action Verbs is wh
Page 1 of 6 Learn Korean Ep. 13: Whether (or not) and If Let s go over how to say Whether and If. An example in English would be I don t know whether he ll be there, or I don t know if he ll be there.
More informationexample code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for
2003 Development of the Software Generation Method using Model Driven Software Engineering Tool,,,,, Hoon-Seon Chang, Jae-Cheon Jung, Jae-Hack Kim Hee-Hwan Han, Do-Yeon Kim, Young-Woo Chang Wang Sik, Moon
More information본문01
Ⅱ 논술 지도의 방법과 실제 2. 읽기에서 논술까지 의 개발 배경 읽기에서 논술까지 자료집 개발의 본래 목적은 초 중 고교 학교 평가에서 서술형 평가 비중이 2005 학년도 30%, 2006학년도 40%, 2007학년도 50%로 확대 되고, 2008학년도부터 대학 입시에서 논술 비중이 커지면서 논술 교육은 학교가 책임진다. 는 풍토 조성으로 공교육의 신뢰성과
More informationMicrosoft PowerPoint - PL_03-04.pptx
Copyright, 2011 H. Y. Kwak, Jeju National University. Kwak, Ho-Young http://cybertec.cheju.ac.kr Contents 1 프로그래밍 언어 소개 2 언어의 변천 3 프로그래밍 언어 설계 4 프로그래밍 언어의 구문과 구현 기법 5 6 7 컴파일러 개요 변수, 바인딩, 식 및 제어문 자료형 8
More informationchap 5: Trees
5. Threaded Binary Tree 기본개념 n 개의노드를갖는이진트리에는 2n 개의링크가존재 2n 개의링크중에 n + 1 개의링크값은 null Null 링크를다른노드에대한포인터로대체 Threads Thread 의이용 ptr left_child = NULL 일경우, ptr left_child 를 ptr 의 inorder predecessor 를가리키도록변경
More information6자료집최종(6.8))
Chapter 1 05 Chapter 2 51 Chapter 3 99 Chapter 4 151 Chapter 1 Chapter 6 7 Chapter 8 9 Chapter 10 11 Chapter 12 13 Chapter 14 15 Chapter 16 17 Chapter 18 Chapter 19 Chapter 20 21 Chapter 22 23 Chapter
More informationMicrosoft PowerPoint Relations.pptx
이산수학 () 관계와그특성 (Relations and Its Properties) 2010년봄학기강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계
More informationMicrosoft PowerPoint - 27.pptx
이산수학 () n-항관계 (n-ary Relations) 2011년봄학기 강원대학교컴퓨터과학전공문양세 n-ary Relations (n-항관계 ) An n-ary relation R on sets A 1,,A n, written R:A 1,,A n, is a subset R A 1 A n. (A 1,,A n 에대한 n- 항관계 R 은 A 1 A n 의부분집합이다.)
More informationMicrosoft PowerPoint - 26.pptx
이산수학 () 관계와그특성 (Relations and Its Properties) 2011년봄학기 강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계
More information4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1
: LabVIEW Control Design, Simulation, & System Identification LabVIEW Control Design Toolkit, Simulation Module, System Identification Toolkit 2 (RLC Spring-Mass-Damper) Control Design toolkit LabVIEW
More informationLet G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E. Let A be a set of E, possibly empty, that is includ
알고리즘설계와분석 (CSE3081(2 반 )) 기말고사 (2016년 12월15일 ( 목 ) 오전 9시40분 ~) 담당교수 : 서강대학교컴퓨터공학과임인성 < 주의 > 답안지에답을쓴후제출할것. 만약공간이부족하면답안지의뒷면을이용하고, 반드시답을쓰는칸에어느쪽의뒷면에답을기술하였는지명시할것. 연습지는수거하지않음. function MakeSet(x) { x.parent
More information#Ȳ¿ë¼®
http://www.kbc.go.kr/ A B yk u δ = 2u k 1 = yk u = 0. 659 2nu k = 1 k k 1 n yk k Abstract Web Repertoire and Concentration Rate : Analysing Web Traffic Data Yong - Suk Hwang (Research
More information우리들이 일반적으로 기호
일본지방자치체( 都 道 府 縣 )의 웹사이트상에서 심벌마크와 캐릭터의 활용에 관한 연구 A Study on the Application of Japanese Local Self-Government's Symbol Mark and Character on Web. 나가오카조형대학( 長 岡 造 形 大 學 ) 대학원 조형연구과 김 봉 수 (Kim Bong Su) 193
More information예제 1.1 ( 관계연산자 ) >> A=1:9, B=9-A A = B = >> tf = A>4 % 4 보다큰 A 의원소들을찾을경우 tf = >> tf = (A==B) % A
예제 1.1 ( 관계연산자 ) >> A=1:9, B=9-A A = 1 2 3 4 5 6 7 8 9 B = 8 7 6 5 4 3 2 1 0 >> tf = A>4 % 4 보다큰 A 의원소들을찾을경우 tf = 0 0 0 0 1 1 1 1 1 >> tf = (A==B) % A 의원소와 B 의원소가똑같은경우를찾을때 tf = 0 0 0 0 0 0 0 0 0 >> tf
More informationλx.x (λz.λx.x z) (λx.x)(λz.(λx.x)z) (λz.(λx.x) z) Call-by Name. Normal Order. (λz.z)
λx.x (λz.λx.x z) (λx.x)(λz.(λx.x)z) (λz.(λx.x) z) Call-by Name. Normal Order. (λz.z) Simple Type System - - 1+malloc(), {x:=1,y:=2}+2,... (stuck) { } { } ADD σ,m e 1 n 1,M σ,m e 1 σ,m e 2 n 2,M + e 2 n
More informationHW5 Exercise 1 (60pts) M interpreter with a simple type system M. M. M.., M (simple type system). M, M. M., M.
오늘할것 5 6 HW5 Exercise 1 (60pts) M interpreter with a simple type system M. M. M.., M (simple type system). M, M. M., M. Review: 5-2 7 7 17 5 4 3 4 OR 0 2 1 2 ~20 ~40 ~60 ~80 ~100 M 언어 e ::= const constant
More information4. #include <stdio.h> #include <stdlib.h> int main() { functiona(); } void functiona() { printf("hihi\n"); } warning: conflicting types for functiona
이름 : 학번 : A. True or False: 각각항목마다 True 인지 False 인지적으세요. 1. (Python:) randint 함수를사용하려면, random 모듈을 import 해야한다. 2. (Python:) '' (single quote) 는한글자를표현할때, (double quote) 는문자열을표현할때사용한다. B. 다음에러를수정하는방법을적으세요.
More informationMicrosoft PowerPoint - ch03ysk2012.ppt [호환 모드]
전자회로 Ch3 iode Models and Circuits 김영석 충북대학교전자정보대학 2012.3.1 Email: kimys@cbu.ac.kr k Ch3-1 Ch3 iode Models and Circuits 3.1 Ideal iode 3.2 PN Junction as a iode 3.4 Large Signal and Small-Signal Operation
More informationMicrosoft PowerPoint - 7-Work and Energy.ppt
Chapter 7. Work and Energy 일과운동에너지 One of the most important concepts in physics Alternative approach to mechanics Many applications beyond mechanics Thermodynamics (movement of heat) Quantum mechanics...
More informationLine (A) å j a k= i k #define max(a, b) (((a) >= (b))? (a) : (b)) long MaxSubseqSum0(int A[], unsigned Left, unsigned Right) { int Center, i; long Max
알고리즘설계와분석 (CSE3081-2반 ) 중간고사 (2013년 10월24일 ( 목 ) 오전 10시30분 ) 담당교수 : 서강대학교컴퓨터공학과임인성수강학년 : 2학년문제 : 총 8쪽 12문제 ========================================= < 주의 > 답안지에답을쓴후제출할것. 만약공간이부족하면답안지의뒷면을이용하고반드시답을쓰는칸에답안지의어느쪽의뒷면에답을기술하였는지명시할것.
More informationPowerPoint 프레젠테이션
@ Lesson 2... ( ). ( ). @ vs. logic data method variable behavior attribute method field Flow (Type), ( ) member @ () : C program Method A ( ) Method B ( ) Method C () program : Java, C++, C# data @ Program
More informationBreathing problems Pa t i e n t: I have been having some breathing problems lately. I always seem to be out of breath no matter what I am d o i n g. ( Nurse : How long have you been experiencing this problem?
More informationChapter4.hwp
Ch. 4. Spectral Density & Correlation 4.1 Energy Spectral Density 4.2 Power Spectral Density 4.3 Time-Averaged Noise Representation 4.4 Correlation Functions 4.5 Properties of Correlation Functions 4.6
More informationBuy one get one with discount promotional strategy
Buy one get one with discount Promotional Strategy Kyong-Kuk Kim, Chi-Ghun Lee and Sunggyun Park ISysE Department, FEG 002079 Contents Introduction Literature Review Model Solution Further research 2 ISysE
More informationDIY 챗봇 - LangCon
without Chatbot Builder & Deep Learning bage79@gmail.com Chatbot Builder (=Dialogue Manager),. We need different chatbot builders for various chatbot services. Chatbot builders can t call some external
More information슬라이드 1
Pairwise Tool & Pairwise Test NuSRS 200511305 김성규 200511306 김성훈 200614164 김효석 200611124 유성배 200518036 곡진화 2 PICT Pairwise Tool - PICT Microsoft 의 Command-line 기반의 Free Software www.pairwise.org 에서다운로드후설치
More information슬라이드 1
CHAP 1: 자료구조와알고리즘 일상생활에서의사물의조직화 조직도 일상생활에서의사물의조직화 Ticket Box 일상생활과자료구조의비교 일상생활에서의예 물건을쌓아두는것 영화관매표소의줄 할일리스트 자료구조 스택 큐 리스트 a b c NULL C B A 영어사전사전, 탐색구조 Ticket Box 지도 조직도 그래프 트리 전단 (front) 후단 (rear) 자료구조와알고리즘
More information4 5 4. Hi-MO 애프터케어 시스템 편 5. 오비맥주 카스 카스 후레쉬 테이블 맥주는 천연식품이다 편 처음 스타일 그대로, 부탁 케어~ Hi-MO 애프터케어 시스템 지속적인 모발 관리로 끝까지 스타일이 유지되도록 독보적이다! 근데 그거 아세요? 맥주도 인공첨가물이
1 2 On-air 3 1. 이베이코리아 G마켓 용평리조트 슈퍼브랜드딜 편 2. 아모레퍼시픽 헤라 루즈 홀릭 리퀴드 편 인쇄 광고 올해도 겨울이 왔어요. 당신에게 꼭 해주고 싶은 말이 있어요. G마켓에선 용평리조트 스페셜 패키지가 2만 6900원! 역시 G마켓이죠? G마켓과 함께하는 용평리조트 스페셜 패키지. G마켓의 슈퍼브랜드딜은 계속된다. 모바일 쇼핑 히어로
More information1
1 1....6 1.1...6 2. Java Architecture...7 2.1 2SDK(Software Development Kit)...8 2.2 JRE(Java Runtime Environment)...9 2.3 (Java Virtual Machine, JVM)...10 2.4 JVM...11 2.5 (runtime)jvm...12 2.5.1 2.5.2
More informationColumns 8 through while expression {commands} 예제 1.2 (While 반복문의이용 ) >> num=0
for loop array {commands} 예제 1.1 (For 반복변수의이용 ) >> data=[3 9 45 6; 7 16-1 5] data = 3 9 45 6 7 16-1 5 >> for n=data x=n(1)-n(2) -4-7 46 1 >> for n=1:10 x(n)=sin(n*pi/10); n=10; >> x Columns 1 through 7
More information슬라이드 1
CHAP 1: 자료구조와알고리즘 C 로쉽게풀어쓴자료구조 생능출판사 2005 일상생활에서의사물의조직화 조직도 일상생활에서의사물의조직화 Ticket Box 일상생활과자료구조의비교 a b c N 일상생활에서의예 물건을쌓아두는것 영화관매표소의줄 할일리스트 자료구조 스택 큐 리스트 영어사전사전, 탐색구조 지도 조직도 그래프 트리 Ticket Box C B A 전단 (front)
More information<B3EDB9AEC1FD5F3235C1FD2E687770>
경상북도 자연태음악의 소박집합, 장단유형, 전단후장 경상북도 자연태음악의 소박집합, 장단유형, 전단후장 - 전통 동요 및 부녀요를 중심으로 - 이 보 형 1) * 한국의 자연태 음악 특성 가운데 보편적인 특성은 대충 밝혀졌지만 소박집합에 의한 장단주기 박자유형, 장단유형, 같은 층위 전후 구성성분의 시가( 時 價 )형태 등 은 밝혀지지 않았으므로
More informationMicrosoft PowerPoint - 알고리즘_5주차_1차시.pptx
Basic Idea of External Sorting run 1 run 2 run 3 run 4 run 5 run 6 750 records 750 records 750 records 750 records 750 records 750 records run 1 run 2 run 3 1500 records 1500 records 1500 records run 1
More informationOutput file
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 An Application for Calculation and Visualization of Narrative Relevance of Films Using Keyword Tags Choi Jin-Won (KAIST) Film making
More information슬라이드 1
Data Structure Chapter 1. 자료구조와알고리즘 Dong Kyue Kim Hanyang University dqkim@hanyang.ac.kr 자료구조와알고리즘 일상생활에서의사물의조직화 해야할일리스트 조직도 일상생활에서의사물의조직화 사전 Ticket Box 3 일상생활과자료구조의비교 일상생활 vs 자료구조 자료구조 스택 큐 리스트 사전, 탐색구조
More information강의10
Computer Programming gdb and awk 12 th Lecture 김현철컴퓨터공학부서울대학교 순서 C Compiler and Linker 보충 Static vs Shared Libraries ( 계속 ) gdb awk Q&A Shared vs Static Libraries ( 계속 ) Advantage of Using Libraries Reduced
More information¹Ìµå¹Ì3Â÷Àμâ
MIDME LOGISTICS Trusted Solutions for 02 CEO MESSAGE MIDME LOGISTICS CO., LTD. 01 Ceo Message We, MIDME LOGISTICS CO., LTD. has established to create aduance logistics service. Try to give confidence to
More informationChap 6: Graphs
5. 작업네트워크 (Activity Networks) 작업 (Activity) 부분프로젝트 (divide and conquer) 각각의작업들이완료되어야전체프로젝트가성공적으로완료 두가지종류의네트워크 Activity on Vertex (AOV) Networks Activity on Edge (AOE) Networks 6 장. 그래프 (Page 1) 5.1 AOV
More informationY 1 Y β α β Independence p qp pq q if X and Y are independent then E(XY)=E(X)*E(Y) so Cov(X,Y) = 0 Covariance can be a measure of departure from independence q Conditional Probability if A and B are
More informationChapter 4. LISTS
6. 동치관계 (Equivalence Relations) 동치관계 reflexive, symmetric, transitive 성질을만족 "equal to"(=) 관계는동치관계임. x = x x = y 이면 y = x x = y 이고 y = z 이면 x = z 동치관계를이용하여집합 S 를 동치클래스 로분할 동일한클래스내의원소 x, y 에대해서는 x y 관계성립
More informationPowerPoint 프레젠테이션
Reasons for Poor Performance Programs 60% Design 20% System 2.5% Database 17.5% Source: ORACLE Performance Tuning 1 SMS TOOL DBA Monitoring TOOL Administration TOOL Performance Insight Backup SQL TUNING
More information_KF_Bulletin webcopy
1/6 1/13 1/20 1/27 -, /,, /,, /, Pursuing Truth Responding in Worship Marked by Love Living the Gospel 20 20 Bible In A Year: Creation & God s Characters : Genesis 1:1-31 Pastor Ken Wytsma [ ] Discussion
More informationC 프로그래밍 언어 입문 C 프로그래밍 언어 입문 김명호저 숭실대학교 출판국 머리말..... C, C++, Java, Fortran, Python, Ruby,.. C. C 1972. 40 C.. C. 1999 C99. C99. C. C. C., kmh ssu.ac.kr.. ,. 2013 12 Contents 1장 프로그래밍 시작 1.1 C 10 1.2 12
More information슬라이드 제목 없음
물리화학 1 문제풀이 130403 김대형교수님 Chapter 1 Exercise (#1) A sample of 255 mg of neon occupies 3.00 dm 3 at 122K. Use the perfect gas law to calculate the pressure of the gas. Solution 1) The perfect gas law p
More informationstep 1-1
Written by Dr. In Ku Kim-Marshall STEP BY STEP Korean 1 through 15 Action Verbs Table of Contents Unit 1 The Korean Alphabet, hangeul Unit 2 Korean Sentences with 15 Action Verbs Introduction Review Exercises
More information슬라이드 1
Data Structure & Algorithms SANGJI University KO Kwangman () 자료 (data) 1. 자료와정보 현실세계로부터의단순한관찰이나측정을통하여수집한사실이나개념의값들또는값들의집합. 정보 (information) 의사결정에도움을주기위해유용한형태로다시작성된 (= 가공 ) 자료. Data Structure & Algorithms
More information大学4年生の正社員内定要因に関する実証分析
190 2016 JEL Classification Number J24, I21, J20 Key Words JILPT 2011 1 190 Empirical Evidence on the Determinants of Success in Full-Time Job-Search for Japanese University Students By Hiroko ARAKI and
More informationilist.add(new Integer(1))과 같이 사용하지 않고 ilist.add(1)과 같이 사용한 것은 자바 5.0에 추가된 기본 자료형과 해당 객체 자료 형과의 오토박싱/언박싱 기능을 사용한 것으로 오토박싱이란 자바 컴파일러가 객체를 요구하는 곳에 기본 자료형
바에 제네릭스(generics)를 도입하기 위한 연구는 이미 8년 전인 1996년부터라고 한다. 실제로 자바에 제네릭스를 도입하 는 몇 가지 방안들이 논문으로 나오기 시작한 것이 1998년 초임을 감 안하면 무려 8년이 지난 후에야 자바 5.0에 전격 채택되었다는 것은 이것이 얼마나 어려운 일이었나 하는 것을 보여준다. 자바의 스펙을 결정하는 표준화 절차인
More information°í¼®ÁÖ Ãâ·Â
Performance Optimization of SCTP in Wireless Internet Environments The existing works on Stream Control Transmission Protocol (SCTP) was focused on the fixed network environment. However, the number of
More information2 min 응용 말하기 01 I set my alarm for 7. 02 It goes off. 03 It doesn t go off. 04 I sleep in. 05 I make my bed. 06 I brush my teeth. 07 I take a shower.
스피킹 매트릭스 특별 체험판 정답 및 스크립트 30초 영어 말하기 INPUT DAY 01 p.10~12 3 min 집중 훈련 01 I * wake up * at 7. 02 I * eat * an apple. 03 I * go * to school. 04 I * put on * my shoes. 05 I * wash * my hands. 06 I * leave
More informationSomething that can be seen, touched or otherwise sensed
Something that can be seen, touched or otherwise sensed Things about an object Weight Height Material Things an object does Pen writes Book stores words Water have Fresh water Rivers Oceans have
More information300 구보학보 12집. 1),,.,,, TV,,.,,,,,,..,...,....,... (recall). 2) 1) 양웅, 김충현, 김태원, 광고표현 수사법에 따른 이해와 선호 효과: 브랜드 인지도와 의미고정의 영향을 중심으로, 광고학연구 18권 2호, 2007 여름
동화 텍스트를 활용한 패러디 광고 스토리텔링 연구 55) 주 지 영* 차례 1. 서론 2. 인물의 성격 변화에 의한 의미화 전략 3. 시공간 변화에 의한 의미화 전략 4. 서사의 변개에 의한 의미화 전략 5. 창조적인 스토리텔링을 위하여 6. 결론 1. 서론...., * 서울여자대학교 초빙강의교수 300 구보학보 12집. 1),,.,,, TV,,.,,,,,,..,...,....,...
More informationsna-node-ties
Node Centrality in Social Networks Nov. 2015 Youn-Hee Han http://link.koreatech.ac.kr Importance of Nodes ² Question: which nodes are important among a large number of connected nodes? Centrality analysis
More informationPowerPoint 프레젠테이션
@ Lesson 3 if, if else, if else if, switch case for, while, do while break, continue : System.in, args, JOptionPane for (,, ) @ vs. logic data method variable Data Data Flow (Type), ( ) @ Member field
More informationMicrosoft Word - Direction (Transport Guide)
IBS Center for Geometry and Physics Transportation Guide to Gyeongju & Hotel Hyundai At a Glance Transportation Travel Travel Time Fare (KRW) / One way Schedules & Timetables Incheon Int l Airport Gyeongju
More informationhttp://www.kbc.go.kr/pds/2.html Abstract Exploring the Relationship Between the Traditional Media Use and the Internet Use Mee-Eun Kang This study examines the relationship between
More informationOrcad Capture 9.x
OrCAD Capture Workbook (Ver 10.xx) 0 Capture 1 2 3 Capture for window 4.opj ( OrCAD Project file) Design file Programe link file..dsn (OrCAD Design file) Design file..olb (OrCAD Library file) file..upd
More information05-class.key
5 : 2 (method) (public) (private) (interface) 5.1 (Method), (public method) (private method) (constructor), 3 4 5.2 (client). (receiver)., System.out.println("Hello"); (client object) (receiver object)
More information01장.자료구조와 알고리즘
---------------- DATA STRUCTURES USING C ---------------- CHAPTER 자료구조와알고리즘 1/30 자료구조 일상생활에서자료를정리하고조직화하는이유는? 사물을편리하고효율적으로사용하기위함 다양한자료를효율적인규칙에따라정리한예 2/30 컴퓨터에서의자료구조 자료구조 (Data Structure) 컴퓨터에서자료를정리하고조직화하는다양한구조
More informationNo Slide Title
Copyright, 2001 Multimedia Lab., CH 3. COM object (In-process server) Eun-sung Lee twoss@mmlab.net Multimedia Lab. Dept. of Electrical and Computer Eng. University of Seoul Seoul, Korea 0. Contents 1.
More informationuntitled
5. hamks@dongguk.ac.kr (regular expression): (recognizer) : F(, scanner) CFG(context-free grammar): : PD(, parser) CFG 1 CFG form : N. Chomsky type 2 α, where V N and α V *. recursive construction ) E
More information歯1.PDF
200176 .,.,.,. 5... 1/2. /. / 2. . 293.33 (54.32%), 65.54(12.13%), / 53.80(9.96%), 25.60(4.74%), 5.22(0.97%). / 3 S (1997)14.59% (1971) 10%, (1977).5%~11.5%, (1986)
More information<313630313032C6AFC1FD28B1C7C7F5C1DF292E687770>
양성자가속기연구센터 양성자가속기 개발 및 운영현황 DOI: 10.3938/PhiT.25.001 권혁중 김한성 Development and Operational Status of the Proton Linear Accelerator at the KOMAC Hyeok-Jung KWON and Han-Sung KIM A 100-MeV proton linear accelerator
More information6장정렬알고리즘.key
6 : :. (Internal sort) (External sort) (main memory). :,,.. 6.1 (Bubbble Sort).,,. 1 (pass). 1 pass, 1. (, ), 90 (, ). 2 40-50 50-90, 50 10. 50 90. 40 50 10 비교 40 50 10 비교 40 50 10 40 10 50 40 10 50 90
More information11강-힙정렬.ppt
11 (Heap ort) leejaku@shinbiro.com Topics? Heap Heap Opeations UpHeap/Insert, DownHeap/Extract Binary Tree / Index Heap ort Heap ort 11.1 (Priority Queue) Operations ? Priority Queue? Priority Queue tack
More informationCoriolis.hwp
MCM Series 주요특징 MaxiFlo TM (맥시플로) 코리올리스 (Coriolis) 질량유량계 MCM 시리즈는 최고의 정밀도를 자랑하며 슬러리를 포함한 액체, 혼합 액체등의 질량 유량, 밀도, 온도, 보정된 부피 유량을 측정할 수 있는 질량 유량계 이다. 단일 액체 또는 2가지 혼합액체를 측정할 수 있으며, 강한 노이즈 에도 견디는 면역성, 높은 정밀도,
More information` Companies need to play various roles as the network of supply chain gradually expands. Companies are required to form a supply chain with outsourcing or partnerships since a company can not
More information02김헌수(51-72.hwp
보험금융연구 제26권 제1호 (2015. 2) pp. 51-71 손해보험사의 출재는 과다한가? -RBC 규제에 기초한 분석 - * Do P/L Insurers Cede Too Much? - An Analysis Based on the RBC Regulation - 김 헌 수 ** 김 석 영 *** Hunsoo Kim Seog Young Kim 경제가 저성장으로
More informationuntitled
Push... 2 Push... 4 Push... 5 Push... 13 Push... 15 1 FORCS Co., LTD A Leader of Enterprise e-business Solution Push (Daemon ), Push Push Observer. Push., Observer. Session. Thread Thread. Observer ID.
More informationMicrosoft PowerPoint - Freebairn, John_ppt
Tax Mix Change John Freebairn Outline General idea of a tax mix change Some detailed policy options Importance of casting assessment in the context of a small open economy Economic effects of a tax mix
More informationChap 6: Graphs
그래프표현법 인접행렬 (Adjacency Matrix) 인접리스트 (Adjacency List) 인접다중리스트 (Adjacency Multilist) 6 장. 그래프 (Page ) 인접행렬 (Adjacency Matrix) n 개의 vertex 를갖는그래프 G 의인접행렬의구성 A[n][n] (u, v) E(G) 이면, A[u][v] = Otherwise, A[u][v]
More information<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>
한국지능시스템학회 논문지 2010, Vol. 20, No. 3, pp. 375-379 유전자 알고리즘을 이용한 강인한 Support vector machine 설계 Design of Robust Support Vector Machine Using Genetic Algorithm 이희성 홍성준 이병윤 김은태 * Heesung Lee, Sungjun Hong,
More informationOracle Apps Day_SEM
Senior Consultant Application Sales Consulting Oracle Korea - 1. S = (P + R) x E S= P= R= E= Source : Strategy Execution, By Daniel M. Beall 2001 1. Strategy Formulation Sound Flawed Missed Opportunity
More information05-08 087ÀÌÁÖÈñ.hwp
산별교섭에 대한 평가 및 만족도의 영향요인 분석(이주희) ꌙ 87 노 동 정 책 연 구 2005. 제5권 제2호 pp. 87118 c 한 국 노 동 연 구 원 산별교섭에 대한 평가 및 만족도의 영향요인 분석: 보건의료노조의 사례 이주희 * 2004,,,.. 1990. : 2005 4 7, :4 7, :6 10 * (jlee@ewha.ac.kr) 88 ꌙ 노동정책연구
More informationPowerPoint 프레젠테이션
@ Lesson 4 (Object) (Class) (Instance) (Method) (Constructor) Memory 1 UML 1 @ & 1 (Real World) (Software World) @ &.. () () @ & 2 (Real World) (Software World) OOA/ Modeling Abstraction Instantiation
More informationObservational Determinism for Concurrent Program Security
웹응용프로그램보안취약성 분석기구현 소프트웨어무결점센터 Workshop 2010. 8. 25 한국항공대학교, 안준선 1 소개 관련연구 Outline Input Validation Vulnerability 연구내용 Abstract Domain for Input Validation Implementation of Vulnerability Analyzer 기존연구
More informationMicrosoft PowerPoint - AC3.pptx
Chapter 3 Block Diagrams and Signal Flow Graphs Automatic Control Systems, 9th Edition Farid Golnaraghi, Simon Fraser University Benjamin C. Kuo, University of Illinois 1 Introduction In this chapter,
More information04 형사판례연구 19-3-1.hwp
2010년도 형법판례 회고 645 2010년도 형법판례 회고 2)오 영 근* Ⅰ. 서설 2010. 1. 1.에서 2010. 12. 31.까지 대법원 법률종합정보 사이트 1) 에 게재된 형법 및 형사소송법 판례는 모두 286건이다. 이 중에는 2건의 전원합의체 판결 및 2건의 전원합의체 결정이 있다. 2건의 전원합의체 결정은 형사소송법에 관한 것이고, 2건의
More information歯엑셀모델링
I II II III III I VBA Understanding Excel VBA - 'VB & VBA In a Nutshell' by Paul Lomax, October,1998 To enter code: Tools/Macro/visual basic editor At editor: Insert/Module Type code, then compile by:
More informationVol.258 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M
2017.12 Vol.258 C O N T E N T S 02 06 35 57 89 94 100 103 105 M O N T H L Y P U B L I C F I N A N C E F O R U M 2 2017.12 3 4 2017.12 * 6 2017.12 7 1,989,020 2,110,953 2,087,458 2,210,542 2,370,003 10,767,976
More informationVol.257 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M
2017.11 Vol.257 C O N T E N T S 02 06 38 52 69 82 141 146 154 M O N T H L Y P U B L I C F I N A N C E F O R U M 2 2017.11 3 4 2017.11 6 2017.11 1) 7 2) 22.7 19.7 87 193.2 160.6 83 22.2 18.4 83 189.6 156.2
More informationManufacturing6
σ6 Six Sigma, it makes Better & Competitive - - 200138 : KOREA SiGMA MANAGEMENT C G Page 2 Function Method Measurement ( / Input Input : Man / Machine Man Machine Machine Man / Measurement Man Measurement
More information2007 학년도 하반기 졸업작품 아무도 모른다 (Nobody Knows) 얄리, 보마빼 (AIi, Bomaye) 외계인간 ( 外 界 人 間 ) 한국예술종합학교 연극원 극작과 예술전문사 2005523003 안 재 승
2007 학년도 하반기 졸업작품 아무도 모른다 (Nobody Knows) 알리, 보마예 (Ali, Bomaye) 외계인간 ( 外 界 A 間 ) 원 사 3 승 극 문 연 전 재 E 숨 } 닮 런 예 m 안 합 과 ; 조 O 자 숨 그, 예 시 국 하 2007 학년도 하반기 졸업작품 아무도 모른다 (Nobody Knows) 얄리, 보마빼 (AIi, Bomaye)
More information농심-내지
Magazine of NONGSHIM 2012_ 03 농심이 필요할 때 Magazine of NONGSHIM 농심그룹 사보 농심 통권 제347호 발행일 2012년 3월 7일 월간 발행인 박준 편집인 유종석 발행처 (주)농심 02-820-7114 서울특별시 동작구 신대방동 370-1 홈페이지 www.nongshim.com 블로그 blog.nongshim.com
More informationthesis
( Design and Implementation of a Generalized Management Information Repository Service for Network and System Management ) ssp@nile nile.postech.ac..ac.kr DPE Lab. 1997 12 16 GMIRS GMIRS GMIRS prototype
More information영어-중2-천재김-07과-어순-B.hwp
Think Twice, Think Green 1 도와드릴까요? Listen and Speak 1 (I / you / may / help) 130,131 15 이 빨간 것은 어때요? (this / how / red / about / one) 16 오, 저는 그것이 좋아요. (I / it / oh / like) 2 저는 야구 모자를 찾고 있는데요. (a / looking
More information11¹Ú´ö±Ô
A Review on Promotion of Storytelling Local Cultures - 265 - 2-266 - 3-267 - 4-268 - 5-269 - 6 7-270 - 7-271 - 8-272 - 9-273 - 10-274 - 11-275 - 12-276 - 13-277 - 14-278 - 15-279 - 16 7-280 - 17-281 -
More information<C6F7C6AEB6F5B1B3C0E72E687770>
1-1. 포트란 언어의 역사 1 1-2. 포트란 언어의 실행 단계 1 1-3. 문제해결의 순서 2 1-4. Overview of Fortran 2 1-5. Use of Columns in Fortran 3 1-6. INTEGER, REAL, and CHARACTER Data Types 4 1-7. Arithmetic Expressions 4 1-8. 포트란에서의
More informationMicrosoft PowerPoint - CHAP-03 [호환 모드]
컴퓨터구성 Lecture Series #4 Chapter 3: Data Representation Spring, 2013 컴퓨터구성 : Spring, 2013: No. 4-1 Data Types Introduction This chapter presents data types used in computers for representing diverse numbers
More information컴파일러
YACC 응용예 Desktop Calculator 7/23 Lex 입력 수식문법을위한 lex 입력 : calc.l %{ #include calc.tab.h" %} %% [0-9]+ return(number) [ \t] \n return(0) \+ return('+') \* return('*'). { printf("'%c': illegal character\n",
More information<31325FB1E8B0E6BCBA2E687770>
88 / 한국전산유체공학회지 제15권, 제1호, pp.88-94, 2010. 3 관내 유동 해석을 위한 웹기반 자바 프로그램 개발 김 경 성, 1 박 종 천 *2 DEVELOPMENT OF WEB-BASED JAVA PROGRAM FOR NUMERICAL ANALYSIS OF PIPE FLOW K.S. Kim 1 and J.C. Park *2 In general,
More information2
U7 Vocabulary Unit 7 Which One is Cheaper? Clothing a dress some gloves some high heels a jacket (a pair of) jeans some pants a scarf a school uniform a shirt some shoes a skirt (a pair of) sneakers a
More information