2007 년상반기 FPD 전문가양성교육세미나 PDP 개론및구동원리 최은하 대전입자빔및플라스마연구실 / PDP 연구센터광운대학교전자물리학과 ehchoi@kw.ac.kr http://pdpcenter.kw.ac.kr Kwangwoon Univ. / PDP research center / PDP Research Center 0 All contents remain the property of Displaybank and the author
차 례 1. PDP 개론 1-1. PDP 소개및전극구조 1-2. PDP 제조공정 1-3. PDP 기체방전 1-4. PDP 플라스마및이의특성 2. PDP 구동원리 2-1. PDP 구동특징 2-2. ADS 구동법 3. 성능향상을위한 PDP 기술동향 4. 요약 Kwangwoon Univ. / PDP research center 1 1
Home of tomorrow displays are everywhere! Kwangwoon Univ. / PDP research center 2 2
Display Devices CRT LCD Rear Projection PDP Kwangwoon Univ. / PDP research center 3 3
1. Plasma Display Panel 개론 1-1. PDP 소개및전극구조 Kwangwoon Univ. / PDP research center 4 4
PDP 와플라스마의의미 PDP 의명칭 PDP: Plasma Display Panel 의약자 - 기체방전을이용한표시소자 - 1964 년 Bitzer and Slottow (Illionis Univ.) 로부터유래됨. (AC-PDP 의최초발명자들임. 기존은모두 DC type 이었음.) 최초의명칭은 gas-discharge devices (1927) 플라스마란? 플라스마 : 방전에의해서발생되는 전리된기체 를의미함. - Langmuir에의해서붙여진이름. ( weakly ionized gas ) ionization degree δ - δ < 10-4 : weakly ionized plasmas ( cold plasmas ) - δ > 10-4 : strongly ionize plasmas ( hot plasmas ) PDP: δ < 10-5 플라스마의발생 : 제4의물질상태 에너지크기 고체액체기체플라즈마 e e + + + e + + e e Kwangwoon Univ. / PDP research center 5 5
PDP 의종류 전극이방전공간에그대로노출되어있어전압이인가되는동안방전전류가흐르게된다. 따라서전류제한을위한저항을외부적으로만들어주어야하는단점이있다. 전극이방전공간에노출이되어있어서수명이짧은단점이있다. [ DC 형 ] [ AC 대향형 ] 전극이유전체층에덮여있어자연스러운용량성형성으로전류가제한되며, 방전시이온의충격으로부터전극을보호하므로 DC 형에비하여수명이길다. 단색표시에는용이하나컬러표시를위해형광체를도포하여사용하면이온충격에의한수명에문제가발생한다. 면방전형은표시방전이일어나는전극부분을한쪽으로모으고, 형광체를반대쪽에위치시켜방전시이온충격으로인한형광체열화를최소화함으로 AC 대향형의문제점을극복하였다. [ AC 면방전형 ] Kwangwoon Univ. / PDP research center 6 6
History Kwangwoon Univ. / PDP research center 7 7
Plasma Display Panel Sustaining electrode(ito) Front glass Dielectric layer MgO layer Bus electrode Barrier Ribs Addressing electrode Phosphors(RGB) PDP 방전혼합기체 He-Ne(26 %)-Xe(4 %)/Ne-Xe(4 %) 400 torr Kwangwoon Univ. / PDP research center 8 8
AC 형 PDP 의구조 유지전극 (ITO) 유전체층 가시광 Bus 전극 SiO2 층 보호층 (MgO) 격벽 형광체층 유전체층 어드레스전극 방전 ( 자외선 ) 형광체발광 Kwangwoon Univ. / PDP research center 9 9
What is a PDP? A Flat panel display using phosphor luminescence by UV photons emitted from discharge plasmas. PDP의장점대형화 (40인치이상 ) 가볍고얇은구조 160도이상의넓은시야각저가 PDP 의단점 : 효율 ( 현 1.8 lm/w) Discharge Discharge Discharge White light emission Kwangwoon Univ. / PDP research center 10 10
Operation & Research issues PDP cell uses the mixture gases of Xe, Ne, and He at the pressure range of 400 ~ 500 Torr. Research issues of present PDPs Low luminous efficiency High power consumption Image quality Lifetime High price Xe* Xe* Xe* Xe* visible light Phosphor layer VUV 1.5 lm/w 5.0 lm/w Over 3.0 lm/w Present PDPs CRTs Future PDPs Kwangwoon Univ. / PDP research center 11 11
What are the merits of PDP? 대형화용이 40 inch 80 inch 60 inch 박형 1/10 of CRT 경량 1/6 of CRT 넓은시야각 화면 Uniformity 좋음 자계영향없음 N S 160 o or more PDP CRT Kwangwoon Univ. / PDP research center 12 12
LCD TV vs PDP TV Power consumption better! PDP is Image quality better! PDP is Average brightness ~ 500 cd/m 2 Peak brightness ~ 1100 cd/m 2 Kwangwoon Univ. / PDP research center 13 13
PDP 와 LCD 의 Main Zone 비교 Main zone of PDP is Larger than that of TFT-LCD - PDP : 40 ~50 / TFT : 30 Maximum size of PDP is unlimited (PDP 100 / TFT 50 ) FHD (1920 1080) Future LCD-TV Future PDP HD (1280 768) Current LCD-TV Current PDP SD (640 480) 10 15 20 30 40 50 60 70 inch Kwangwoon Univ. / PDP research center 14 14
세계최대 PDP TV (SDI)-102 inch Display 장치에서 PDP 는대형화디지털화의첨단을주도하는 Device 이다. 102nch PDP PDP Kwangwoon Univ. / PDP research center 15 15
Power Consumption of PDP and LCD TV Kwangwoon Univ. / PDP research center 16 16
1. Plasma Display Panel 개론 1-2. PDP 제조공정 Kwangwoon Univ. / PDP research center 17 17
AC-PDP 의제조공정 ( 상판 1) ITO-glass 세정 ITO 전극패턴 BUS 전극패턴 Black Stripe 패턴 ITO가 coating 되어있는유리기판상의오염물질을제거함. (cf. ITO 패턴을유리기판에직접형성할경우도있음 ) 중성세제, NaOH 등사용 Wet-station 사용 ITO 전극을설계치대로패턴화시킴. 노광법을많이사용함. DFR 라미네이팅또는 PR 코팅 노광 ( 패턴마스크사용 ) 현상 에칭 박리 패턴검사 라미네이터, 노광기, Wet-station BUS 전극 ( 보조전극 ) 을형성함. 인쇄법 (Ag paste), 포토법 (Ag 감광성 paste), Cr/Cu(Al)/Cr 박막적층 ( 포토에칭법, lift-off 법등 ) FODEL 인쇄법 : 전극 paste 전면인쇄 건조 노광 ( 패턴마스크 ) 현상 소성 패턴검사 비방전영역에외광반사억제용패턴형성 인쇄법, 포토법, BUS 와동시소성법등 Kwangwoon Univ. / PDP research center 18 18
AC-PDP 의제조공정 ( 상판 2) 투명유전층전면도포 전극과방전가스간을절연시킴. 가시광투과율이좋아야함. PbO(-SiO 2 -B 2 O 3 ) 를많이사용. 무연재 : P 2 O 3, B 2 O 3, ZnO, SiO 2, Al 2 O 3 인쇄법을많이사용. 일부업체는 Green-sheet laminating 법. Sealing 용 Frit glass 도포 상판과하판과의밀봉목적. frit glass 를하판쪽에도포하기도함. 연화점이배기공정온도보다높아야함. (PbO,SiO2,B2O3) + Vehicle( 수지 + 용제 ) Dispenser 사용. MgO 보호막형성 투명유전층위에 MgO 막형성 (7,000A ) 1 2 차전자방출 2 유전층보호막 MgO 외의대체물질을아직찾지못함. E-beam evaporation 법, Ion-sputtering 법, Ion-plating 법등. Kwangwoon Univ. / PDP research center 19 19
AC-PDP 의제조공정 ( 하판 1) Glass 기판세정 유리기판상의오염물질을제거함. 중성세제, NaOH 등사용 Wet-station 사용 어드레스전극패턴 하판유전층형성 Black Stripe 패턴 어드레스전극을패턴화시킴. 노광법을많이사용함. 상판의 BUS 전극공정과거의유사함. 인쇄법의경우라미네이터, 노광기, Wet-station 등의장비사용. 전극과방전가스간을절연시킴. 가시광반사율이좋아야함. 백색안료로ZrO 2, B 3 N 4, TiO 2 사용. 무연재 : P 2 O 3, B 2 O 3, ZnO, SiO 2, Al 2 O 3 인쇄법, green-sheet 법, 테이블코팅법, 격벽과동시제작법등. 셀별로독립적인방전공간확보역할과형광체가도포되는기반역할. 모유리 (Pb-B-Si-Al-O) 에 filler 및안료 ( 흑색또는백색 ) 를첨가. 인쇄법, 샌드블라스팅법, 에칭법, lift-off 법, 감광성페이스트법, 몰딩법등. 인쇄법 : ( 인쇄-건조 ) 를 10회 ~15회정도반복한후최종적으로소성함. Kwangwoon Univ. / PDP research center 20 20
AC-PDP 의제조공정 ( 하판 2+ 봉착및가스주입 ) 형광층도포 격벽의라인별또는셀별로 R, G, B 의가시광을내는형광체를격벽면에도포함. 모유리 (Pb-B-Si-Al-O) 에 filler 및안료 ( 흑색또는백색 ) 를첨가. 인쇄법, 샌드블라스팅법, 에칭법, lift-off 법, 감광성페이스트법, 프레스법등. 인쇄법 : ( 인쇄 - 건조 ) 를 10 회 ~15 회정도반복한후최종적으로소성함. 상 하판봉착 가열배기 가스주입 tip-off Aging [ 완성 ] Kwangwoon Univ. / PDP research center 21 21 gas torch
1. Plasma Display Panel 개론 1-3. PDP 기체방전 (PDP gas discharge) Kwangwoon Univ. / PDP research center 22 22
원자의여기발광 He Metastable ( 준안정원자 ~ ms) 바닥상태들뜬상태 ( ~ ns) 이온화 E = hv = hλ/c 기체 최저여기전압 (V) 준안정전압 여기파장 (V) 전리전압 (V) He 21.2 19.8 58.4 24.6 Ne 16.5 16.62 74.4 21.6 Ar 11.6 11.55 107 15.8 Kr 9.98 9.91 124 14.0 Xe 8.45 8.32 147 12.1 Kwangwoon Univ. / PDP research center 23 23
Plasma Generation 1) Gases 기체 공명전위 (ev) τ γ (nsec) 준안정준위 (ev) τ m (sec) 공명선 (nm) 이온화에너지 (ev) He 21.21 0.56 19.80 (6 10 5,2 10-2 ) 58.4 24.58 Ne 16.85 20.70 16.62 70.8 73.4 21.56 Ar 11.61 10.20 11.55 1.3 107.0 15.76 Kr 10.02 4.40 9.91 1 124.0 14.00 Xe 8.45 3.80 8.32 147.0 12.13 Hg 4.89 4.67 253.7 10.43 Xe * (147nm), Xe+Xe * Xe 2* (173nm) (Excited Dimer Rad.) Hg : Evaporation temp.(40 ~140 ) depends on pressure(10torr~100torr) Kwangwoon Univ. / PDP research center 24 24
기체의충돌 Elastic Collision & Inelastic Collision Elastic Collision Cross Section Kwangwoon Univ. / PDP research center 25 25
Impact Ionization Cross Section Kwangwoon Univ. / PDP research center 26 26
방전의발생 Gas R V N ~ N 0 exp(αd) : α = 충돌전리계수 자속방전 I i I i +J A A(I i +J) I0 I 0 = A(I 1 + J) J = ra(i 1 + J) J I 0 = [A/(1-rA)]xI 1 ra = rexp(αd) = 1 r 교류형 AC PDP Kwangwoon Univ. / PDP research center 27 27
Secondary Electron Emission Coefficient (Υ) from MgO Protective Layer MgO cathode I i I e =γi i Ie Secondary Electron Emission Coefficient γ = Ii + Ε ι <100eV Auger s potential neutralization mechanism for law ion energy E i Secondary electron γ 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.07 0.06 Ne+ (111) (200) (220) 40 60 80 100 120 140 160 180 200 Acceleration Voltage [V] γ 0.050 0.045 0.040 0.035 0.030 0.025 0.020 0.015 (111) (200) (220) Xe+ 0.010 40 60 80 100 120 140 160 180 200 Acceleration Voltage [V] Kwangwoon Univ. / PDP research center 28 28
Gamma-FIB (Focused Ion Beam) Device Heating Filament Thermal or Cold Cathode Electron Source Anode MFC(He,Ne,Ar,Xe Gas) Ionized region & Accelerated region Source P/S Electric Field Accelerated Ion Beam Einzel Lens Quadrupole Deflector Collector +100 ~ -100V Copper Pad (Electrode for Discharge) Glass MgO A Kwangwoon Univ. / PDP research center 29 29
PDP Plasma Breakdown and Self-sustaining Condition Cathode (sustain) X Y anode (sustain/scan) Secondary electron emission from MgO layer e 1 electron Volume ionization (avalanches) γ(m-1) electrons γ ( M 1) = 1, where d αd 1 M = e = 1+ γ 1 αd = ln(1 + ) γ and α = Ap exp( Bε i / VB ) where ε i : ionization energy Apd Finally, VB = Pashen' s breakdown law Bpd ln 1 ln(1 + ) γ M electrons (M-1) ions Kwangwoon Univ. / PDP research center 30 30
AC-PDP s Breakdown Voltage Paschen s Law Firing Voltage(V) 380 360 340 320 300 280 260 240 Paschen Breakdown Characteristics on Electrode gap He+Ne+Xe 80μm 110μm 140μm The breakdown voltage in the PDP cell increases as the electrode gap is increased for given operating gas pressure. 220 200 0 100 200 300 400 500 600 700 Pressure(Torr) Kwangwoon Univ. / PDP research center 31 31
AC-PDP s Breakdown Voltage Paschen s Law 400 Paschen Breakdown Characteristics in Ne-Xe and He-Ne Ne-Xe Mixture Gas Frequency = 50 khz Electrode Gap =80μm 360 Ne + Xe (10%) The minimum breakdown voltages Firing Voltage [V] 320 280 240 Ne + Xe 7% Ne + Xe 4% Ne + Xe 2% Ne only He + Ne 27% + Xe 3% Ne + Xe 1% are found to be raised up as the Xe gas mixing ratio to Ne is increased. 200 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Pd [Torr-cm] Kwangwoon Univ. / PDP research center 32 32
Experimental results for various gases @ 80 ev ion energy 0.14 0.12 γ of MgO single crystal 80eV ion energy He(E i =24.58eV) 0.10 Ne(E i =21.56eV) γ 0.08 0.06 0.04 Xe(E i =12.13eV) N 2 (E i =14.54eV) Ar(E i =15.76eV) 0.02 0.00 E io =8.43eV 6 8 10 12 14 16 18 20 22 24 26 ionized energy [ev] Kwangwoon Univ. / PDP research center 33 33
1. Plasma Display Panel 개론 1-4. PDP 플라스마및이의특성 Kwangwoon Univ. / PDP research center 34 34
AC-PDP Electro-Optical Characteristics Monochromator & SFICCD Camera Exp- setup SFICCD Camera (V - Tek) Monochromator (Acton Research co.) Kwangwoon Univ. / PDP research center 35 35
AC-PDP Electro-Optical Characteristics Spectral emission from PDP cells : VUV (147, 173nm), IR (823, 828nm) Inte nsity (arb.units) 70000 60000 50000 40000 30000 20000 10000 Ne+Xe(4%) Ne 585nm green phosphor blue phosphor red phosphor Ne 703.2nm Xe 823.2nm Xe 828nm 0 400 500 600 700 800 900 Wavelength (nm) IR (823, 828nm) Spectrum 140 145 150 155 160 165 170 175 180 Wavelength (nm) 600Torr 400Torr VUV (147, 173nm) Spectrum 70000 Intensity (arb. units) 200Torr Pressure (Torr) Kwangwoon Univ. / PDP research center 36 36-49 -
미소방전플라스마이온밀도와 VUV 147nm 효율과의관계 Ion density VUV Efficiency 5.0 9.0 8.5 f = 100 khz p = 400 Torr 4.5 4.0 pressure = 400 Torr frequency = 100 khz Ion Density(x10 11 cm -3 ) 8.0 7.5 7.0 6.5 6.0 VUV Efficiency (arb.units) 3.5 3.0 2.5 2.0 1.5 5.5 0 2 4 6 8 10 Xe Mixture Ratio (%) 1.0 0.5 0 2 4 6 8 10 Xe Mixture Ratio (%) Kwangwoon Univ. / PDP research center 37 37
PDP 미소방전플라스마밀도및전자온도측정 (3 차원 ) Temperature(eV) 8 6 4 2 Temperature Density 30 24 18 12 6 0-6 Density( x10 11 cm -3 ) Temperature(eV) 6 4 2 Temperature Density 16 14 12 10 8 6 4 Density( x10 11 cm -3 ) 0-150 -100-50 0 50 100 150 Distance(um) 0 2-150 -100-50 0 50 100 150 Distance(um) Ion density and electron temperature across the gap distance (Y-axis) Ion density and electron temperature across the gap distance (Y-axis) under He(70%)+Ne(26%)+Xe(4%) mixtures under Ne(96%)+Xe(4%) mixtures 50μm 120μm Gas Ion density (x10 11 cm -3 ) T e (ev) Ternary gas 3.81 ~ 20 1.77 ~ 3.73 50μm Binary gas 8.3 ~ 11.1 1.2 ~ 1.6 Kwangwoon Univ. / PDP research center 38 38
Xe 혼합비율에따른 Xe 여기종밀도측정 (823.1nm) Excited Xe Atom Density [cm -3 ] 3.0x10 12 2.7x10 12 2.4x10 12 2.1x10 12 1.8x10 12 1.5x10 12 1.2x10 12 9.0x10 11 6.0x10 11 3.0x10 11 0.0 Ne-Xe (1%) Ne-Xe (4%) Ne-Xe (10%) 0 100 200 300 400 500 600 700 800 Positon [um] Kwangwoon Univ. / PDP research center 39 39
Spatiotemporal behavior of excited Xe(1s 5 ) atoms density Stripe Barrier rib Sustain Electrode Closed Barrier rib Anode Cathode Anode Cathode 1200 ns 600 ns 1300 ns ITO ITO 700 ns 1400 ns 710 ns 1500 ns 750 ns 1600 ns 800 ns 1700 ns 900 ns 1800 ns 1000 ns 1.28 x 10 13 cm -3 1.45 x 10 13 cm -3 1900 ns 1100 ns 2000 ns Kwangwoon Univ. / PDP research center 40 40
2 원 /3 원혼합기체조성비에따른 VUV Efficiency VUV Efficiency (arb. Units) 30 25 20 15 10 5 0 400 Torr Ne-Xe (%) He(70%)-Ne-Xe (%) 0 2 4 6 8 10 12 14 16 VUV Efficiency (arb. Units) 45 40 35 30 25 20 15 10 5 0 Xe 15% Ne-Xe(%) He(70%)-Ne-Xe(%) 200 300 400 500 Xe mixture ratio (%) Pressure (Torr) VUV Efficiency versus XMF at 400 Torr VUV Efficiency versus pressure at XMF 15% The relative VUV efficiency has been obtained by dividing the sum of VUV intensities from 140 nm to 180 nm by the discharge power Kwangwoon Univ. / PDP research center 41 41
Decay time of VUV versus gas pressure 1.6 4% 7% 10% 15% 2.7 2.6 2.5 4 % 7 % 10 % 15 % Decay time (μs) 1.4 1.2 Decay time (μs) 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.0 200 250 300 350 400 450 500 1.5 200 250 300 350 400 450 500 Pressure (Torr) Pressure (Torr) The Decay time of VUV 147 nm of Ne-Xe The Decay time of VUV 173 nm of Ne-Xe Kwangwoon Univ. / PDP research center 42 42
2. Plasma Display Panel 구동원리 2-1. PDP 구동특징 Kwangwoon Univ. / PDP research center 43 43
Gray scale 표현 1 Frame ; 칼라및음영에대한완전한정보를수록한 1 장의사진 1 Frame = 16.7msec ( T=1/f ) 사람의눈은 1/60 초사이에눈으로들어오는光의총량 ( 적분치 ) 을일정한변하지않는광량으로인식. Frame Frame Odd field Even field Frame SF-1 SF-2 SF-3 Frame 256 계조구현 (2 8 ) Frame Frame SF-8 Movies (24 frames/sec) TV(Interlace scan) (60 frames/sec = Odd + Even field) Matrix Panel(8sub-field) (60 frames/sec) 05 PDP winter school, C. W. Lee, Plasma lamp Kwangwoon Univ. / PDP research center 44 44
Matrix Panel 의다중구동 (PDP) 신호전극전원 V d S 1 R D 1 D 2 D 3 D 4 방전전압 V 방전의임계 (threshold) 값 R=0Ω Vf 700kΩ Vs S 2 방전전류 I S 3 S 4 Ex) Vf = 120 V, Vd, Vs=? Vd - Vs Vf Vd, Vs < Vf S 5 주사전극전원 Vs 05 PDP winter school, C. W. Lee, Plasma lamp Kwangwoon Univ. / PDP research center 45 45
임계값을이용한화상표시 S 1 S 2 S 3 0 -Vs 0 -Vs 0 -Vs 1 Frame S 1 S 2 R D 1 D 2 D 3 D 4 신호전극전원 V d S 4 0 -Vs S 3 S 0 5 -Vs D Vd 1 0 D Vd 2 0 D Vd 3 0 D Vd 4 0 t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 시간 다중구동전압파형 S 4 S 5 주사전극전원 Vs Time duty ratio (m x n cells ; 1/n) - 1 Frame = 16.7 msec (1/60 ; t 0 ~ t 5 ) - 최대휘도 = duty 1-4 x 5 cells = duty 1/5-640 x 480 = 1/480 Kwangwoon Univ. / PDP research center 46 46
Brightness vs Current, Time Brightness Current, Time 1.0 Memory Type PDP 상 대 0.1 휘 도 0.01 Refresh Type PDP 0.001 1 10 100 1000 구동 Line 수 Kwangwoon Univ. / PDP research center 47 47
Display 의일반적구동방법 Display 의휘도는주어진 pixel 을발광시키는데할당되는 pixel dwell time 으로결정. Pixel dwell time ; 한 frame time 중주어진 pixel 을발광시키는데쓸수있는시간으로정의. Ex) m 열 x n 행의정보용량을갖는 display device 에있어서, 1) Pixel -at -a -time 인경우 Pixel dwell time =frame time / (m x n) 2) Pixel -at -line -time 인경우 Pixel dwell time =frame time / n 구동법점순차선순차전병렬동시 입력신호 변조구동회로 1H 메모리 1 frame 메모리 구동의개요 1Frame 당최대발광시간 0.1us 60us 16.7ms Device 예 CRT 일반매트릭스형판넬거대화면디스플레이 05 PDP winter school, C. W. Lee, Plasma lamp Kwangwoon Univ. / PDP research center 48 48
구동의기본적인 Sequence (AC-Type) 준비동작 기입동작 유지동작 ; 각 Cell들의초기화및활성화기간 ; Scan전극과 Addr. 전극간의 data기입기간 ; X-Y전극간교류펄스에의한유지방전기간 V Y -V X -V A 170V 174V 8.2μs 2.3μs 5.3μs Fujitsu 42-356V 7.0μs -160V 20μs 160V -160V -122V -222V 3.55 μs 20 μs 2.5 μs 7 μs 180V Pioneer 50-120V 0.8μs -360V 130 μs 420V 187V 5 μs Matsushita 42-207V -200V -125V -270V 2.2 μs Kwangwoon Univ. / PDP research center 49 49
Wall charge / wall voltage by a square voltage pulse 1. Discharge initiation 2. Wall charge growing 3. Wall voltage set-up + e + e e e + + + e + + + + e ee e + e 1 2 3 + + + + e e + + e e V V f V applied V wall current light V cell = V applied +V wall 05 PDP winter school, J. J. Koz, FTLab Kwangwoon Univ. / PDP research center 50 50
Memory Effect Wall Charge Memory X + - + - + + - - + A Y - X - + + + - + - + A Y - X - + + + - - + - - + A Y X Y X Y - - - + + + + + - - + + Q - + w - - - + A A X Y - + + - -- + + - 1 2 3 4 5 6 Q w A X A Selection by the discharge btw Y and A electrode Y 1 2 3 X A Memorization by the wall charge accumulated on the dielectric surface Y 4 X A Display by the discharge btw X and Y electrode Y 5 6 05 PDP winter school, J. J. Koz, FTLab Kwangwoon Univ. / PDP research center 51 51
Addressing Method A1 A2 A3 A4 A5 Y1 Y2 X Y3 Y4 Y5 Y6 A5 A4 A3 A2 A1 Kwangwoon Univ. / PDP research center 52 52
2. Plasma Display Panel 구동원리 2-2. ADS 구동법 Kwangwoon Univ. / PDP research center 53 53
ADS(Address Display Separation) 구동 쓰기신호펄스 어드레스전극 X n 전면동시소등펄스 전면동시점등펄스 Y 1 쓰기주사펄스 Y 2 Y 3 step 1 2 3 4 초기화기간 어드레스기간 방전유지기간 Kwangwoon Univ. / PDP research center 54 54
Color imaging 8 Subfield in 1 TV-Field (ADS) scan line SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8 1 2... 480 1T 2T 4T 8T 16T 32T 128T Original Image Separating the address period and sustain period of each sub-field 64T 1TV field (time) Courtesy of SAIT, Dr. S.-H. Son sub-field address sustain Kwangwoon Univ. / PDP research center 55 55
계조표시방식 8 단계의계조를표시할때! - 2 진형태의서브필드구성 서브필드시간의길이를 SF1 의경우 2 0 =1 SF2 의경우 2 1 =2 SF3 의경우 2 2 =4 의비율로차등을두어구성 Ex) 3 개의서브필드 -> 8 계조구현 (2 3 ) 8 개의서브필드 -> 256 계조구현 (2 8 ) Kwangwoon Univ. / PDP research center 56 56
Ex) A 를 4 단계의계조로표현하고자할때, Y1 Y2 Level 1 Y3 Y4 Level 3 Y5 Y6 Level 5 Level SF1 1 on SF2 off SF3 off Y7 Y8 Level 7 3 on 5 on on off off on 1 2 3 4 5 6 7 8 7 on on on Kwangwoon Univ. / PDP research center 57 57
전화면기입전화면소거선순차어드레스전화면유지방전Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 A1 A2 A3 A4 A5 A6 A7 A8 A1 A2 A3 A4 A5 A6 A7 A8 X1 X2 X3 X4 X5 X6 X7 X8 SF1 Y A1 A2 A3 A4 A5 A6 A7 A8 유지방전 2회 X Kwangwoon Univ. / PDP research center 58 58
전화면기입전화면소거선순차어드레스전화면유지방전Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 A1 A2 A3 A4 A5 A6 A7 A8 A1 A2 A3 A4 A5 A7 A6 A8 X1 X2 X3 X4 X5 X6 X7 X8 SF2 Y A1 A2 A3 A4 A5 A6 A7 A8 유지방전 4회 X Kwangwoon Univ. / PDP research center 59 59
전화면기입전화면소거전화면유지방전선순차어드레스Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 A1 A2 A3 A4 A5 A6 A7 A8 A1 A3 A5 A2 A4 A6 A7 A8 X1 X2 X3 X4 X5 X6 X7 X8 SF3 Y A1 A2 A3 A4 A5 A6 A7 A8 유지방전 8회 X Kwangwoon Univ. / PDP research center 60 60
3. 성능향상을위한 PDP 기술동향 Kwangwoon Univ. / PDP research center 61 61
AC-PDP Model Luminous Efficiency After: : H.Doyeux Doyeux(Thomson) Power dissipated(normalized) 100W UV emission 8W UV reaching phosphor 4W Visible emission by phosphor 160 lm (0.8W) Useful visible light 80 lm (0.4W) 8% (discharge) 50% (geometrical effect) 40 lm/watt( 20%) (photoluminescence) 50% (geometrical effect) Global Efficiency 0.8 lm/w (0.4%) Kwangwoon Univ. / PDP research center 62 62
PDP 중심과제 항목 세부목표 고효율화 5 lm/w(800 cd/m 2, 250 W) 고화질화 고정세 (1024 X 1024), 동화위윤곽, image sticking 저가격화 / 상품화 저가격화 ($ 40/inch), 장수명화 (10 년이상 ), 경량박막화 Kwangwoon Univ. / PDP research center 63 63
Pioneer T 자형전극구조및 Waffle 격벽 Kwangwoon Univ. / PDP research center 64 64
Cell Structure 변화에따른발광효율향상 Deep Cell Pixel Structure (Pioneer) 형광체도포면적증가 Kwangwoon Univ. / PDP research center 65 65
AC-PDP Model Fujitsu PDP Glass Electrode Dielectric 130μm 70μm 100μm Phosphor MgO Layer Glass Electrode 1,080 μm Most popular PDP structure! Kwangwoon Univ. / PDP research center 66 66
AC-PDP Model New PDP Cell for 10 lm/w??? Kwangwoon Univ. / PDP research center 67 67
Breakthrough Fujitsu Panasonic Fence Type El. St. Asymmetry Barrier Rib Ramp Reset Plasma AI KOREA 3 El. Surface Discharge Type ADS Driving ALiS El. & Driving Meander Rib Unique! Pioneer T-Shape El. Waffle type Barrier Rib CLEAR Cell Structure? Driving Method? Brightness! Power consumption! Efficiency Kwangwoon Univ. / PDP research center 68 68
요 약 1. PDP is based on the gas discharge plasma characteristics. 2. Both PDP & LCD display are very important and essential for growing engines of Korea. 3. PDP & LCD will have the same or similar picture quality, efficiency in perfomance characteristics to each other now. 4. Price will be main key factor for consumers to select PDP or LCD in large sized flat TV over 40. Kwangwoon Univ. / PDP research center 69 69