Weed Turf. Sci. 5(4):260~267 http://dx.doi.org/10.5660/wts.2016.5.4.260 Print ISSN 2287-7924, Online ISSN 2288-3312 Research Article Weed & Turfgrass Science Weed & Turfgrass Science was renamed from both formerly Korean Journal of Weed Science from Volume 32 (3), 2012, and formerly Korean Journal of Turfgrass Science from Volume 25 (1), 2011 and Asian Journal of Turfgrass Science from Volume 26 (2), 2012 which were launched by The Korean Society of Weed Science and The Turfgrass Society of Korea founded in 1981 and 1987, respectively. 케라틴아미노산비료시비에따른크리핑벤트그래스의생육과품질변화 조기웅 1 김영선 2,5 * 함선규 3 이재필 1 김두환 1 김우성 4 이긍주 5 * 1 건국대학교농축대학원, 2 효성오앤비, 3 대정골프엔지니어링, 4 장유산업, 5 충남대학교원예학과 Growth and Quality Changes of Creeping Bentgrass by Application of Keratin Amino Acid Fertilizer Gi-Woong Jo 1, Young-Sun Kim 2,5 *, Soun-Kyu Ham 3, Jae-Pil Lee 1, Doo-Hwan Kim 1, Woo-Sung Kim 4, and Geung-Joo Lee 5 * 1 Major in Golf Course and Turfgrass, Graduate School of Agriculture and Animal Science, Konkuk University, Seoul 05029, Korea 2 Hyosung O&B Co. Ltd., Daejeon 34054, Korea 3 Daejung-golf Engineering Co. Ltd., Yongin 17124, Korea 4 Jahngryu Industries, Ltd, Cheongwon 34134, Korea 5 Department of Horticultural Science, Chungnam National University, Daejeon 34134, Korea ABSTRACT. Amino acids in the plant were intermediate metabolites which produced by uptake and assimilation of nitrogen and these extracts which gained by bio-chemical digestion from protein of plant or animal were a source of functional fertilizer. This study was conducted to evaluate effects of keratin amino acid fertilizer (KAF) gained from animal hair or hoof on changes of turfgrass quality and growth by investigating turf color index, chlorophyll index, shoot number, clipping yield, and nutrient content in the turfgrass tissue. Treatments were designed as follows; non-fertilizer (NF), compound fertilizer (CF), keratin amino acid fertilizer treatments [CF + KAF 0.26 ml m 2 (CKF), CF + KAF 0.52 ml m 2 (2CKF)], and only keratin amino acid fertilizer treatment (KF). Shoot number, clipping yield, and nitrogen uptake of KF were higher than those of CF. As compared with CF, soil chemical properties, turf color index, chlorophyll index and clipping yield of keratin amino acid fertilizer were not significant, but shoot number and uptake of N and K were increased significantly. These results show that the application of keratin amino acid fertilizer increased shoot number and growth by increased uptake of nitrogen and potassium. Key words: Creeping bentgrass, Growth and quality of turfgrass, Keratin amino acid fertilizer, Shoot number Received on November 7, 2016; Revised on December 6, 2016; Accepted on December 9, 2016 *Corresponding author: 2 Phone) +82-42-821-5734, Fax) +82-42-821-8888; E-mail) zeroline75@empas.com 5 Phone) +82-42-821-5734, Fax) +82-42-821-8888; E-mail) gjlee@cnu.ac.kr 2016 The Korean Society of Weed Science and The Turfgrass Society of Korea This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 서론 식물은토양으로부터뿌리를통해질소를흡수하여동화과정을거쳐아미노산을생성하고, 아미노산은아미드, 펩타이드및단백질등으로생합성된다 (Taiz and Zeiger, 2009). 일반적으로질소는질산태질소나암모니아태질소와같은무기태질소의형태로식물에흡수되는것으로알려져있으나, 아미노산과같은유기태질소의형태로흡수되기 도한다 (Persson and Näsholm, 2002). 식물체중에서질소동화산물인아미노산은식물체의체관을통해이동하며, 식물의종류와생육환경에따라체관액중아미노산조성은다르게나타난다 (Raitio and Sarjala, 2000). 식물체중질소동화의중간물질인아미노산에대한연구는질소의흡수및동화메커니즘에대해식물생리학적방법과분자생물학적방법으로진행되었다 (Muller and Touraine, 1992; Vidmar et al., 2000; Aslam et al., 2001; 260
케라틴아미노산비료시비에따른크리핑벤트그래스의생육과품질변화 261 Glass et al., 2001; Liu et al., 2005). 아미노산공급은식물이질소동화에필요한에너지를줄일수있어식물생육이증대되었고, 미생물을이용한생명공학기술이발달하면서아미노산을포함하는부산물을작물재배에이용할수있게되었다 (Lee and Woo, 1992; Han et al., 2011). 식물재배에이용하는아미노산발효액은단백질의화학적혹은생물학적분해과정을통해얻어지며 (Han et al., 2011), 단백질원료의종류에따라아미노산함량및조성이다르게나타난다 (Yang et al., 1998; Kim et al., 2003). 식물성아미노산발효액은주로사탕수수를발효하는과정에서얻어지고, 동물성아미노산발효액은혈분, 털, 발톱및어분등과같은동물성단백질을발효하여얻어진다 (Kim et al., 2003; Han et al., 2011). 아미노산발효액을포함하는기능성비료를이용하여식물을재배하였을때, 작물의생육과생산량, 화분발아, 양분흡수및엽록소함량이증가되었다 (Kim et al., 2003; Cheon et al., 2006; Han et al., 2011; Moon et al., 2012). 또한, 아미노산발효액을포함하는비료를잔디에시비하는경우잔디생육및품질이증가하였다 (Kim et al., 2003; Chang et al., 2010; Kim et al., 2012). 식물성아미노산발효액은잔디의뿌리생육및양분흡수를촉진시키고 (Chang et al., 2010; Kim et al., 2012), 축산동물의도축혈을이용한동물성아미노산발효액은잔디의지하부및지상부의생육과양분흡수를증가함으로써잔디품질을양호하게하였다 (Kim et al., 2003). 케라틴아미노산발효액은혈분아미노산발효액과더불어비료원료로사용되는대표적인동물성아미노산발효액으로작물에대한시비연구는일부이뤄졌으나잔디생육에대한연구는거의이루어지지않았다. 따라서본연구에서는케라틴아미노산발효액을포함하는비료 ( 케라틴아미노산비료 ) 를골프장그린크리핑벤트그래스에시비하였을때, 잔디의생육과품질의변화에대하여알아보고자하였다. 재료및방법 공시재료본연구는 2010년 5월부터 2010년 9월까지 5개월동안인천광역시소재의 SKY72 골프클럽증식포장에서수행되었다. 공시잔디로는 2006년파종되어약 5년간관리된크리핑벤트그래스 (Agrostis palustis H.) Pennlinks 품종을이용하였다. 시험포장의토양은 USGA규격에적합한모래와코코피트가각각 95% 와 5% 씩부피로혼합된모래로조성되어있었고, 상토층의깊이는약 15 cm였다. 잔디생육에필요한양분을공급하기위해공시비료는복합비료 (compound fertilizer: N-P 2 O 5 -K 2 O=21-17-17, 남해화학, 서울, 한국 ) 와 케라틴아미노산비료 (keratin amino acid fertilizer: N-P 2 O 5 - K 2 O-B 2 O 3 -Mo=0.0-0.0-0.0-0.05-0.0005, FMT Korea Co., LTD., 의정부, 한국 ) 를사용하였다. 케라틴아미노산비료 (keratin amino acid fertilizer; KAF) 는케라틴아미노산원료가 10% 함유되어있었고, 아울러수용성붕소 (0.05%) 와수용성몰리브덴 (0.0005%) 이보정되어있는미량요소복합비료였다. 처리구설정처리구는비료의종류및시비량에따라무처리구 (nonfertilizer; NF), 복합비료대조구 (compound fertilizer; CF), 케라틴아미노산비료추천량처리구 (CKF; CF + KAF 0.26 ml m -2 ) 와배량처리구 (2CKF; CF + KAF 0.52 ml m 2 ) 및케라틴아미노산비료단독처리구 (KAF only; KF) 로구분하였다. 실험포장의실험구단위는 3m 2 (1 m 3m) 크기로전체포장은 45 m 2 였고, 실험구배치는난괴법 (3반복) 으로배치하였다. 공시비료중복합비료는 2010년 4월 29일, 5월 27일, 6월 30일, 8월 5일에 3.0 gn m 2 씩총 4회시비하였고, 케라틴아미노산비료는 2010년 4월 29일, 5월 13일, 5월 27일, 6월 10일, 6월 24일, 7월 8일, 7월 22일, 8월 5일, 8월 19일, 9월 2일에추천량 (0.26 g m 2 ) 과배량 (0.52 g m 2 ) 을 200 ml의수돗물에희석하여총 10회엽면시비 ( 희석액 200 ml m 2 ) 하였다. 시험기간중예초관리는자주식그린모어 (GM262B-AC9, SIBAURA, Tokyo, Japan) 로주 2~3회 5.5 mm 높이로실시하였다. 시험기간중통기작업과배토는수행하지않았으며, 병충해방제를위해이프로디온수화제 (5월 19일, 6월 22일 ) 와테부코나졸유제 (8월 19일, 9월 4일 ) 를각각 2회씩살포하였다. 생육조사및분석방법잔디생육조사는처리구별엽색지수, 엽록소지수, 예지물량및잔디줄기밀도를조사하였다. 엽색지수와엽록소지수는각각 Turf color meter (TCM 500, Spectrum Technologies, Inc., Plainfield, IL, USA) 와 Chlorophyll meter (CM 1000, Spectrum Technologies, Inc., Plainfield, IL, USA) 를이용하여측정하였고, 2010년 5월 6일부터 9월 14 일까지 7~10일간격으로총 18회측정하였으며, 조사결과는월별평균을통해잔디의시각적품질변화를조사하였다. 잔디예지물은 5월 26일, 6월 29일, 8월 4일, 9월 13일에총 4회채취한후드라이오븐 [VS-1203PJ-300, ( 주 ) 비전과학, 부천, 한국 ] 에서 70 o C로 24시간동안건조시켜건물중을측정하였다. 잔디줄기밀도는제작한밀도측정용코어 (1 cm 1cm) 를이용하여시험종료일인 2010년 10월 14일에조사하였고, 시험기간중대기온도 ( 평균기온, 최저기온, 최고기온 ), 강수량및일조시간은기상청의인천지역기상자료를이용하였다.
262 조기웅 김영선 함선규 이재필 김두환 김우성 이긍주 포장시험에서공시비료처리에의한토양의변화를조사하기위해시험전 (2010년 4월 25일 ) 과시험종료후 (2010 년 9월 15일 ) 총 2회실시하였다. 토양시료는자체제작된토양시료채취용코어 ( 지름 2cm, 깊이 10 cm) 를이용하여각처리구별 4개씩토양시료를채취하였고, 분석을위해음지에서풍건하였다. 분석항목은토양산도 (ph), 전기전도도 (electrical conductivity; EC), 유기물 (organic matter; OM) 함량, 전질소 (total nitrogen; T-N), 유효인산 (available phosphate; Av-P 2 O 5 ), 치환성양이온 (exchangeable cation; K, Ca, Mg, Na) 및양이온치환용량 (cation exchangeable capacity; CEC) 등이었고, 분석방법은토양화학분석법 (NIAST, 1998) 에준하여실시하였으며, ph와 EC는 1:5법으로, OM은 Tyurin법으로, T-N은 Kjeldahl 증류법으로, Av- P 2 O 5 는 Bray No1법으로, 치환성양이온과 CEC는 1N- NH 4 OAc침출법으로각각분석하였다. 식물체분석은시험종료시기인 9월 13일채취된잔디예지물을건조하여분석시료로이용하였다. 분석영양소는잔디생육의주요구성성분인질소, 인, 칼륨, 칼슘, 마그네슘및나트륨등을포함하였다. 잔디식물체분석은식물체분석법에준하여실시하였고, 질소는 Kjeldahl 증류법으로, 인은 UV-spectrophotometer (U-2800, Hitachi, Tokyo, Japan) 를이용하여바나도몰리브덴산법으로, 칼륨, 칼슘, 마 그네슘및나트륨은질산분해후유도결합플라즈마 [inductively coupled plasma (ICP); Integra XL, GBC, Victoria, Australia] 를이용하여각각분석하였다 (NIAST, 1998). 양분흡수는건물중과잔디조직분석결과를이용하여아래식과같이조사하였다 (Kim et al., 2001). 양분흡수량 (g m 2 )= 건물중 (g m 2 ) 잔디중양분함량 (%) 통계처리는 SPSS 12.1.1을이용하여 Duncan 다중검정을통해전처리구간평균값의유의차를검정하였고, t-검정을통해무처리구와케라틴아미노산비료단독처리구나대조구와케라틴아미노산처리구간유의차를검정하였다. 결과및고찰 토양의무기성분함량시험전토양은 ph와 EC가각각 7.19과 0.26 ds m 1 로잔디재배가가능한토양이었다. 시험전과후의토양화학성지표들의차이는없었고, 시험종료후처리구별토양화학성의변화또한차이를보이지않았다 (Table 1). 무처리구 (NF) 와케라틴아미노산비료단독처리구 (KF) 의유의차를분석한결과, 처리구별차이가없었고, 대조구 (CF) 와케라틴아미노산비료추천량처리구 (CKF) 를비교에서도처리구별유의차를확인할수없었다. 또한, 케라틴아미노산비료의시비량에따른 CKF와추천배량 (2CKF) 의비교에서도비슷한토양특성을나타내었다. 이들결과를종합해볼때, 케라틴아미노산비료의관주시비는골프코스의토양이화학성변화는미미한것으로나타났다. 잔디품질조사케라틴아미노산비료의처리에따른크리핑벤트그래스의품질변화를확인하기위하여엽색지수, 엽록소지수및잔디줄기밀도등을조사하였다. 케라틴아미노산비료시비후잔디의엽색지수 (turf color Table 1. Soil chemical properties before and after treatment in the experiment. Treatment y ph (1:5) EC (ds m 1 ) OM (%) T-N (%) Av-P 2 O 5 (mg kg 1 ) Ex-Cation (cmol c kg 1 ) K Ca Mg Na CEC (cmol c kg 1 ) Before 7.19a z 0.26a 0.64a 0.04a 43.87a 0.10a 1.16a 0.29a 0.09a 2.47a NF 6.61a 0.15a 0.45a 0.04a 22.30b 0.05a 1.29a 0.31a 0.10a 2.27a CF 6.54a 0.14a 0.61a 0.05a 38.54a 0.06a 1.20a 0.31a 0.10a 2.50a CKF 6.53a 0.16a 0.62a 0.04a 48.28a 0.05a 1.20a 0.28a 0.11a 2.70a 2CKF 6.71a 0.18a 0.63a 0.04a 41.79a 0.03a 1.41a 0.27a 0.14a 2.53a KF 6.77a 0.17a 0.50a 0.04a 35.55a 0.04a 1.28a 0.25a 0.12a 2.60a NF vs KF ns ns ns ns ns ns ns ns ns ns CF vs CKF ns ns ns ns ns ns ns ns ns ns y Treatments were follows. NF: non-fertilizer; CF: compound fertilizer; CKF: CF + recommendation dose of keratin amino acid fertilizer (KAF); 2CKF: CF + double dose of KAF; KF: applied only KAF. CF was applied at 3.0 gn m 2 rate on April 30, May 27, June 30, and August 5 and CKF and 2CKF at 0.26 g m 2 and 0.52 g m 2 rate, respectively, on April 29, May 13, May 27, June 10, June 24, July 8, July 22, August 5, August 19, and September 2. z Means with same letters within column are not significantly different by Duncan s multiple range test p=0.05 level. ns represents not significant by.
케라틴아미노산비료시비에따른크리핑벤트그래스의생육과품질변화 263 Table 2. The change of turf color index and chlorophyll index of creeping bentgrass in the experiment. Treatment y May June July August September Turf color index (TCI) NF 6.36b z 7.07ab 6.58a 6.60a 6.72a CF 6.69a 7.13a 6.73a 6.65a 6.76a CKF 6.74a 7.12a 6.66a 6.50a 6.77a 2CKF 6.68a 7.12a 6.67a 6.68a 6.74a KF 6.37b 6.99b 6.56a 6.56a 6.77a NF vs KF ns ns ns ns ns CF vs CKF ns ns ns ns ns Chlorophyll index (ChI) NF 167b 298a 213a 195a 236a CF 220a 324a 234a 196a 250a CKF 226a 320a 225a 200a 251a 2CKF 226a 323a 226a 196a 253a KF 167b 294a 211a 203a 245a NF vs KF ns ns ns ns ns CF vs CKF ns ns ns ns ns y Treatments refer to table 1. z Means with same letters within column are not significantly different by Duncan s multiple range test p=0.05 level. ns represents not significant by. index; TCI) 와엽록소지수 (chlorophyll index; ChI) 의변화는 6월까지는증가하였고, 7월과 8월에는감소하였으며, 9월에다시증가하는경향을나타내었다 (Table 2). 이는한지형잔디가 15.5~24.0 o C 정도의생육적온을나타내고, 한랭습윤한지역에서생육이왕성하나 (Ahn et al., 1992) 시험기간중기상조건은 7월과 8월의평균기온이 24.7~26.1 o C 로생육적온을초과하였고, 강우에의해 5월, 6월및 9월에비해일조시간이부족하였기때문으로판단되었다 (Fig. 1). 처리구별 TCI와 ChI의처리구별변화는 5월과 6월조사에서 NF와 KF는다른처리구보다낮게조사되었고, 7~9월조사에서는모든처리구에서비슷한결과를보였다. 이는 5월과 6월에는대기온도가생육적온에포함되고, 일조량이높아잔디의광합성및생육이왕성했으나 7~9월은평균온도가높고, 강우량이많으며, 일조량이상대적으로낮아잔디생육에적합하지않았기때문으로판단되었다. 또한, 강우량이많고, 일조량이적어시험포장에조류가다량으로발생한것도잔디품질감소에영향을준것으로판단된다. 케라틴아미노산비료의시비에따른잔디품질의변화를확인하기위해 TCI와 ChI의 t-검정을수행한결과, 처리 Fig. 1. Climate conditions at the experimental plot site from May to September. Fig. 2. The shoot number of creeping bentgrass in the experiment. Shoot number of creeping bentgrass was measured on September 14, 2010. y Treatments refer to table 1. z Error bars indicated standard deviation and different letters indicated significant different at p=0.05 level according to Duncan s multiple range test 5% level. ns and *represent not significant and significant at the 0.05 probability level by, respectively. 간에엽색또는엽록소지수에있어서는차이가없었다. 아미노산비료의시비는잔디생육과품질을향상시키기도하나잔디의엽색지수나엽록소지수의차이를나타내지않는다는 Kim et al. (2012) 의보고와일치한다. 이는 6~9월에는비료처리구에서잔디생육과양분흡수량이증가하였기때문으로판단된다 (Ham et al., 2010). 케라틴아미노산비료의시비후잔디줄기밀도를조사한결과는 Fig 2와같다. NF와 CF는 23.3 ea cm 2 와 24.0 ea cm 2 였고, CKF, 2CKF 및 KF의잔디줄기밀도는 29 ea cm 2, 28.3 ea cm 2 및 24.3 ea cm 2 로조사되어 CKF와 2CKF 처리구에서잔디의줄기밀도가증가하였다. 케라틴아미노산비료의시비에의한잔디줄기밀도의변화를비교하기위해 CF와 CKF의 t-검정을수행한결과, 케라틴아미노산비료를처리시잔디줄기밀도가증가하는결과를확인하였다. 잔디예지물조사케라틴아미노산비료시비에따른잔디총예지물량은
264 조기웅 김영선 함선규 이재필 김두환 김우성 이긍주 Table 3. The dry weight of clipping yield of creeping bentgrass in the nursery experiment. Treatment y May June October September 26 29 4 13 Total Dry weight (g m 2 ) NF 009.69b z 14.12b 43.94b 19.54a 087.28b CF 20.66a 17.86a 51.48a 18.96a 108.95a CKF 20.39a 16.73a 56.80a 19.26a 113.18a 2CKF 19.02a 16.98a 57.71a 16.93a 110.63a KF 09.92b 16.49a 52.98a 16.67a 96.06ab NF vs KF ns ns * ns * CF vs CKF ns ns ** ns ns y Treatments refer to table 1. z Means with same letters within column are not significantly different by Duncan s multiple range test p=0.05 level. ns, *and **represent not significant, significant at the 0.05 and 0.01 probability level by, respectively. 87.28~113.18 g m -2 의범위로조사되었다 (Table 3). NF와 KF 의 t-검정을수행한결과, 케라틴아미노산비료의시비에의해잔디생육이증가하는것을알수있었으나 CF와 CKF 를비교한결과, 케라틴아미노산비료의시비에의한잔디생육의차이는확인할수없었다. NF와 KF의 t-검정결과, KF에서약 10% 정도의잔디예지물증가를나타내어케라틴아미노산비료의처리는잔디의생육증가효과를나타내어 Kim et al. (2003) 의결과와유사하였다. 이는아미노산비료의시비가잔디의질소흡수및동화를촉진함으로써 (Liu et al., 2005) 잔디의생육 ( 예지물 ) 과줄기밀도를증가시키기때문으로판단된다 (Kim et al., 2012; Lee et al., 2015). 잔디조직의무기성분함량및흡수량잔디중함유된무기성분함량조사결과, 질소, 인및칼륨은각각 4.46~4.57%, 0.48~0.55%, 2.25~2.43% 의범위를나타내었고, 처리구별차이는나타나지않았다 (Table 4). NF 와 KF를비교할때, 잔디조직중함유된모든양분은차이를나타내지않았고, CF와 CKF의비교에서도처리구별차이를나타내지않았다. 잔디가흡수한처리구별양분함량을조사한결과, 질소와칼륨의흡수량은각각 3.89~5.09 g m 2 와 2.05~2.75 g m 2 으로 CKF 처리구에서가장높았고, 인의흡수량은 0.43~0.61 g m 2 로 2CKF 처리구에서가장높아케라틴아미노산비료를처리할때잔디중질소, 인및칼륨의함량이증가하는것을알수있다 (Table 5). NF와 KF를비교할때, 질소는케라틴아미노산비료를시비한 KF 처리구에서 NF보다 12.6% 증가하였고, CF와 CKF를비교할때, 칼륨은케 Table 4. The content and uptake of nutrient of creeping bentgrass in the nursery experiment. Treatment x Nutrient content (%) N P K Ca Mg Na NF 4.46a y 0.49a 2.35a 0.45a 0.23a ND z a CF 4.47a 0.53a 2.26a 0.42a 0.21a ND a CKF 4.50a 0.51a 2.43a 0.44a 0.21a ND a 2CKF 4.48a 0.55a 2.35a 0.45a 0.22a ND a KF 4.57a 0.48a 2.25a 0.43a 0.20a ND a NF vs KF ns ns ns ns * ns CF vs CKF ns ns ns ns ns ns Nutrient uptake (g m 2 ) NF 3.89c 0.43c 2.05c 0.40b 0.20b ND a CF 04.87ab 0.57b 2.46b 0.46a 0.23a ND a CKF 5.09a 0.57a 2.75a 0.50a 0.24a ND a 2CKF 04.96ab 00.61ab 02.59ab 0.49a 0.24a ND a KF 04.38bc 0.46c 2.16c 0.41b 0.19b ND a NF vs KF * ns ns ns ns ns CF vs CKF ns ns * ns ns ns x Treatments refer to table 1. y Means with same letters within column are not significantly different by Duncan s multiple range test p=0.05 level. z ND means not detected. ns and *represent not significant and significant at the 0.05 probability level by, respectively. 라틴아미노산비료를시비한 CKF 처리구에서 11.9% 증가하였다. 이결과들을통해케라틴아미노산비료의시비는잔디의질소와칼륨의흡수가증가함을알수있었다. Kim et al. (2012) 은아미노산비료를시비시잔디의질소와칼륨의흡수가증가함으로써잔디생육, 잔디줄기밀도및잔디품질이향상된다는보고와같이본연구에서도케라틴아미노산비료를시비할때, 잔디의질소와칼륨의흡수가증가하여잔디의줄기밀도와생산량이증가하는결과를확인할수있었다. 고찰일반적으로아미노산은분해되어무기태질소로흡수되어동화되는것으로알려져있지만 Persson and Näsholm (2002) 는탄소와질소가동위원소로결합된아미노산을이용하여아미노산이분해되지않고식물의뿌리로흡수된다는것을보고하였다. 또한외부에서공급된아미노산은아미노산의종류에따라식물의 nitrate 흡수를촉진하기도
케라틴아미노산비료시비에따른크리핑벤트그래스의생육과품질변화 265 하고, 억제하기도한다 (Muller and Touraine, 1992). 대두에서는 arginine, alanine, β-alanine, asparagine, glutamine, methionine, aspartic acid, isoleucine 등이 nitrate 흡수를억제하는아미노산으로분류되었고 (Muller and Touraine, 1992), 밀에서는이들아미노산중에서 glutamine은 nitrate 흡수를증가시키나대부분의아미노산이 nitrate 흡수에영향을주지않았으며 (Rodgers and Barneix, 1993), 밀에서아미노산의처리는 ammonium의흡수는억제하는것으로나타났다 (Causin and Barneix, 1993). 이로써모든아미노산이식물의질소흡수에서동일한역할을하는것은아니며, 아미노산의종류, 식물의종류및질소의형태에따라식물의질소흡수가다르다는것을확인할수있다. 또한 Lui et al. (2005) 는 Muller and Touraine (1992) 의시험에서 nitrate 흡수를억제하는아미노산들을혼합하여 nitrate와함께공급하였을때, 아미노산처리농도가증가할수록 nitrate 의흡수가증가하여외부에서처리된아미노산의종류뿐아니라아미노산의처리농도가 nitrate 흡수에영향을주고있음을알수있다. Copper and Clackson (1989) 은이러한현상에대해식물은 amino-n pool을갖고있어아미노산형태의질소가식물의질소상과질소흡수를조절하는전달자역할을한다고보고하였다. 이후 Glass et al. (2001) 와 Vidmar et al. (2000) 은식물체중에있는아미노산인 glutamine 함량에따라식물의 nitrate와 ammonium의흡수를조절하는유전자를발현한다고보고하였다. Lui et al. (2005) 는아미노산처리농도에따라 nitrate 흡수와 nitrate 동화지수인 nitrate reductase activity (NRA) 가증가하여식물체즙액중 nitrate 의함량은일정범위내에서유지된다고보고하였다. 식물체중으로흡수된 nitrate는뿌리에서동화되어 glutamine과 asparagine의농도가증가하였고 (Aslam et al., 2001), nitrate 흡수량이증가할수록식물체내의 glutamate, glutamine, aspirate 및 asparagine의함량이증가한다 (Geneger et al., 2003). 식물의종류나질소의형태에따라차이는있으나식물체중에서 glutamate 와 glutamine이높게나타난것은이들아미노산들이식물의질소동화과정에서첫번째로생산되는아미노산이기때문이다 (Taiz and Zeiger, 2009). 식물체내에서아미노산은관다발조직중체관을통해이동하며, 체관의즙액중아미노산의함량과조성은식물의종류 (Muller and Touraine, 1992; Rodgers and Barneix, 1993), 지역및환경조건에따라그조성이다르게나타난다 (Raitio and Sarjala, 2000). 식물체중에서존재하는아미노산을이용하기위해서는즙액중아미노산을추출하여이용하는것보다단백질을분해하거나발효하여아미노산을생산한다 (Lee and Woo, 1992). 아미노산발효에대한연구는주로식품중단백질 을발효하는과정에서항산화성역할을하는기능성성분인핵산이나유리아미노산의생성과이를정량하고자하는노력이주를이루었다 (Lee and Woo, 1992; Lee et al., 1987; Ryu et al., 1988). Kai et al. (1990) 은발효과정에서발생한아미노산부산물의시비에의해작물생육효과가인정되어아미노산비료의원료로이용이가능하다고보고하였다. 최근에는아미노산발효액은친환경농업에서작물생육을위한유기농업자재로사용되고있다 (An et al., 2012). 발효액의아미노산의조성과함량은단백질원료의종류에따라다르며, 동물성단백질원료는주로산성아미노산이, 식물성단백질원료는염기성아미노산함량이높은것으로조사되었다 (Han et al., 2011; Yang et al., 1998). 아미노산비료는작물과잔디의생육과품질을향상시키나아미노산원료의종류에따라약간의차이를나타낸다 (Han et al., 2011; Kim et al., 2003; Kim et al., 2012; Kim et al., 2014). Kim et al. (2003) 은도축혈분에서유래된아미노산비료를시비하였을때, 잔디의뿌리길이, 예지물량및질소흡수가증가한다고보고하였고, Kim et al. (2012) 은식물성아미노산비료를시비하였을때, 질소흡수는증가하나뿌리길이나예지물량은증가하지않는다고보고하여아미노산비료의원료종류에따라차이를나타내었다. 이외에도아미노산비료의시비시식물생육에관여하는미생물의생육을촉진하여근권에서군집을이루고있었다 (Kim and Kim, 2006). 아미노산비료의시비는작물의질소, 칼륨및마그네슘의흡수가증가되어식물의엽록소함량이증가되었고, 잔디의엽색과생육이증가되었다 (Han et al., 2011; Kim et al., 2003; Moon et al., 2012). 특히, 기온이낮은초봄에엽색이증가하여그린업 (green up) 이증가하였고, 이는아미노산에의해질소동화속도가증가하여잔디의생육이증가하기때문이다 (Chang et al., 2010; Kim et al., 2003; Lui et al., 2005). 본연구에서도케라틴아미노산비료처리구에서잔디의질소흡수가증가하였고 (Kim et al., 2003), 그결과잔디줄기밀도가증가한것으로판단된다 (Lee et al., 2015). 비록케라틴아미노산비료처리에의해질소흡수증가로잔디품질중잔디의엽색지수나엽록소지수의변화는나타나지않았으나 Lee et al. (2015) 은잔디줄기밀도의증가는잔디의엽록소나엽색에기인한다고보고하여케라틴아미노산비료의시비는잔디중엽록소함량을증가시켜잔디의생육과시각적품질이향상되는것으로생각된다. 요 약 아미노산은식물에서질소동화과정에서생성되는대사물질이며, 단백질을발효하여얻어진부산물은아미노산비
266 조기웅 김영선 함선규 이재필 김두환 김우성 이긍주 료의원료로사용되고있다. 본연구는케라틴아미노산비료의시비에따른잔디의생육과품질의변화를확인하기위해엽색지수, 엽록소지수, 잔디줄기밀도, 잔디예지물, 잔디중양분함량및양분흡수량을조사하였다. 처리구는무처리구 (NF), 대조구 (CF), 케라틴아미노산비료추천량처리구 (CKF) 와배량처리구 (2CKF) 및케라틴아미노산비료단독처리구 (KF) 로구분되었다. 케라틴아미노산비료처리에후처리구별토양화학성, 잔디의엽색지수및엽록소지수의변화는나타나지않았다. 반면에잔디줄기밀도와잔디예지물은케라틴아미노산비료를시비한케라틴아미노산비료단독처리구나복합비료와함께처리한처리구에서각각 25~35% 와 11% 정도씩증가하였다. 잔디중양분함량은처리구별로비슷하였으나잔디의양분흡수량은질소와칼륨이 CKF 처리구에서증가하였다. 이결과들을종합해볼때, 크리핑벤트그래스에서케라틴아미노산비료의시비는잔디의질소와칼륨의흡수를촉진함으로써잔디줄기밀도와생육을증가시키는효과가있음을확인할수있었다. 주요어 : 크리핑벤트그래스, 케라틴아미노산비료, 잔디줄기밀도, 잔디품질및생육 Acknowledgments This research was supported by Bio-industry Technology Development Program (No. 312033-5), IPET (Korean Institute of Planning and Evaluation for Technology in Agriculture Food and Rural Affairs). References Ahn, Y.T., Kim, S.T., Kim, I.S., Kim, J.W., Kim, H.J., et al. 1992. Standard and practice for management in golf course. KTRI. Seongnam, Korea. (In Korean) An, N.H., Jo, Y.S., Jo, J.R., Kim, Y.K., Lee, Y.J., et al. 2012. The survey of actual using conditions of farm-made liquid fertilizers for cultivating environment-friendly agricultural products. J. Kor. Org. Agr. 20(3):345-356. (In Korean) Aslam, M., Travis, R.L. and Rains, D.W. 2001. Differential effect of amino acids on nitrate uptake and reduction systems in barley roots. Plant Science 160(2):219-228. Causin, H.F. and Barneix, A.J. 1993. Regulation of NH 4+ uptake in wheat plants: Effect of root ammonium concentration and amino acids. Plant and Soil 151:211-218. Chang, T.H., Gang, J.Y., Park, S.Y., Chang, S.W. and Lee, Y.S. 2010. Application of liquid amino-fertilizer for greenup promotion during spring season. Kor. J. Turfgrass Sci. 24(1):36-44. (In Korean) Cheon, B.D., Choi, I.S. and Kang, J.S. 2006. Effect of amino acid, polyamine, and flavonoid on the pollen germination of peach (Prunus Persia SIEB.) under low temperature condition. J. Life Sci. 16(5):711-715. (In Korean) Copper, H.D. and Clarkson, D.T. 1989. Cycling of amino-nitrogen and other nutrients between shoots and roots in cereals-a possible mechanism integrating shoot and root in the regulation of nutrient uptake. J. Exp. Bot. 216(40):753-762. Geneger, M., Jaeggi, M., Siegwolf, R., Chalot, M., Frossard, E., et al. 2003. Rapid 15N uptake and metabolism in fine roots Norway spruce. Trees. 17:144-152. Glass, A.D.M., Britto, D.T., Kaiser, B.N., Kronzucker, H.J., Kumar, A., et al. 2001. Nitrogen transport in plants, with emphasis on the regulation of uxes to match plant demand. Zeitschrift für Panzenernährung Bodenkunde 164(2):199 207. Ham, S.K., Kim, Y.S. and Park, C.H. 2010. The growth effects of creeping bentgrass by SCB (Slurry composting and Biofiltration) liquid fertilizer application. Kor. Turfgrass Sci. 24(1):56-61. (In Korean) Han, S.G., Cho, C.H. and Jeon, H.K. 2011. Effect of the hydrolysate of pigs hoof on plant growth and physic-chemical properties. Korean J. Soil Sci. Fert. 44(2):200-205. (In Korean) Kai., H., Ueda, T. and Sakaguchi, M. 1990. Antimicrobial activity of bark-compost extracts. Soil Biol. Biochem. 22:983-986. Kim, D.I. and Kim, D.H. 2006. Bacterial community structure and diversity of the Zoysia japonica soil treated with liquid fertilizer containing amino acids. Kor. J. Microbiol. 42(2):103-110. (In Korean) Kim, J.W., Kim, C.H., Baeck, J.H., Lee, D.J., Choi, Y.S., et al. 2001. An introduction to soil and fertilizer. Sunjin Press, Goyang, Korea. pp. 240-258. (In Korean) Kim, Y.S., Ham, S.K., Lee, J.P. and Hwang, Y.S. 2012. The growth effects of creeping bentgrass by application of liquid fertilizer with saponin and liquid fertilizer with amino acid. Asian J. Turfgrass Sci. 26(1):54-59. (In Korean) Kim, Y.S., Ham, S.K., Lee, J.P., Hwang, Y.S. and Lee, K.S. 2014. Effects of two amino acid fertilizers on growth of creeping bentgrass and nitrogen uptake. Weed Turf. Sci. 3(3):246-252. (In Korean) Kim, Y.S., Lee, K.S. and Ham, S.K. 2003. The effect of liquid fertilizer contained amino acids on the growth of bentgrass (Agrostis palustris Huds) and the chemical characteristics of soil. Kor. Turfgrass Sci. 17(4):147-154. (In Korean) Lee, J.J., Kim, Y.S., Ham, S.K., Lee, C.E. and Lee, G.J. 2015. Growth and quality improvement of creeping bentgrass by two fertilizers containing Trichoderma species. Weed Turf. Sci. 4(3):249-255. (In Korean) Lee, M.S., Kim, K.H. and Lee, G.J. 1987. Microbiological studies
케라틴아미노산비료시비에따른크리핑벤트그래스의생육과품질변화 267 and biochemical changes in fermenting soybean curd residue during fermentation. Korean J. Food Sci. Technol. 19(6):520-527. (In Korean) Lee, S.C. and Woo, K.L. 1992. A study on development of effective utilization method of skipjack tuna viscera. Korean J. Food Sci. Technol. 24(1):86-91. (In Korean) Liu, X.Q., Kim, Y.S. and Lee, K.S. 2005. The effect of mixed amino acids on nitrate uptake and nitrate assimilation in leafy radish. Kor. J. Environ. Agri. 24(3):245-252. Moon, Y.H., Ahn, B.K., Cheong, S.S. and Lee, J.H. 2012. Foliar fertilization effect of environment-friendly organic agricultural materials for grape cultivation. Korean J. Soil Sci. Fert. 45(5):760-763. (In Korean) - Muller, B. and Touraine, B. 1992. Inhibition of NO 3 uptake by various phloem-translocated amino acids in soybean seedling. J. Exp. Bot. 43:617-623. NIAST (National Institute of Agricultural Science and Technology). 1998. The analysis of soil and plant. NIAST. Iksan, Korea. (In Korean) Persson, J. and Näsholm, T. 2002. Regulation of amino acid uptake in conifers by exogenous and endogenous nitrogen. Planta 215:639-644. Raitio, H. and Sarjala, T. 2000. Effect of provenace on free amino acid and chemical composition of Scots pine needles. Plant and Soil 221:231-238. Rodgers, C.O. and Barneix, A.J. 1993. The effect of amino acids on the regulation of nitrate uptake by wheat seedings. J. Plant Nutri. 16(2):337-348. Ryu, H.S., Moon, J.H. and Lee, K.H. 1988. Conditions of quantitative analysis for free amino acid in fermented proteins. J. Korean Soc. Food Nutr. 17(2):136-143. (In Korean) Taiz, L. and Zeiger, E. 2009. Plant physiology. Life Science Seoul, Korea. pp. 295-302. (In Korean) Vidmar, J.J., Zhuo, D., Siddiqi, M.Y., Schjoerring, J.K., Touraine, B., et al. 2000. Regulation of HvNRT2 expression and high-afnity nitrate inux in roots of Hordeum vulgare by ammonium and amino acids. Plant Physiology 123:307-318. Yang, J.E., Kim, J.J., Shin, M.K. and Park, Y.H. 1998. Amino acids in humic acids extracted from organic by product fertilizers. Korean J. Soil Sci. Fert. 31(2):128-136. (In Korean)