4 제 1 발표장 (1 일목 ) 윤상훈 1, 조해성 2, 김종암 3*, 신상준 4 FLUID-STRUCTURE INTERACTION ANALYSIS ON EFFECT OF FLEXIBLE WING OF THE FLAPPING MICRO AERIAL VECHICLES S.H. Yoon, H. Cho, C. Kim and S.J. Shin 1. 20cm,.,,.,., -. 3 -.. 2. 2.1 Arbitrary-Lagrangian-Eulerian (ALE) framework 3 Navier-Stokes. time-accurate artificial-compressibility Corresponding author E-mail: chongam@snu.ac.kr. Roe s approximate Riemann solver, third-order linear variable reconstruction. dual-time stepping lower-upper symmetric gauss-seidel (LU-SGS). (1).[1] transfinite interpolation, normal grid velocity geometric conservation law (GCL). 2.2 [2] CR. CR CR. (2). (3). CR. 2.3. /., common-refinement radial basis function.
(1 일목 ) 제 1 발표장 5 2.4 Zimmerman (L2B1, L3B1) [3]. 3.. Fig 1, Table 1.[4] 5, 3 3~5 (14.8g). Fig 2,. Fig 3 LEV, shedding. Fluid property Solid property FMAV Wing Flapping frequency Flow speed Reduced Reynolds [Hz] [m/s] frequency number 25 10.38 0.171 15520 Material Elastic Density modulus[gpa] [kg/m^3] Thickness[m] Beam (Carbon UD) 1740 =0.001 Shell 1 (Carbon UD) 1740 0.0002 Shell 2 (Miler) 1160 0.000025 Table. 1 Fig. 1 a,b.:, c.:, d.: Fig. 2 a.: (Z-displacement), b.: (Q-isosurfaces) contour Fig. 3 4. 3 -..,.. KISTI (KSC-2018-C3-0009),. (UD130070ID). [1] J. Kim, C. Kim, Computational Investigation of Three -Dimensional Unsteady Flowfield Characteristics Around Insects Flapping Flight, AIAA Journal, Vol. 49, 2011 [2] H. Cho, et al., Flapping Wing Fluid-Structure Interaction Analysis using Co-rotational Triangular Planar Structural Element, AIAA Journal, Vol. 54, 2016 [3] A. Gogulapati. et al., Approximate Aeroelastic Modeling of Flapping Wings in Hover, AIAA Journal, 2013 [4] J. Lee, C. Kim, Development of a Mechanism for Flapping Wing Micro Aerial Vehicle, ICCAS 2017
6 제 1 발표장 (1 일목 ) 천기현 1, 석우찬 1, 박종열 1, 서정화 2, 이신형 1,2* VIRTUAL CAPTIVE MODEL TESTS BASED ON CFD FOR HYDRODYNAMIC MANEUVERING COEFFICIENTS FOR SURFACE SHIPS K.H. Cheon, W.C. Seok, J.Y. Park, J.H. Seo and S.H. Rhee 1...,..[1] [2,3,4], OpenFOAM SNUFOAM., KRISO Container Ship(KCS).,. Corresponding author E-mail: shr@snu.ac.kr 2. 2.1 (MOERI) KCS, (1)-(2). Realizable k-ε, - Static tests SIMPLE Algorithm, Dynamic tests PIMPLE Algorithm. 2.5L < x < 4L, -2.5L < y < 2.5L, -2.499L < z < 0.001L. STAR-CCM+, 100. Table 1. Types Conditions Static Static drift tests Dynamic Table. 1 Virtual PMM test conditions Pure sway tests Pure yaw tests Yaw with drift tests,
(1 일목 ) 제 1 발표장 7 2.2 KCS. [5] 12.5%. 2.2.1 Static & Dyanmic tests Static tests β.,. Dynamic tests Static tests, Pure sway tests. Pure yaw, Yaw with drift tests,. 2.2.2 Static tests, Dynamic tests,. Fig. 1 Static tests. Sway force Yaw moment, [2]. Static tests [2],, 13%. Fig. 1 Yaw moment, Yaw moment, KCS. 3. KCS.,. SNUFOAM. KCS. 0.2 0.15 0.1 0.05 0-0.05-0.1-0.15 SNU Fitting EFD(Sung, 2015) -0.2-20 -10 0 10 20 (deg.) 0.06 0.04 0.02 0-0.02-0.04 Fig. 1 Static test results -0.06-20 -10 0 10 20 (deg.) (NO.2016R1D1A1A09917670, ). [1] 2011, Shin, HK. and Choi, SH., Prediction of Maneuverability of KCS Using Captive Model Test," Journal of the Society of Naval Architects of Korea.., Vol.48, p.465-472 [2] 2015, Sung, YJ et al., Prediction of Ship Manoeuvering Performance Based on Virtual Capive Model Tests," Journal of the Society of Naval Architects of Korea.., Vol.52, p.407-417 [3] 2012, Simonsen, CD et al., Maneuvering predictions in the early design phase using CFD generated PMM data," Proceedings of 29 th p.1057-1074 Symposium on Naval Hydrodynamics., [4] 2015, Lee, SW et al., A numerical study on manoeuvrability of wind turbine installation vessel using OpenFOAM," Int. J. Nav. Archit. Ocean Eng., Vol7, p. 466-477 [5] 2005, Kim, J et al., RANS Simulations for KRISO Container Ship and VLCC Tanker," Journal of the Society of Naval Architects of Korea.., Vol.42, p.593-600
8 제 1 발표장 (1 일목 ) 김상혁 1, 김광용 2* EFFECTS OF INSTALLATION CONDITIONS OF FLUIDIC OSCILLATORS ON CONTROL OF FLOW SEPARATION S.H. Kim and K.Y. Kim 1. (flow separation). (fluidic oscillator) [1].,. [2]... 이러한 [3] (pitch angle)... Corresponding author E-mail: kykim@inha.ac.kr Fig. 1 Computational domain and boundary conditions 2. Borgmann [4] ANSYS CFX 15.0 Reynolds-Averaged Navier-Stokes(URANS) Shear Stress Transport(SST)
(1 일목 ) 제 1 발표장 9 Table. 1 Installation locations of fluidic oscillators X/C Case1 0.054 Case2 0.36 Case3 0.62 Case4 0.65 Case5 0.68 Case6 0.71 Case7 0.74. Fig. 1 4 (X/C = 0.68).. (periodic). C (chord) 558.8mm Table. 1. Borgmann [4] (figure of merit, FM). C p, inviscid baseline. ΔC p Case baseline. 3. Fig. 2. 1 0. Fig. 2 (X/C=0.5) Case1, Case2 (X/C = 0.74) Case7 Case5(X/C = 0.68),. (1) Fig. 2 Figure of merit on various location of fluidic oscillators. 4. RANS.. [1] 2013, Seele, R. et al., Performance Enhancement of a Vertical Tail Model with Sweeping Jet Actuator, AIAA paper, 411-2013. [2] 2016, Melton, LT.P. and Koklu, M., Active Flow Control Using Sweeping Jet Actuation on a Semi-Span Wing Model, 54th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, (AIAA 2016-1817). [3] 2017, Jeong, H.S. and Kim, K.Y., Shape Optimization of a Feedback-Channel Fluidic Oscillator, Engineering Applications of Computational Fluid Mechanics, Vol. 12, No. 1, pp. 169-181 [4] 2017, Borgmann, D. et al., Experimental Study of Discrete Jet Forcing for Flow Separation Control on a Wall Mounted Hump, 55th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, (AIAA 2017-1450).
10 제 1 발표장 (1 일목 ) 강형석 1*, 박래준 2 CFD ANALYSIS FOR HYDROGEN COMBUSTION PHENOMENON UNDER STEAM PRESENCE H.S. Kang and R.-J. Park 1. [1]. MAAP, GASFLOW COM3D. MAAP, GASFLOW, COM3D. APR1400 [1]., COM3D. THAI HD-15/22/24[2] COM3D. 2. 2.1 THAI HD-15/22/24 [2] Becker Technologies THAI 10% 0%, 25% 48%,. Test ID HD-15/22/24, Table 1. THAI Fig. 1 9.2 m, 3.2 m, 60 m 3 vessel. vessel 0.5 m. Table. 1 Initial Conditions of Tests HD-15/22/24 Fig. 1 THAI Test Facility 2.2 COM3D [3] HD-15/22/24 COM3D Navier-Stokes, KYLCOM+, standard k-ε turbulent model low Re wall function model. KYLCOM+, (1). (1), f progress variable f=0, f=1. Ф normalized chemical reaction rate, (S t ). Bradly ( (2)), Kawanabe ( (3)) Schmidt ( (4)).
(1 일목 ) 제 1 발표장 11 r f rui f æ f ö + = ç rdt + F t xi xi è xi ø (1) S æ ö ç ç è ø è ø (2) 1 ' u æ LS 6 L ö t = SL S ç L c 0.7 ' æ æ u öö St = SL ç 1+ 1.25ç è è SL øø (3) S t = S + L ' u 1 1+ Da 2 (4) 2.3 COM3D THAI 1.6 m COM3D Fig. 2. HD-15 COM3D 3 10% 5.5 bar. Bradley, Kawanabe Schmidt 2 s Bradley 3 s 1 s. HD-22/24 COM3D. HD-22 COM3D 3 8.5% 5.1 bar. 2.0 s 2.8 s,. HD-24 COM3D 3 14% 4.8 bar. 6.3 s 6.9 s. Fig. 2 COM3D Analysis Results 3. 10% 0%, 25% 48% THAIHD-15/22/24 Bradly, Kawanabe Schimdt COM3D,.. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science, ICT, and Future Planning) (No. 2016M2C6A1004893) [1] 2017, 3, APR1400,,. [2] 2010, T. Kanzleither, et al., Hydrogen and Fission Product Issues Relevant for Containment Safety Assessment under Severe Accident Conditions, Final Report, Report No. 1501326-FR1. [3] 2015, A. Kotchourko, et al., COM3D Tutorial Guide, Version 4.10, KIT.
12 제 1 발표장 (1 일목 ) 서정화 1*, 정회성 2, 이신형 1,2* PROVISION OF EXPERIMENTAL DATABASE FOR VALIDATION OF COMPUTATIONAL FLUID DYNAMICS ANALYSIS: RESISTANCE AND PROPULSION OF MODEL SHIPS J. Seo, H. Jeong, and S.H. Rhee 1. (Computational Fluid Dynamics, CFD).,.[1],,.,, /,,. CFD. / CFD, CFD. 2. - - CFD.,, CFD,..,. 2%.. Momentum disk.,. 3. Global force measurement, CFD. CFD. Corresponding author E-mail: thamjang@snu.ac.kr [1] 2001, Kim, W. J., Van, S. H., & Kim, D. H., Measurements of flows around modern commercial ship models, Exp. Fluids, Vol. 31,-5, pp. 567-578.