김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월

Similar documents
지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월


<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

#Ȳ¿ë¼®

04-다시_고속철도61~80p

°í¼®ÁÖ Ãâ·Â

한국성인에서초기황반변성질환과 연관된위험요인연구

DBPIA-NURIMEDIA

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

05( ) CPLV12-04.hwp

歯1.PDF

09김정식.PDF

DBPIA-NURIMEDIA



에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -

10¿ÀÁ¤ÁØ

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특


DBPIA-NURIMEDIA

<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770>

<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>

Output file

11¹ÚÇý·É

정진명 남재원 떠오르고 있다. 배달앱서비스는 소비자가 배달 앱서비스를 이용하여 배달음식점을 찾고 음식 을 주문하며, 대금을 결제까지 할 수 있는 서비 스를 말한다. 배달앱서비스는 간편한 음식 주문 과 바로결제 서비스를 바탕으로 전 연령층에서 빠르게 보급되고 있는 반면,

04서종철fig.6(121~131)ok

06_À̼º»ó_0929

이용석 박환용 - 베이비부머의 특성에 따른 주택유형 선택 변화 연구.hwp

김기남_ATDC2016_160620_[키노트].key

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

11¹Ú´ö±Ô

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

<32392D342D313020C0FCB0C7BFED2CC0CCC0B1C8F12E687770>

<B9CCB5F0BEEEB0E6C1A6BFCDB9AEC8AD5F31322D32C8A35FBABBB9AE5FC3CAC6C731BCE25F6F6B5F E687770>

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

À±½Â¿í Ãâ·Â

I

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

44-4대지.07이영희532~

DBPIA-NURIMEDIA

Rheu-suppl hwp

27 2, 17-31, , * ** ***,. K 1 2 2,.,,,.,.,.,,.,. :,,, : 2009/08/19 : 2009/09/09 : 2009/09/30 * 2007 ** *** ( :

04김호걸(39~50)ok

<C3D6C1BEBFCFBCBA2DBDC4C7B0C0AFC5EBC7D0C8B8C1F D31C8A3292E687770>

10송동수.hwp

09권오설_ok.hwp

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

레이아웃 1


09È«¼®¿µ 5~152s

<BFA9BAD02DB0A1BBF3B1A4B0ED28C0CCBCF6B9FC2920B3BBC1F62E706466>

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a

GEAR KOREA

09구자용(489~500)

<30382E20B1C7BCF8C0E720C6EDC1FD5FC3D6C1BEBABB2E687770>

DBPIA-NURIMEDIA

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

DBPIA-NURIMEDIA

., (, 2000;, 1993;,,, 1994), () 65, 4 51, (,, ). 33, 4 30, 23 3 (, ) () () 25, (),,,, (,,, 2015b). 1 5,

한국 출산력의 저하 요인에 관한 연구

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: A study on Characte

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: A Study on the Opti

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: NCS : * A Study on

02이용배(239~253)ok

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: An Exploratory Stud

2011´ëÇпø2µµ 24p_0628

에너지경제연구 Korean Energy Economic Review Volume 9, Number 2, September 2010 : pp. 1~18 가격비대칭성검정모형민감도분석 1

???? 1

<352E20BAAFBCF6BCB1C5C320B1E2B9FDC0BB20C0CCBFEBC7D120C7D1B1B920C7C1B7CEBEDFB1B8C0C720B5E6C1A1B0FA20BDC7C1A120BCB3B8ED D2DB1E8C7F5C1D62E687770>

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45

06_ÀÌÀçÈÆ¿Ü0926

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: * A Study on Teache


<BFACBCBCC0C7BBE7C7D E687770>

Journal of Educational Innovation Research 2016, Vol. 26, No. 3, pp DOI: Awareness, Supports

12È«±â¼±¿Ü339~370

???? 1

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

<31382D322D3420BDC5B1D4C8AF5FB3EDB9AE28C3D6C1BEBABB292E687770>

에너지경제연구 제13권 제1호

Buy one get one with discount promotional strategy

학습영역의 Taxonomy에 기초한 CD-ROM Title의 효과분석

<C7D1B1B9B1A4B0EDC8ABBAB8C7D0BAB85F31302D31C8A35F32C2F75F E687770>

DBPIA-NURIMEDIA

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A Research Trend

γ

정보기술응용학회 발표

±èÇö¿í Ãâ·Â

4번.hwp

Can032.hwp

歯14.양돈규.hwp

The characteristic analysis of winners and losers in curling: Focused on shot type, shot accuracy, blank end and average score SungGeon Park 1 & Soowo

서론 34 2

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

03±èÀçÈÖ¾ÈÁ¤ÅÂ

원고스타일 정의

012임수진

<33312D312D313220C0CCC7D1C1F820BFB0C3A2BCB12E687770>

DW 개요.PDF

Transcription:

지능정보연구제 17 권제 4 호 2011 년 12 월 (pp.241~254) Support vector machines(svm),, CRM. SVM,,., SVM,,.,,. SVM, SVM. SVM.. * 2009() (NRF-2009-327- B00212). 지능정보연구제 17 권제 4 호 2011 년 12 월

김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월

재무예측을위한 Support Vector Machine 의최적화 지능정보연구제 17 권제 4 호 2011 년 12 월

김경재 안현철 exp 지능정보연구제 17 권제 4 호 2011 년 12 월

재무예측을위한 Support Vector Machine 의최적화 지능정보연구제 17 권제 4 호 2011 년 12 월

김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월

재무예측을위한 Support Vector Machine 의최적화 ) t, t, t, t. 지능정보연구제 17 권제 4 호 2011 년 12 월

김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월

재무예측을위한 Support Vector Machine 의최적화 지능정보연구제 17 권제 4 호 2011 년 12 월

김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월

재무예측을위한 Support Vector Machine 의최적화 지능정보연구제 17 권제 4 호 2011 년 12 월

김경재 안현철 Abstract Kyoung-jae Kim * Hyunchul Ahn ** Financial time-series forecasting is one of the most important issues because it is essential for the risk management of financial institutions. Therefore, researchers have tried to forecast financial time-series using various data mining techniques such as regression, artificial neural networks, decision trees, k-nearest neighbor etc. Recently, support vector machines (SVMs) are popularly applied to this research area because they have advantages that they don t require huge training data and have low possibility of overfitting. However, a user must determine several design factors by heuristics in order to use SVM. For example, the selection of appropriate kernel function and its parameters and proper feature subset selection are major design factors of SVM. Other than these factors, the proper selection of instance subset may also improve the forecasting performance of SVM by eliminating irrelevant and distorting training instances. Nonetheless, there have been few studies that have applied instance selection to SVM, especially in the domain of stock market prediction. Instance selection tries to choose proper instance subsets from original training data. It may be considered as a method of knowledge refinement and it maintains the instance-base. This study proposes the novel instance selection algorithm for SVMs. The proposed technique in this study uses genetic algorithm (GA) to optimize instance selection process with parameter optimization simultaneously. We call the model as ISVM (SVM with Instance selection) in this study. Experiments on stock market data are implemented using ISVM. In this study, the GA searches for optimal or near-optimal values of kernel parameters and relevant instances for SVMs. This study needs two sets of parameters in chromosomes in GA setting : The codes for kernel parameters and for instance selection. For the controlling parameters of the GA search, the population size is set at 50 organisms and the value of the crossover rate is set at 0.7 while the mutation rate is 0.1. As the stopping condition, 50 generations are permitted. The application data used in this study consists of technical indicators and the direction of change in the daily Korea stock price index (KOSPI). The total number of samples is 2218 trading days. We separate the whole data into three subsets as training, test, hold-out data set. The number of data in each subset is 1056, 581, 581 respectively. * Department of Management Information Systems, Dongguk University_Seoul ** School of Management Information Systems, Kookmin University 지능정보연구제 17 권제 4 호 2011 년 12 월

재무예측을위한 Support Vector Machine 의최적화 This study compares ISVM to several comparative models including logistic regression (logit), backpropagation neural networks (ANN), nearest neighbor (1-NN), conventional SVM (SVM) and SVM with the optimized parameters (PSVM). In especial, PSVM uses optimized kernel parameters by the genetic algorithm. The experimental results show that ISVM outperforms 1-NN by 15.32%, ANN by 6.89%, Logit and SVM by 5.34%, and PSVM by 4.82% for the holdout data. For ISVM, only 556 data from 1056 original training data are used to produce the result. In addition, the two-sample test for proportions is used to examine whether ISVM significantly outperforms other comparative models. The results indicate that ISVM outperforms ANN and 1-NN at the 1% statistical significance level. In addition, ISVM performs better than Logit, SVM and PSVM at the 5% statistical significance level. Key Words : Instance Selection, Support Vector Machines, Hybrid Model, Financial Forecasting, Data Mining 지능정보연구제 17 권제 4 호 2011 년 12 월

김경재 안현철. KAIST,,, Annals of Operations Research, Applied Intelligence, Applied Soft Computing, Asia Pacific Journal of Information Systems, Computers and Operations Research, Computers in Human Behavior, Expert Systems, Expert Systems with Applications, Intelligent Data Analysis, International Journal of Electronic Commerce, Intelligent Systems in Accounting, Finance and Management, Neural Computing and Applications, Neurocomputing.,,,.. KAIST, KAIST.,,. 지능정보연구제 17 권제 4 호 2011 년 12 월