제출문 : ~ ː ː ː - 1 -

Similar documents
슬라이드 1

본문.PDF

e hwp

(2) : :, α. α (3)., (3). α α (4) (4). (3). (1) (2) Antoine. (5) (6) 80, α =181.08kPa, =47.38kPa.. Figure 1.

歯174구경회.PDF

02 Reihe bis 750 bar GB-9.03

KAERI/RR-2245/2001 : 원전 주기적 안전성 평가기술 개발 : 방사선 안전성능 및 환경방사선 감시기술 개발

슬라이드 제목 없음

untitled

Electropure EDI OEM Presentation

[수도권대기환경청 소식] 1. 제10차 수도권 대기환경정책 연구회 년도 1/4분기 직장교육 26 제5절 환경용어 해설 교토메카니즘(Kyoto Mechanism) 라돈(Rn) 배출가스 재순환장치(EGR, Exhaust G

歯전용]

?????????????????2009-????????

歯국문-Heatran소개자료1111.PDF

ePapyrus PDF Document

WOMA Pumps - Z Line

歯522박병호.PDF

2 폐기물실험실

KAERI/RR-2243/2001 : 가동중 중수로 원전 안전성 향상 기술개발 : 중수로 안전해석 체계 구축

歯140김광락.PDF

page 1end

<BACEBDBAC5CD20BAEAB7CEBCC52D A2DC3D6C1BE2D312D E6169>

1 n dn dt = f v = 4 π m 2kT 3/ 2 v 2 mv exp 2kT 2 f v dfv = 0 v = 0, v = /// fv = max = 0 dv 2kT v p = m 1/ 2 vfvdv 0 2 2kT = = vav = v f dv π m

박선영무선충전-내지

12(4) 10.fm

< C6AFC1FD28B1C7C7F5C1DF292E687770>

2 A A Cs A C C A A B A B 15 A C 30 A B A C B. 1m 1m A. 1 C.1m P k A B u k GPS GPS GPS GPS 4 2

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

82-01.fm

A 001~A 036

歯Trap관련.PDF

°ø±â¾Ð±â±â

Precipitation prediction of numerical analysis for Mg-Al alloys

14.fm

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종

Microsoft PowerPoint - chapter4-2-web [호환 모드]

(specifications) 3 ~ 10 (introduction) 11 (storage bin) 11 (legs) 11 (important operating requirements) 11 (location selection) 12 (storage bin) 12 (i

歯49손욱.PDF

REVERSIBLE MOTOR 표지.gul

(Table of Contents) 2 (Specifications) 3 ~ 10 (Introduction) 11 (Storage Bins) 11 (Legs) 11 (Important Operating Requirements) 11 (Location Selection)

82 제 1 발표장 (2 일금 ) CFD 응용 [V] 이남훈 1*, 류태광 2 NUMERICAL VERIFICATION OF SHAKE TABLE TEST FOR THE LIQUID STORAGE TANK N. Lee and T. Yoo 1.,.,,,.,. Baek e

기능.PDF

CERIUM OXIDE Code CeO CeO 2-035A CeO 2-035B CeO REO % CeO 2 /REO % La 2 O 3 /REO %

- 2 -

3 x =2y x =-16y 1 4 {0 ;4!;} y=-;4!; y x =y 1 5 5'2 2 (0 0) 4 (3-2) 3 3 x=0 y=0 x=2 y=1 :: 1 4 O x 1 1 -:: y=-:: 4 4 {0 -;2!;} y=;2!; l A y 1

untitled

Microsoft Word - KSR2012A038.doc

歯김유성.PDF

14.531~539(08-037).fm

Á¦¸ñ¾øÀ½

Introduction Capillarity( ) (flow ceased) Capillary effect ( ) surface and colloid science, coalescence process,

PJTROHMPCJPS.hwp

08.hwp

32

INDUCTION MOTOR 표지.gul

Subject : 귀사의 일익번창하심을 진심으로 기원합니다.

창의-열유체-3

개최요강

Microsoft PowerPoint - dev6_TCAD.ppt [호환 모드]

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

fm

KSKSKSKS SKSKSKS KSKSKS SKSKS KSKS SKS KS KS C 3004 KS C

Coriolis.hwp


Alloy Group Material Al 1000,,, Cu Mg 2000 ( 2219 ) Rivet, Mn 3000 Al,,, Si 4000 Mg 5000 Mg Si 6000, Zn 7000, Mg Table 2 Al (%

효성펌프편람

책임연구기관

44(3)-16.fm

지도서 14단원

10(3)-10.fm

264 축되어 있으나, 과거의 경우 결측치가 있거나 폐기물 발생 량 집계방법이 용적기준에서 중량기준으로 변경되어 자료 를 활용하는데 제한이 있었다. 또한 1995년부터 쓰레기 종 량제가 도입되어 생활폐기물 발생량이 이를 기점으로 크 게 줄어들었다. 그러므로 1996년부

보고서(겉표지).PDF

Microsoft PowerPoint - ISS_3rd IP_공주대학교 조정호

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

-

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

분석결과 Special Edition 녹색건물의 가치산정 및 탄소배출 평가 이슈 서 민간분야의 적극적인 참여 방안의 마련이 필요하다. 또한 우리나라는 녹색건축의 경제성에 대한 검증에 대 한 연구가 미흡한 실정이다. 반면, 미국, 영국, 호주 등은 민간 주도로 녹색건축물

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

143.fm

19(1) 02.fm

2

DBPIA-NURIMEDIA

hapter_ i i 8 // // 8 8 J i 9K i? 9 i > A i A i 8 8 KW i i i W hapter_ a x y x y x y a /()/()=[W] b a b // // // x x L A r L A A L L A G // // // // /

Software Requirrment Analysis를 위한 정보 검색 기술의 응용

Microsoft Word - KSR2012A021.doc

ePapyrus PDF Document

소개.PDF

歯86박춘경.PDF

RC /07.12 RC / /6 2 3 / CA-08A-2N 2 CA-10A-2N 2 CA-12A-2N 2 CA-16A-2N 2 CA-20A-2N CA-08A-3N 4 CA-10A-3N 4 CA-12A-3N

<4D F736F F F696E74202D20454D49A3AF454D43BAEDB7CEBCC52EBBEABEF7BFEBC6F7C7D428BBEFC8ADC0FCC0DA >

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

<313920C0CCB1E2BFF82E687770>

(Vacuum) Vacuum)? `Vacua` (1 ) Gas molecular/cm 3

Microsoft Word - KSR2013A291

26(3D)-17.fm

Microsoft Word - KSR2013A320

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

°í¼®ÁÖ Ãâ·Â

2.2, Wm -2 K -1 Wm -2 K -2 m 2 () m 2 m 2 ( ) m -1 s, Wm -2 K -1 Wsm -3 K -1, Wm -2 K -1 Wm -2 K -2 Jm -3 K -1 Wm -2 K -1 Jm -2 K -1 sm -1 Jkg -1 K -1

source.pdf

Transcription:

제출문 : ~ ː ː ː - 1 -

- 2 -

기술개발사업최종보고서초록 - 3 -

- 4 -

- 5 -

- 6 -

- 7 -

- 8 -

- 9 -

- 10 -

목 차 - 11 -

- 12 -

- 13 -

- 14 -

표목차 ӧ - 15 -

γ - 16 -

그림목차 ӧ ӧ - 17 -

- 18 -

T w T sat T w T sat - 19 -

T w T sat T w T sat T w T sat - 20 -

- 21 -

μ μ μ μ μ μ μ μ μ μ - 22 -

μ μ μ μ μ μ - 23 -

- 24 -

- 25 -

- 26 -

- 27 -

- 28 -

- 29 -

- 30 -

- 31 -

- 32 -

- 33 -

- 34 -

l l l l l l l l - 35 -

l l l l l l l - 36 -

- 37 -

- 38 -

- 39 -

- 40 -

- 41 -

- 42 -

ž ž ž ž ž - 43 -

ӧ - 44 -

- 45 -

ӧ ӧ Δ ӧ - 46 -

ž ž - 47 -

ž ž ž ž ž ž ž - 48 -

ӧ Δ - 49 -

Mass loss (%) 100 f2 f3 f4 f5 90 80 70 0 100 200 300 400 500 600 700 800 900 1000 Temperature ( o C) - 50 -

Heat flow (mw/mg) 0.4 0.2 0.0-0.2-0.4-0.6-0.8 f2 f3 f4 f5 0 100 200 300 400 500 600 Temperature ( o C) Absorption (%) -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 4. NiFe 2 O 4 + Ni 2 FeBO 5-10 -5 0 5 10 Velocity (mm/s) ӧ - 51 -

ӧ - 52 -

- 53 -

- 54 -

- 55 -

- 56 -

- 57 -

- 58 -

- 59 -

- 60 -

- 61 -

- 62 -

- 63 -

- 64 -

- 65 -

- 66 -

- 67 -

- 68 -

Φ ρ - 69 -

- 70 -

- 71 -

μ μ μ - 72 -

- 73 -

- 74 -

- 75 -

Ω - 76 -

- 77 -

- 78 -

- 79 -

- 80 -

- 81 -

- 82 -

- 83 -

- 84 -

- 85 -

1mm specimen 3mm copper rod 300 o C 96 bar Temperature [ o C] 308 Boiling point 0 Current [A] 55-86 -

310 308 Boiling point Temperature [ o C] 306 304 302 300 1mm specimen 3mm copper rod 300 o C 96 bar 298 0 10 20 30 40 50 Current [A] 14 12 10 voltage Linear fit Voltage [V] 8 6 4 2 1mm specimen 3mm copper rod 300 o C 96 bar 0 0 10 20 30 40 50 60 Current [A] - 87 -

310 308 96bar Boiling point Temperature [ o C] 306 304 302 300 93bar Boiling point 1mm specimen 3mm copper rod 300 o C 96 bar 298 0 20 40 60 80 100 120 140 Heat flux [W/cm 2 ] - 88 -

- 89 -

- 90 -

- 91 -

- 92 -

- 93 -

- 94 -

- 95 -

- 96 -

- 97 -

- 98 -

- 99 -

- 100 -

- 101 -

- 102 -

- 103 -

Chemicals Li-B P-103 DI-Water Purifier Sampling BPR Test Autoclave LIC Column 1 Column 2 DO/DH ph/cond. HX CW Purge HX Preheater H 2/O 2 Chemicals P-101 TIC Ni-Fe P-102 DWG. No. AOA-NANA-081217 Input Signal Action Always Heater Off Level Low Pump Charging Off Temp. Inlet Low High Warning Pump Recirc. Off Temp Outlet High Pump Recirc. Off Press. Low High Warning Pump Charging Off Cooling Pump Low Pump Recirc. Off - 104 -

9.5mm MgO 160mm Heated Nichrome wire 240mm Zircaloy 4 Thermocouple SUS 316-105 -

- 106 -

- 107 -

- 108 -

Li, ppm Metal, ppm 20 15 10 5 0 1.5 1.3 1.1 Ni Fe B, ppm 900 800 700 600 0 100 200 300 Hours Metal, ppm 0.3 0.2 0.1 0.0 Ni Fe Li, ppm 1.5 1.3 1.1 B, ppm 900 800 700 600 0 100 200 300 Hours - 109 -

Metal, ppm Li, ppm 0.3 0.2 0.1 0.0 1.5 1.3 1.1 Ni Fe B, ppm 900 800 700 600 0 100 200 300 Hours Metal, ppm Li, ppm 0.3 0.2 0.1 0.0 1.5 1.3 1.1 Ni Fe B, ppm 1000 900 800 700 0 100 200 300 Hours - 110 -

Metal, ppm Li, ppm 0.3 0.2 0.1 0.0 3.5 3.3 3.1 Ni Fe B, ppm 1600 1500 1400 1300 0 100 200 300 Hours - 111 -

n r ( a r ) + Ñ ( a r vq ) = å( m& - m& ) + S t q q q q pq qp q p= 1 aq V q = ò a dv V q - 112 -

m& pq m& lv ( - ) " hlv Tl Ts A i qe Aw = + L L C T T ( + pl max ( s - l,0)) hlv h pq = 6k q a p a q p d 2 p Nu 1/ 2 1/3 Nu p = 2.0 + 0.6 Re p Pr Ai A i (( - ) - ) 6a sv 1 av /(1 a sv = d v a sv = min( av,0.25) " qe Aw r uur A = d x - x w ( w ) Aw dv - 113 -

-4 ì 1.5 10, Tsub > 13.5K ï -3-4 dv = í1.5 10-10 Tsub, 0 < Tsub < 13.5K ï -3 î1.5 10, Tsub < 0 r r r ur ur r r å t n ( a qr ) ( ) ( pq ) q v q + Ñ a qr q v q v q = -a qñ p + Ñ t q + a qr q g + R + m& pq v pq - m& qp v qp ur ur ur + + + ( F,, ) q F lift q F vm q p= 1 ur R pq n ur n r r å R pq = å K pq v p - vq p= 1 p= 1 ( ) K pq K pq aqa pr p f = t p t p t p r pd = 18m 2 p q f C D - 114 -

C Re f = D 24 C D 0.687 ( ) ì ï24 1+ 0.15Re / Re, Re 1000 = í ïî 0.44, Re > 1000 C D a a = a + + Re Re 2 3 1 2 ur R pq r r 0.75CD r pa q vr vr = d q dis vis ( ) Cd = min Cd, Cd dis vis Cd Cd ur F lift ur r r r F = -C r a v - v Ñ v ( ) ( ) lift l q p q p q - 115 -

Cl ì 0.0767, f 6000 ï f Cl = í-( 0.12-0.2 e ) e, 6000 < f < 1.9 10 ï 5 ïî - 0.002f ³ 1.9 10 7 - /36000 f /310 5 f = Reb Rev Re b Re v Re Re b v r dv v = n d = 2 v l r r Ñ v n l l ur F vm ur F dq vq d p v p 0.5r a æ r r = - ö ç dt dt è ø vm q p ε ε ε - 116 -

r æ m, ö ( r k ) + Ñ ( r vmk ) = Ñ Ñ k + G - r e + S t è ø t m m m ç k, m m k s k r æ mt, m ö e ( rme ) + Ñ ( rmvme ) = Ñ ç Ñ e + ( C1 Gk, m - C2 rme ) + S t è s e ø k e e e rm r N = åa r m i i i= 1 m t, m = r mc m 2 k e ε S k r r 0.75CD rlav vr vr = d v 3Cd vr Se = Ce 3 S d v r k C e 3 = 0.45 r p r r ur å t t n q ( a qr qhq ) + Ñ ( a qr quqhq ) = - a q + t q : Ñuq - Ñ qq + Sq + ( Q pq + m& pqhpq -m& qphqp ) p= 1-117 -

Q ur pq ( ) Qpq = hpq Tp -Tq h pq = 6k q a p a q p d 2 p Nu 1/ 2 1/3 Nu p = 2.0 + 0.6 Re p Pr N ph " w = åaq, cell q q - w q= l ( ) q h T T " " " " qw, liq = qw, E + qw, C + qw, Q q " w, E " p 3 qw, E = dbw fnrvl 6 dbw ( ) 0.5-5 0.709 dbw 2.42 10 p a bq - = a = ( T -T ) w 2r v s r C k s ps s p - 118 -

in ( Ts -T s ) b = 2 1 - / ( r r ) v l in ( U l ) q = max / 0.61,1.0 ( 200( )) 1.8 w sat n = T -T f æ 4gDr ö = ç è 3d bw r l ø q " w, C cell ( )( ) q = h T -T - W " w, C lw w 1 l q " w, Q 0.5 cell ( k r ) ( ) " -0.5 qw, Q = 2p W f l lc pl Tw -Tl W - 119 -

ε - 120 -

- 121 -

Quenching heat flux ratio q q " " = w, Q / w, liq Evaporative heat flux ratio q q " " = w, E / w, liq - 122 -

Vapor Volume Fraction 0.40 0.35 0.30 0.25 0.20 0.15 0.10 5W Heat Flux 6W Heat Flux 7W Heat Flux 8W Heat Flux 9W Heat Flux 0.05 0.00 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 Axial Position(m) - 123 -

0.00035 Bubble Departure Diameter(m) 0.00030 0.00025 0.00020 0.00015 5W Heat Flux 6W Heat Flux 7W Heat Flux 8W Heat Flux 9W Heat Flux 0.00010 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 Axial Position(m) Wall Super Heat( o C) 14 13 12 11 10 9 8 7 6 5 4 3 5W Heat Flux 6W Heat Flux 7W Heat Flux 8W Heat Flux 9W Heat Flux 2 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 Axial Position(m) T w T sat - 124 -

0.4 Quenching Heat Ratio 0.3 0.2 0.1 5W Heat Flux 6W Heat Flux 7W Heat Flux 8W Heat Flux 9W Heat Flux 0.0 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 Axial Position(m) 0.5 Evaporative Heat Ratio 0.4 0.3 0.2 0.1 5W Heat Flux 6W Heat Flux 7W Heat Flux 8W Heat Flux 9W Heat Flux 0.0 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 Axial Position(m) - 125 -

- 126 -

Vapor Volume Fraction 0.0018 0.0016 0.0014 0.0012 0.0010 0.0008 0.0006 0.0004 0.0002 2m/sec-314 o C 2m/sec-316 o C 2m/sec-317 o C 5m/sec-317 o C 5m/sec-318 o C 5m/sec-318.5 o C 8m/sec-317.5 o C 8m/sec-318 o C 8m/sec-318.5 o C 0.0000 0.10 0.15 0.20 0.25 0.30 Axial Position(m) - 127 -

Vapor Volume Fraction 0.0014 0.0012 0.0010 0.0008 0.0006 0.0004 0.0002 2m/sec-306 o C 2m/sec-308 o C 2m/sec-310 o C 5m/sec-313 o C 5m/sec-315 o C 5m/sec-317 o C 8m/sec-315 o C 8m/sec-317 o C 8m/sec-318 o C 0.0000 0.10 0.15 0.20 0.25 0.30 Axial Position(m) 0.0018 Vapor Volume Fraction 0.0016 0.0014 0.0012 0.0010 0.0008 0.0006 0.0004 0.0002 2m/sec-300 o C 2m/sec-302 o C 2m/sec-303 o C 5m/sec-310 o C 5m/sec-312 o C 5m/sec-314 o C 8m/sec-313 o C 8m/sec-315 o C 8m/sec-317 o C 0.0000 0.10 0.15 0.20 0.25 0.30 Axial Position(m) - 128 -

Bubble Departure Diameter(m) 0.000200 0.000175 0.000150 0.000125 0.000100 0.000075 0.000050 0.000025 2m/sec-314 o C 2m/sec-316 o C 2m/sec-317 o C 5m/sec-317 o C 5m/sec-318 o C 5m/sec-318.5 o C 8m/sec-317.5 o C 8m/sec-318 o C 8m/sec-318.5 o C 0.000000 0.10 0.15 0.20 0.25 0.30 Axial Position(m) Bubble Departure Diameter(m) 0.000200 0.000175 0.000150 0.000125 0.000100 0.000075 0.000050 0.000025 2m/sec-306 o C 2m/sec-308 o C 2m/sec-310 o C 5m/sec-313 o C 5m/sec-315 o C 5m/sec-317 o C 8m/sec-315 o C 8m/sec-317 o C 8m/sec-318 o C 0.000000 0.10 0.15 0.20 0.25 0.30 Axial Position(m) - 129 -

Bubble Departure Diameter(m) 0.000200 0.000175 0.000150 0.000125 0.000100 0.000075 0.000050 0.000025 2m/sec-300 o C 2m/sec-302 o C 2m/sec-303 o C 5m/sec-310 o C 5m/sec-312 o C 5m/sec-314 o C 8m/sec-313 o C 8m/sec-315 o C 8m/sec-317 o C 0.000000 0.10 0.15 0.20 0.25 0.30 Axial Position(m) Wall Super Heat( o C) 5 4 3 2 1 0-1 -2 2m/sec-314 o C 2m/sec-316 o C 2m/sec-317 o C 5m/sec-317 o C 5m/sec-318 o C 5m/sec-318.5 o C 8m/sec-317.5 o C 8m/sec-318 o C 8m/sec-318.5 o C -3-4 0.10 0.15 0.20 0.25 0.30 Axial Position(m) T w T sat - 130 -

Wall Super Heat( o C) 5 4 3 2 1 0-1 -2-3 2m/sec-314 o C 2m/sec-316 o C 2m/sec-317 o C 5m/sec-317 o C 5m/sec-318 o C 5m/sec-318.5 o C 8m/sec-317.5 o C 8m/sec-318 o C 8m/sec-318.5 o C -4 0.10 0.15 0.20 0.25 0.30 Axial Position(m) T w T sat Wall Super Heat( o C) 10 5 0-5 -10 2m/sec-300 o C 2m/sec-302 o C 2m/sec-303 o C 5m/sec-310 o C 5m/sec-312 o C 5m/sec-314 o C 8m/sec-313 o C 8m/sec-315 o C 8m/sec-317 o C -15 0.10 0.15 0.20 0.25 0.30 Axial Position(m) T w T sat - 131 -

Evaporative Heat Ratio 0.08 0.07 0.06 0.05 0.04 0.03 0.02 2m/sec-314 o C 2m/sec-316 o C 2m/sec-317 o C 5m/sec-317 o C 5m/sec-318 o C 5m/sec-318.5 o C 8m/sec-317.5 o C 8m/sec-318 o C 8m/sec-318.5 o C 0.01 0.00 0.10 0.15 0.20 0.25 0.30 Axial Position(m) Quenching Heat Ratio 0.0150 0.0125 0.0100 0.0075 0.0050 0.0025 2m/sec-314 o C 2m/sec-316 o C 2m/sec-317 o C 5m/sec-317 o C 5m/sec-318 o C 5m/sec-318.5 o C 8m/sec-317.5 o C 8m/sec-318 o C 8m/sec-318.5 o C 0.0000 0.10 0.15 0.20 0.25 0.30 Axial Position(m) - 132 -

Evaporative Heat Ratio 0.05 0.04 0.03 0.02 0.01 2m/sec-306 o C 2m/sec-308 o C 2m/sec-310 o C 5m/sec-313 o C 5m/sec-315 o C 5m/sec-317 o C 8m/sec-315 o C 8m/sec-317 o C 8m/sec-318 o C 0.00 0.10 0.15 0.20 0.25 0.30 Axial Position(m) Quenching Heat Ratio 0.025 0.020 0.015 0.010 0.005 2m/sec-306 o C 2m/sec-308 o C 2m/sec-310 o C 5m/sec-313 o C 5m/sec-315 o C 5m/sec-317 o C 8m/sec-315 o C 8m/sec-317 o C 8m/sec-318 o C 0.000 0.10 0.15 0.20 0.25 0.30 Axial Position(m) - 133 -

Evaporative Heat Ratio 0.040 0.035 0.030 0.025 0.020 0.015 0.010 2m/sec-300 o C 2m/sec-302 o C 2m/sec-303 o C 5m/sec-310 o C 5m/sec-312 o C 5m/sec-314 o C 8m/sec-313 o C 8m/sec-315 o C 8m/sec-317 o C 0.005 0.000 0.10 0.15 0.20 0.25 0.30 Axial Position(m) Quenching Heat Ratio 0.035 0.030 0.025 0.020 0.015 0.010 0.005 2m/sec-300 o C 2m/sec-302 o C 2m/sec-303 o C 5m/sec-310 o C 5m/sec-312 o C 5m/sec-314 o C 8m/sec-313 o C 8m/sec-315 o C 8m/sec-317 o C 0.000 0.10 0.15 0.20 0.25 0.30 Axial Position(m) - 134 -

- 135 -

0.0025 Vapor Volume Fraction 0.0020 0.0015 0.0010 0.0005 313 o C 315 o C 317 o C 319 o C 0.0000 0.10 0.15 0.20 0.25 0.30 Axial Position(m) Bubble Departure Diameter(m) 0.000175 0.000150 0.000125 0.000100 0.000075 0.000050 0.000025 313 o C 315 o C 317 o C 319 o C 0.000000 0.10 0.15 0.20 0.25 0.30 Axial Position(m) - 136 -

10 5 Wall Super Heat( o C) 0-5 -10 313 o C 315 o C 317 o C 319 o C -15 0.10 0.15 0.20 0.25 0.30 Axial Position(m) T w T sat 0.06 Evaporative Heat Ratio 0.05 0.04 0.03 0.02 0.01 313 o C 315 o C 317 o C 319 o C 0.00 0.10 0.15 0.20 0.25 0.30 Axial Position(m) - 137 -

0.05 Quenching Heat Ratio 0.04 0.03 0.02 0.01 313 o C 315 o C 317 o C 319 o C 0.00 0.10 0.15 0.20 0.25 0.30 Axial Position(m) ε - 138 -

Wcm Wcm Wcm - 139 -

(a) 8 W/cm 2 (b) 9 W/cm 2 (c) 10 W/cm 2 (a) 8 W/cm 2 (b) 9 W/cm 2 (c) 10 W/cm 2-140 -

(a) 8 W/cm 2 (b) 9 W/cm 2 (c) 10 W/cm 2 (a) 8 W/cm 2 (b) 9 W/cm 2 (c) 10 W/cm 2-141 -

Twall('C) 365 360 355 350 345 340 q=8w/m2 q=9w/m2 q=10w/m2 Sat. Temp. at 150bar = 342'C Bubble departure diameter (mm) 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 q=8w/m2 q=9w/m2 q=10w/m2 335 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 z(m) 0.00 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 z(m) - 142 -

- 143 -

360 350 Onset of Nucleate Boiling (z=3.37m) 340 Temperature('C) 330 320 310 300 290 Liquid average temp. Wall temp. Saturation temp. 0 1 2 3 4 Axial length(m) Average phase change rate (kg/m 3 s) 35 30 25 20 15 10 5 0 Boiling + Condensation Wall boiling Vapor generation (z=3.53m) Onset of Nucleate Boiling (z=3.37m) -5 0 1 2 3 4 Axial length(m) - 144 -

- 145 -

- 146 -

- 147 -

- 148 -

- 149 -

- 150 -

- 151 -

- 152 -

- 153 -

- 154 -

- 155 -

- 156 -

- 157 -

- 158 -

- 159 -

- 160 -

- 161 -

- 162 -

- 163 -

- 164 -

- 165 -

- 166 -

- 167 -

(9-5) 몰 (9-6) (9-7) - 168 -

- 169 -

- 170 -

DWG. NO. AOA-090717 90 5 atm H 2 concentration(cc/kg-h 2 O) 80 70 60 50 40 30 20 4 atm 3 atm 2 atm 1 atm 15 20 25 30 35 Temperature ( o C) - 171 -

14 13 12 6 CW BPR Heat Exchanger 5 Test Section Column 2 Condenser 7 Reservoir 8 1 2 3 11 10 9 High Pressure Pump PreHeater Flow meter Recirculation pump Chemicals Li / B P-103 Purifier Condenser CW Condenser CW DI-Water BPR Sampling ECP Column 2 LIC Column 1 Column 2 DO/DH/Cond. Test Section Purge P-101 Heat Exchanger PreHeater Reservoir Heater H 2/O 2 Chemicals Ni / Fe P-102 P-104 DWG. No. AOA -NANA -10 061 8-172 -

- 173 -

- 174 -

α - 175 -

- 176 -

μ μ - 177 -

- 178 -

μ - 179 -

- 180 -

exp - 181 -

μ μ - 182 -

- 183 -

- 184 -

- 185 -

- 186 -

- 187 -

exp exp - 188 -

log log log - 189 -

- 190 -

μ min min - 191 -

i f i f - 192 -

- 193 -

- 194 -

max i f i f log - 195 -

ln ln ln - 196 -

exp - 197 -

- 198 -

- 199 -

- 200 -

log log log ln - 201 -

log log log log log log log - 202 -

log - 203 -

ln - 204 -

ln ln - 205 -

log log log log - 206 -

exp μ - 207 -

log log log - 208 -

log log log log - 209 -

log log log log log - 210 -

log log log log log log - 211 -

log log log log log - 212 -

log log log - 213 -

log - 214 -

ln i f i f - 215 -

- 216 -

log μ - 217 -

- 218 -

- 219 -

μ - 220 -

μ μ 고체 용해된화학종,,,,,,,,,,,,,,,, - 221 -

번호화학종번호화학종 1 26 2 27 3 28 4 29 5 30 6 31 7 32 8 33 9 34 10 35 11 12 37 13 38 14 39 15 16 17 42 18 43 19 44 20 45 21 46 22 47 23 48 24 49 25 50 36 40 41-222 -

- 223 -

exp exp exp exp exp exp exp exp exp exp exp exp exp exp exp - 224 -

1 3.54 0.65 0.15 2 0.87 0.46 0.20 3 0.60 1.17 1.96 4 4.51 2.00 1.13 5 0.55 0.65 1.12 6 0.00 0.05 0.30 7 0.00 0.00 0.00 8 0.00 0.00 0.00 9 0.00 0.00 0.00 10 0.00 0.00 0.00 11 0.00 0.00 0.00 12 0.00 0.00 0.00 13 0.00 0.00 0.00-225 -

No 반응식 1 5.500E+09 7.90E+3 2.540E+10 2 3.100E+10 1.47E+4 5.345E+11 3 9.300E+09 8.20E+3 4.553E+10 4 7.100E+09 1.42E+4 1.111E+11 5 1.000E+10 1.76E+4 3.204E+11 6 2.700E+07 1.42E+4 4.225E+08 7 3.400E+07 1.92E+4 1.401E+09 8 1.200E+10 1.42E+4 1.878E+11 9 7.500E+09 1.42E+4 1.174E+11 10 1.800E+10 1.42E+4 2.817E+11 11 1.700E+06 NA 1.500E+08 12 5.500E+09 NA 5.500E+09 13 2.400E+10 1.40E+4 3.613E+11 14 1.300E+10 1.42E+4 2.034E+11 15 2.000E+10 1.42E+4 3.130E+11 16 1.200E+10 1.56E+4 2.463E+11 17 1.900E+10 1.36E+4 2.647E+11 18 2.300E+10 1.26E+4 2.640E+11 19 1.900E+01 1.42E+4 2.973E+02 20 3.500E+09 1.42E+4 5.477E+10 21 5.500E+09 1.46E+4 9.301E+10 22 2.000E+10 1.42E+4 3.130E+11 23 2.000E+10 1.42E+4 3.130E+11 24 5.100E+09 1.07E+4 4.052E+08 25 2.100E+10 1.03E+4 1.544E+11 26 2.200E+07 3.76E+4 3.201E+10 27 8.400E+05 2.06E+4 4.541E+07 28 9.600E+07 7.60E+3 4.184E+08 29 30 8.000E+05 NA 3.900E+05 5.000E+10 1.42E+4 7.825E+11 31 5.000E+08 1.88E+4 1.907E+10 32 5.700E+04 NA 1.200E+07 33 4.000E-08 6.30E+4 3.000E-02 34 5.000E+09 1.42E+4 7.825E+10 35 2.599E-05 NA 1.400E-01 36 1.430E+11 1.42E+4 2.238E+12 37 1.770E+09 8.00E+4 9.497E+15-226 -

전기화학반응 Standard Electrode Potential: Standard Gibbs free energy - 227 -

구 역 표면재료 평균온도 ( ) 부피 (m 3 ) 표면적 (m 2 ) 유속 (m/s) 유량 (m 3 /s) 1 295 2900 8.7 26 2 308 2900 8.7 26 3 322 2900 8.7 26 4 332 2900 8.7 26 5 330 190 14.3 26 6 330 18000 5.7 26 7 295 18000 5.7 26 8 295 380 14.3 26 9 Zircaloy 308 2900 10 Zircaloy 330 2900 11 Zircaloy 340 2900 12 Zircaloy 340 2900 13 Stainless Steel 329 190 14 Inconel 328 18000 15 Inconel 293 18000 16 Stainless Steel 294 380 μ μ μ - 228 -

- 229 -

- 230 -

- 231 -

- 232 -

- 233 -

- 234 -

μ - 235 -

μ μ - 236 -

μ - 237 -

μ μ - 238 -

μ μ - 239 -

μ μ - 240 -

μ μ - 241 -

μ μ - 242 -

μ - 243 -

- 244 -

μ - 245 -

- 246 -

- 247 -

- 248 -

- 249 -

- 250 -

- 251 -

- 252 -

- 253 -

γ - 254 -

γγ - 255 -

- 256 -

- 257 -

μ μ - 258 -

γ - 259 -

- 260 -

- 261 -

μ - 262 -

μ μ μ μ μ μ μ μ μ - 263 -

Φ - 264 -

μ - 265 -

- 266 -

- 267 -

- 268 -

μ μ μ - 269 -

- 270 -

- 271 -

- 272 -

Σ Σ Σ - 273 -

- 274 -

- 275 -

- 276 -

- 277 -

- 278 -

- 279 -

- 280 -

- 281 -

- 282 -

- 283 -

μ - 284 -

- 285 -

- 286 -

- 287 -

- 288 -

- 289 -

1.00E+06 (ppm) 9.00E+05 Fe Co Cr Ni Mn Li B 8.00E+05 7.00E+05 Grab 6.00E+05 5.00E+05 4.00E+05 3.00E+05 2.00E+05 1.00E+05 0.00E+00 0.00 2.00 4.00 6.00 8.00 10.00 12.00 (hr) 14.00-290 -

- 291 -

- 292 -

- 293 -

- 294 -

- 295 -

γ - 296 -

- 297 -

- 298 -

- 299 -

- 300 -

- 301 -

- 302 -

- 303 -

Ni x Fe x O Ni x Cr y Fe x y O - 304 -

- 305 -

- 306 -

- 307 -

- 308 -

- 309 -

- 310 -

μ - 311 -

μ μ - 312 -

국가연도원전상황원인 / 조치 9 주기 AOA 심각 조치 : 75~80% 감발운전 (7 개월 ) 10주기 노심상부크러드 / 붕소침적 조치 : 출력밀도감소 ; 첨두계수, RCS 붕소농도저감 ; 1회연소된연료초음파세정및조기방출 Callaway 원인 : 5% AOA가주기초 -8% 편차설계와결합하여원자로보호계통의과온 / 온도-차긴급정지설정 80% 로급격출력감소시긴급 2002. 12 치저감초래정지 조치 : 없음 1999. 11 Palo Verde 2 9/10 주기 160 EFPD 까지유사현상확인 원인 : 추이분석결과연료집합체표면크러드축적 ; 과냉핵비등에의한고 - 기포발생률유발 ; 주기초고 - 붕소농도및주기초원자로불시정지등으로발생 조치 : 3.5% AOA 안전성평가, 과냉핵비등시기포발생률및크러드성분평가 2000. 8 Palo Verde 2 9 주기중초음파시험 : 10 개연료봉피복파손확인 원인 : 피복손상이고온과농축리튬에기인한침전물과다퇴적및극히국부적인관통벽부식 ; 연료손상원인은연료집합체과부하 [ 피복표면의아냉각 ( 미포화 ) 비등 ; 계통내철, 니켈등부식생성물 ; 주기초원자로비상정지 ; 주기중간원자로비상정지에기인 미국 2002. 9 Diablo Canyon 1, 2 계획예방정비후 AOA 보임 원인 : 연료봉표면침적물내붕소에의해기대밖의 Flux 형태와관련 조치 : AOA 정확한원인조사중 2 호기는최근 O/H 시징후경험 ; 양호기각각운전주기시점에서 AOA 변화정도경험 1997. 7 Seabrook 1 96. 12. 10 화학점검시냉각재고 - 방사능검출후, 5 주기말까지핵분열생성물증가 원인 : 연료인출중검사에서집합체 4 개의핀파손확인 ; 추가초음파검사에서총 5 개핀파손확인 2000. 9 Perry 1 99. 4. 27 냥각재계통재순환펌프정비후시험중집합체표면에서크러드이탈시재장전수조선량 10 배증가 원인 : 재장전수조표면선량이 60 m rem/hr 까지상승 ; 재순환펌프고 - 유량에의한핵연료표면으로부터의부식생성물이탈 원인 : 재순환펌프출구밸브완전개방으로재순환펌프수행 ; 운전원은재순환펌프가동으로인한방사선증가인지못함 ; 동시기동가능재순환펌프운전대수제한없었음 2003. 7 전원전 다수원전경험노심변경관련고장사례구분소개및재발방지권고사항제시 원인 : 미경험한기존연료관련설계변경시잠재적위험에대한충분한고려미흡 ; 노심과연료성능에예상치못한약영향을초래하는수질관리변경, 노심설계에대한공급자의분석오류, 예측능력한계성의인식 / 적용미흡등 권고사항 : 원자력정보망이나기타수단으로노심과연료성능불만족사고를산업계에즉시보고 ; 수질관리변경의노심성능영향과노심설계변경에의한냉각재화학적영향일체평가 ; 연료공급자와의긴밀한관계 ; 노심성능예측수단한계성검토 ; 노심운영체계나연료설계상중대변경시위험평가를수행하며, 평가는비정상적노심거동가능성을취급하고, 비상계획과감시요건을입증해야하며, 중요변경수행전에고위경영층과함께위헌평가결과와감시계획검토 헝가리 2003. 4 Paks 연료집합체세정작업중세정용기잔열제거기능상실로연료에심각한손상경험 원인 : 03. 4. 10 Paks 2 호기 (VVER-440, 468 MWe) 집합체상침적 magnetite 제거위한연료 pit 내설치된세정용기에서집합체세정작업중발견 원인 : 연료온도 1,200~1,300 까지도달로판단 ; 임계분석결과용기내에임계에도달하기에충분한연료가있었던것으로판단 ; 해당연료집합체에대한구조적건전성손상여부확인감사계획됨 - 313 -

- 314 -

- 315 -

- 316 -

- 317 -

- 318 -

- 319 -

- 320 -

Region BOC MOC EOC Operation Temp( ) Press(atm) ph t H 3BO 3(ppm) LiOH(ppm) LiBO 2( mol /l) DH 2( cc / kg ) CP ion Fe 2+ ( mol /l) Ni 2+ ( mol /l) Crud Ni(g/ cm2 ) NiO(g/ cm2 ) Ni xfe 3-xO 4(g/ cm2 ) Ni 2FeBO 5(g/ cm2 ) ZrO 2(g/ cm2 ) Li 2B 4O 7( mol /l) - 321 -

축방향출력분포 장주기노심 냉각재 SG 전열관 산화물화학 비정상분포 (AOA) SNB Ni x Fe 3-x O 4 NiO Ni 기포 Ni / Fe ions 출력감발정지여유도감소비상정지조기연료방출피폭증대 붕소 크러드침적 LiBO 2 피복관 Ni 2 FeBO 5 AOA 완화 ï ph 최적화? SG 부식생성물 (CP) 방출감소? 원인물질감소 아연주입농축붕산 (EBA)? SG 전열관표면 CP 안정도증대? 붕소감소 ï? SG 크러드안정화? LiBO 2 감소 초음파세정? 노내크러드감소? 침적생성물제거 - 322 -

- 323 -

- 324 -

- 325 -

- 326 -

- 327 -

- 328 -

- 329 -

- 330 -

- 331 -

- 332 -

1-1. J. A. Sawicki, J. Nuclear Materials, 374, 248-269 (2008). 1-2. W. A. Byers, W. T. Linsay, and R. H. Kunig, J. Solution Chemistry, Vol. 29, No. 6, 541-559 (2000). 4-1., 5,6 4.4 6-1. "Halden In-Reactor Test to Exhibit PWR Axial Offset Anaomaly", EPRI 1008106, 2004 6-2. H. Kawamura, Effect of ph and Ni/Fe ratio on Crud Deposition Behavior on Heated Zircaloy-4 Surface in Simulated PWR Primary Water, Proceedings of Int. Conf. on Water Chemistry of Nuclear Reactor Systems, Berlin, 2008 6-3. P. Srisukvatananan and D. H. Lister, Nickel Ferrite Deposition onto Heated Zircaloy-4 Surfaces in High-Temperature Water with Sub-cooled Boiling; Preliminary Study of the Effects of ph and Zinc Addition, Proceedings of Int. Conf. on Water Chemistry of Nuclear Reactor Systems, Jeju, 2006. 6-4. J. M. Hawkes, "The Simulation and Study of Conditions Leading to Axial Offset Anomaly in Pressurized Water Reactors", Thesis, Georgia Institute of Technology, 2004 6-5. J. Chen, "AOA-risk assessment, Experimental approaches", private communication, 2007 6-6. J. Yeon, Deposition behaviour of corrosion products on the Zircaloy heat transfer surface, J. Nuclear Materials, 354, pp 163 2006 7-1. J.G. Collier, "Convective boiling and condensation",1981 7-2.,,,,1993 7-3. M.Z. Podowski, "Two-Phase flow Dynamics", in Boiling Heat Transfer, (Ed.: R.T. Lahey), Elsevier Publishing Corp., 1992 7-4. A. A. Troshko,, "Implementation and Testing of Subcooled Boling Model", Fluent Inc. December, 2003 7-5. W.E. Ranz et al., "Evaporation from Drops, Part I", Chem. eng. Prog., 48(3) :141-146, March 1952 7-6. W.E. Ranz et al., "Evaporation from Drops, Part II", Chem. eng. Prog., 48(4) :173-180, March 1952 7-7. N. Kurul and M. Z. Podowski et al., "Multidimensional effects in forced convection subcooled boiling", Proceeding of Ninth International Heat Transfer conference, Jerusalem, Israel, Vol. 1-BO-04, pp. 21-26 7-8. M. Z. Podowski, "Multidimensional Modeling of Two-Phase Flow and Heat Transfer", International Journal for Numerical Methods in Heat Transfer and Fluid Flow, V.18, Issue - 333 -

3/4, 208, pp. 491-513 7-9. N. Kurul, "On the modeling of multidimensional effects in boiling channels", ANS Proc. 27th National Heat Transfer Conference, Minneapolis, MN, 1991 7-10. L. Schiller and Z. Naumann, "Z. Ver. Deutsch. Ing.", 77:318, 1935 7-11. S. A. Mosi and A. J. Alexander, " An Investigation of Particle Trajectories in Two-Phase Flow Systems", J. Fluid Mech., 55(2): 193-208, September 26, 1972 7-12. D. A. Drew and R. T. Lahey, "In Particulate Two-Phase Flow", pp. 509-566, 1993 7-13. F. J., Moraga et al.; "Lateral forces on spheres in turbulent uniform shear flow", Int. J. Multiphase Flow, Vol. 25, pp. 1321-1372 7-14. A. A. Troshko and Y. A. Hassan, "A two-equation turbulence model of turbulent bubbly flow", Int. J. Multiphase Flow, Vol. 22 (11), pp. 1965-2000 7-15. Y. Wei and C. Morel, " Prediction of parameters distribution of upward boiling two-phase flow with two-fluid model" Proceedings of ICONE 10, Arlington, VA, USA, 2002 7-16. M. Z. Podowski, "Towards next generation multiphase models of nuclear thermal-hydraulics", Proceedings of Eighth International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Kyoto, Japan, Vol. I, pp. 53-68, 1997 8-1. J. Henshaw, J. McGuire, H. Sims, A. Tuson, S. Dickinson, " The Chemistry of fuel deposits and its effect on AOA in PWR plants", Proc. Int. Conf. on Water Chemistry of Nuclear Reactor Systems, Jeju, Korea (2006). 8-2. W. Byers, J. Deshon, "Structure and chemistry of PWR crud", Proc. Int. Conf. on Water Chemistry of Nuclear Reactor Systems, San Fransisco, U.S.A., p.1722 (2004). 8-3. B. Beverskog, " AOA fuel crud: a theoretical approach", Proc. Int. Conf. on Water Chemistry of Nuclear Reactor Systems, Jeju, Korea (2006). 8-4. W. Byers, J. Deshon, G. Gary, J. Small, J. McInvale, "Crud metamorphosis at the Callaway plant" Proc. Int. Conf. on Water Chemistry of Nuclear Reactor Systems, Jeju, Korea (2006). 8-5. H. Kawamura, M. Furuya, "Effect of ph and Ni/Fe ratio on crud deposition behavior on heated Zircaloy-4 surface in simulated PWR primary water" Proc. Int. Conf. on Water Chemistry of Nuclear Reactor Systems, Berlin, Germany (2008). 8-6. J. Blok, S. Chauffiriat, P. Frattini, "Modeling the axial offset anomaly in PWRs", Proc. Int. Conf. on Water Chemistry of Nuclear Reactor Systems, Avignon, France (2002). 8-7. N. Doncel, J. Chen, P. Gillen, H. Bergvist, "On the role of nickel deposition in a CIPS occurrence in PWR", Proc. Int. Conf. on Water Chemistry of Nuclear Reactor Systems, Berlin, Germany (2008). 8-8. J. Sawicki, "Nuclear chemistry model of borated fuel crud" Proc. Int. Conf. on Water Chemistry of Nuclear Reactor Systems, Avignon, France (2002). 8-9. D. Farnsworth, J. Bosma, "Summary of first cycle data and results for elevated-constant - 334 -

ph control at Comanche Peak steam electric station" Proc. Int. Conf. on Water Chemistry of Nuclear Reactor Systems, San Fransisco, U.S.A., p.1661 (2004). 8-10. J. Deshon, K. Edsinger, P. Frattini, D. Hussey, C. Wood, "Ultrasonic fuel cleaning in PWRs and BWRs", Proc. Int. Conf. on Water Chemistry of Nuclear Reactor Systems, Jeju, Korea (2006). 8-11. J. Stevens, D. Farnsworth, J. Bosma, J. Deshon, "Elevated RCS ph program at Comanche Peak", Proc. Int. Conf. on Water Chemistry of Nuclear Reactor Systems, Jeju, Korea (2006). 8-12. A. Tigeras, J-L. Bretelle, E. Decossin, "EDF AOA experience: chemical and thermal-hydraulic analysis", Proc. Int. Conf. on Water Chemistry of Nuclear Reactor Systems, San Fransisco, U.S.A., p.1661 (2004). 8-13. Y. K. Kim et al., Technology development to resolve axial offset anomaly",, KNFC, 2006 9-1. D. M. Himmelblau, "Solubilities of Inert Gases in Water", Journal of Chemical and Engineering Data, Vol. 5, No. 1, January (1960) 10-1. PWR Primary water chemistry guidelines, Vol. 1, Rev. 5, EPRI, Palo Alto, CA, TR-105714-V1R5, 2003. 10-2. A.Tigeras, J-L. Bretelle, E. Decossin, "EDF AOA experience: Chemical and thermal-hydraulic analysis", Int. Conf. on Water Chemistry of Nuclear Reactor Systems", San Francisco, US, 11-14 OCt. 2004. 10-3. Root cause investigation of axial offset anomaly, EPRI, Palo Alto, CA USA, TR-108320, 1997. 10-4. P.L. Frattini, P.L. Blok, S. Chauffriat, J. Sawicki, J. Riddle, "Axial offset anomaly: coupling PWR primary chemistry with core design", Nuclear Energy, 2001, 40(2), 123-135. 10-5., (), 2006. 10-6. V.K. Dhir, "Complete Numerical Simulation of Subcooled flow boiling in the presence of thermal and chemical interactions", DOE grant No. DE-FG03-99SF-21930, 2003. 10-7. B.G. Jones, et al., "Modeling and Thermal Performance Evaluation of Porous Layers in Sub-Cooled Boiling Region of PWRs and Effects of Sub-Cooled Nucleate Boiling on Anomalous Porous Crud Deposition on Fuel Pin Surfaces", DOE DEFG07-001D13924, 2005. 10-8. Modeling PWR Fuel Corrosion Product Deposition and Growth Processes, EPRI, Palo Alto, CA: 2004. 1009734. 10-9. F.D. Nicholson and J.V. Sarbutt, "The effect of boiling on the mass transfer of corrosion products in high temperature, high pressure water circuits", Corrosion, 36(1), 1-9, 1980. - 335 -

10-10. W.A. Byers, J. Deshon, "Structure and Chemistry of PWR Crud", Int. Conf. on Water Chemistry of nuclear Reactor Systems, San Francisco, CA., USA, 2004. 10-11. P. Cohen, "Heat and mass transfer for boiling in porous deposits with chimneys", AIChe Symposium Series, 70(138), pp. 71-80, 1974. 10-12. C. Pan, et al., Wick Boiling Performance in Porous Deposits with Chimneys", ASME/AIChe/ANS National Heat Transfer Symposium on Multiphase Flow and Heat Transfer, Denver, August 1985. 10-13. W. Woodside an J.H. Messmer, "Thermal conductivity of porous media I. Unconsolidated Sands", J. of Applied Physics, 32(9), 1688-1699, 1961. 10-14. Handbook of Chemistry and Physics, 73th Edition, CRC Press, Boca Raton, 1992 10-15. B.G. Jones, and C. Pan, "A study of wick boiling phenomena in porous deposits", annual report, EPRI 10-16. J. Henshaw, et al., "Modeling PWR Fuel Corrosion Product Deposition and Growth Processes", EPRI, EPRI-1009734, 2004 10-17. R.W. Schrage, "A theoretical study of interface mass transfer", Columbia University Press, New York, 1953. 10-18. Keenan, K.L. and Keyes, F.G., "Thermodynamic Properties of Steam", 1st Edition, Wiley, New York, 1936. 10-19. D.D. Mcdonald, M. Urquius-Mcdonald, "A Coupled Environment Model for Stress Corrosion Cracking in Sensitized Type 304 Stainless Steel in LWR Environments", Corrosion Science, Vol. 32, No. 1, pp. 51-81, 1991. 10-20. A.S. Quist and W.L. Marshall, "Assignment of limiting equivalent conductances for single ions to 400", J. Phys. Chem., 69(9), 2984-2987 (1965) 10-21. J.A. LaVerne and S.M. Pimblott, "Diffusion-kinetic modeling of the electro radiolysis of water at elevated temperatures", J. Phys. Chem., 97, 3291-3297 (1993) 10-22. D.D. Mcdonald, "Viability of hydrogen water chemistry for protecting in-vessel components of boiling water reactor", Corrosion, 48(3), 194-205, 1992 10-23. C.R. Wike and C.Y. Lee, Ind. Eng. Chem., 47, 1253, (1955) 10-24. Hari Selvi Viswanathan, Modification of the Finite Element Heat and Mass Transfer Code (FEHM) to Model Multicomponent Reactive Transport, LA-13167-T, Los Alamos National Laboratory, U.S.A., 1995. 10-25. D. Dickinson, J. Hensaw, A. Tuson, and H.E. Sims, "Radiolysis Effects in Sub-cooled Nucleate Boiling", Int. Conf. on Nuclear Reactor Systems, avignon, France, 2002. 10-26. H. Christensen, "Fundamental Aspects of Water Coolant Radiolysis", SKI Report 2006:16, April 2006. 10-27. Marshall, W.L., and Franck, E.LU., "Ion product of Water Substance, 0-1000, 1-10000 bars. New International Formulation and its Background", Journal of Physical and Chemical Reference Data 10(2), p295-304, 1981. - 336 -

10-28. W.D. Fletcher, "Interaction of stainless steel corrosion products and boric acid solutions", WCAP-3730, Westinghouse Electric Corporation, Atomic Power Division, March 1964. 10-29. M.A. Blesa, A.J.G. Maroto, A.E. Regazzoni, "Boric acid adsorption on magnetite and zirconium dioxide", J. Colloid Interface Sci., 99, 32-40, 1984 10-30. Gusonas, Adsorption of Boric Acid on Synthetic Fuel Crud Oxides, EPRI, Palo Alto, CA: 1003384, 2002 10-31. D.A. Palmer, P. Benezeth, D.J. Wesolowski, L.M. Anovitz, Y. Zhgenti, N. Kan, Adsorption of Ions on Zirconium Oxide Surfaces from Aqueous Solutions at High Temperatures, EPRI, Palo Alto, CA:1007855, 2003. 10-32. S. Dickinson, J. Henshaw, J.C. McGurk, H.E. Sims, "Modeling PWR fuel corrosion product deposition and growth process: Final Report", EPRI, Palo Alto, CA: 2005. 1011743. 10-33. W.A. Byers, W.T. Lindsay Jr., R.H. kunig, "Solubility of Lithium Monoborate in High Temperature Water", J. Solution Chem., 28, 541, 2000. 13-1. J. A. Battaglia and J. Roesmer, "Utilization of Enriched Boric Acid in Pressurized Water Reactor Plants", Proceedings of EPRI Seminar on PWR Primary Chemistry and Radiation Field Control, Paper 34, (1988) 13-2. V. Goehlich and J. Florinski, "Enriched Boric Acid for Pressurized Water Reactors", Proceedings of Conference on Chemistry in Water Reactors, p. 128 (1994) 13-3. "An Evaluation of Enriched Boric Acid in European PWRs", 1003124, Palo Alto, (2001) 13-4. "Re-Evaluation of the Benefits of Implementing Enriched Boric Acid"' TR-109992, Palo Alto, (1998) 13-5. C. M. M. Coutinho et al., "Enrichment of Boron 10", INIS-BR-2496, (1990) 13-6. K. Takeda et al., Kogaku-Kogaku-Robunshu, 15, 567 (1989) 13-7. V. Goehlich, "Enriched Boron Products", Proceedings of Int. Conference on Water Chemistry of Nuclear Reactor Systems 6, BNES, p. 187 (1992) 13-8. W. B. Rodill, "Feasibility Study on Enriched Boron, Surry Power Station, Unit 1&2", Proceedings of EPRI Seminar on PWR Primary Water Chemistry and Radiation Field Control, Paper 35, March (1988) 13-9. Y. L. Sandler and R. H. Kunig, Nucl. Sci. Eng., 64, 866 (1977) 13-10. Y. L. Sandler and R. H. Kunig, Nucl. Sci. Eng., 77, 211 (1981) 13-11. "PWR Primary Water Chemistry Guidelines: Revision 6", 1014686, Palo Alto, (2007) 13-12. "PWR Primary Water Chemistry Guidelines: Revision 4", TR-105714-V1R4, Palo Alto, (1999) 13-13. P. O. Aronsson et al., "High ph Operation at Swedish PWRs", EPRI Radiation Field Control Seminar, Palo Alto, (1991) 13-14. T. A. Beineke et al., "High ph Operation in ABB C-E Plants", EPRI Radiation Field - 337 -

Control Seminar, Palo Alto, (1991) 13-15. M. J. B. Hudson and T. F. Burns, "Radiation Field Reduction by Elevated ph Control at Millstone 3", EPRI Radiation Field Control Seminar, Palo Alto, (1991) 13-16. T. A. Beineke and P. Crinigan, "Evaluation of Elevated RCS Lithium Chemistry at Calvert Cliffs Unit 2", ASME/IEEE Power Generation Conference, Boston, (1990) 13-17. I. Mark, "Enriched Boric Acid Promises Greater Flexibility for PWR Operators", Nuclear Eng. Int., 34, 47 (1989) 13-18. L. W. Green et al., Can. J. Chem., 62, 1452 (1984) 13-19. C. A. Bergmann, " Evaluation of Selected Parameters on Exposure Rates in Westinghouse Designed Nuclear Plants", Proceedings of Int. Conference on Water Chemistry of Nuclear Reactor Systems 5, BNES, p. 9 (1989) 14-1. Y. K. Kim et al., Technology development to resolve axial offset anomaly",, KNFC, 2006 14-2. David Perkins, Programmatic Challenges PWR Primary Chemistry Optimization, 2010 KHNP-EPRI Technical Exchange Workshop, May 2010 14-3. Jiaxin Chen, AOA-risk assessment - Experimental approaches, Studsvik Nuclear AB, a presentation at KAERI, July 24, 2007 14-4. MULTEQ: Equilibrium of an Electrolytic Solution with Vapor-Liquid Partitioning and Precipitation. The Database, Version 5.0, EPRI, Palo Alto, CA: 2007. 10146025. 14-5., CRUD AOA,, 6 Workshop (2007), 2007. 5. 31 ~ 6. 1, INTEC, KAERI 14-6. Joshua Mahlon Hawkes, The Simulation and Study of Conditions Leading to Axial Offset Anomaly in Pressurized Water Reactors, In Partial Fulfillment Of the Requirements for the Degree Master of Science in Nuclear Engineering School of Mechanical Engineering, Georgia Institute of Technology, USA, December, 2004-338 -

- 339 -

- 340 -

- 341 -

- 342 -

- 343 -

l Operating Conditions - Flow rate : ~19 GPM (4315 LPH) - Pressure : 5000 psi (345 bar) Max. - Temperature : 650 F (343 C) Max. Pump - Power : 3/4 HP, MagneDrive - Total head : 12 m l 일본 CRIEPI에서사용중인펌프 (From Kawamura 이메일 ) - Flow rate : 20 liter/min (max) - Total head : 100 m - Temp. : 355 (max) - 344 -

20 18 16 4400 RPM 76.5HZ 1.5HP Req'd HEAD(M) 14 12 10 3450 RPM 60 HZ 8 2875 RPM 50 HZ 6 0 20 40 60 80 100 FLOW(LPM) - 345 -

6 5 [2008-09-12 13:45 "/Graph2" (2454721)] Linear Regression for Data1_C: Y = A + B * X Flow(Liter/min) 4 3 2 inlet 1/4 inch inlet 1 inch test zone Parameter Value Error ------------------------------------------------------------ A -0.21733 0.13366 B 0.0914 0.00343 ------------------------------------------------------------ [2008-09-11 14:32 "/Graph1" (2454720)] Linear Regression for Data1_B: Y = A + B * X Parameter Value Error ------------------------------------------------------------ A 0.1956 0.05081 B 0.0413 0.00153 ------------------------------------------------------------ 1 [2008-09-16 13:16 "/Graph3" (2454725)] Linear Regression for Data1_D: Y = A + B * X 0 0 10 20 30 40 50 60 70 Hz Parameter Value Error ------------------------------------------------------------ A -0.00667 0.01444 B 0.01657 3.70695E-4 ----------------------------------------------------------- - 346 -

1/2" pipe, w/o spacer 압력 (MPa) 유량 (liter/min) 압력강하 (kpa) 유속 (m/sec) 12.0 MPa 17 1.97 1.21 30 5.9 2.14 79 37.98 5.56 15.0 MPa 17 1.97 1.23 30 6.02 2.18 79 38.65 5.66 1/4" pipe, w/ spacer 압력 (MPa) 유량 (liter/min) 압력강하 (kpa) 유속 (m/sec) 15.0 MPa 3 1.6 0.7 17 46.25 3.92 79 918.85 18 노심핵연료 Halden Studsvik CEA-EDF Lister Kawamura KAERI ID[annulus], mm 14.2 13.7 Gap size, mm 2.3577 2.2 유량, L/min 17.1 1.8 78 43.2? 유속, m/sec 0~ 7? 열원길이, mm 3860 600, 800 55 1800 152.4 230 230 열원직경, mm 9.5 9.5, 7.5 10 ~10 9.5-347 -

ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü - 348 -

ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü - 349 -

ü ü ü ü ü - 350 -

350 A1 ( Li : 1.5 ppm, B : 870.5 ppm, Fe : 20 ppm, Ni : 20 ppm, Fe/Ni nitrate 사용 ) 300 Temperature ( o C) 250 200 150 100 50 Specimen Surface Outlet Solution Inlet Solution Preheater Pressure(Kgf/cm 2 ) DH (ppm) DO (count) ph 0 120 100 80 60 40 20 0 8 7 6 5 4 300 250 200 150 100 50 0 1500 1000 500 500 0 20 40 60 80 100 120 140 160 180 200 수소주입농도 : 21 cc/kg 운전중고압펌프정지 (Fe/Ni 용액농도가높아서고압펌프전단필터막힘 ) 소음발생으로펌프교체, 가압중단 DH ppm 단위, 수치이상 ( 보정필요 ) Conductivity (ms/cm) 400 300 200 100 0 0 20 40 60 80 100 120 140 160 180 200 Time (hours) Inlet Outlet - 351 -

350 A2 ( Li : 1.5 ppm, B : 870.5 ppm, Fe : 200 ppb, Ni : 200 ppb, Fe/Ni nitrate 사용 ) 300 Temperature ( o C) 250 200 150 100 카트리지히터승온시알람경보 power off (2 회 ) - Thermocouple 교체 Specimen Surface Outlet Solution Inlet Solution Preheater 50 Pressure(Kgf/cm 2 ) 0 120 100 80 60 40 20 0 0 20 40 60 80 100 120 140 160 180 200 A1 실험과비교위해 5 일시험 7.0 6.9 DH (ppm) DO (ppb) ph 6.8 6.7 6.6 8 6 4 2 0 20 15 10 수소주입농도 : 21 cc/kg 5 0 DH 검출기 ppm 단위교정 100 Conductivity (ms/cm) 80 60 40 20 Inlet 0 20 40 60 80 100 120 140 160 180 200 Time (hours) - 352 -

350 A3 ( Li : 1.5 ppm, B : 870.5 ppm, Fe : 200 ppb, Ni : 200 ppb, Fe/Ni nitrate 사용 ) 300 Temperature ( o C) 250 200 150 100 50 Specimen Surface Outlet Solution Inlet Solution Preheater Pressure(Kgf/cm 2 ) 0 0 100 200 300 400 500 600 700 800 900 120 100 80 60 40 20 4주간실험 0 DH (ppm) DO (ppb) ph 7.0 6.9 6.8 6.7 6.6 8 6 4 2 0 30 20 10 수소주입농도 : 21 cc/kg Conductivity (ms/cm) 0 100 80 60 40 20 0 100 200 300 400 500 600 700 800 900 Time (hours) Inlet - 353 -

350 A4 ( Li : 1.5 ppm, B : 870.5 ppm, Fe : 200 ppb, Ni : 200 ppb, Fe/Ni acetate 사용 ) 300 Temperature ( o C) Pressure(Kgf/cm 2 ) 250 200 150 100 50 0 120 100 80 60 40 20 0 Specimen Surface Outlet Solution Inlet Solution Preheater Fe/Ni nitrate 에서 acetate 로바꿈 0 50 100 150 200 250 300 350 400 계속 2 주간실험 DH (ppm) DO (ppb) ph 7.0 6.9 6.8 6.7 6.6 0.8 0.6 0.4 0.2 0.0 10000 8000 6000 4000 2000 수소주입농도 : 21 cc/kg DH 검출기수치이상 Conductivity (ms/cm) 100 80 60 40 20 0 50 100 150 200 250 300 350 400 Time (hours) Inlet - 354 -

350 A5 ( Li : 3.5 ppm, B : 1500 ppm, Fe : 2 ppm, Ni : 2 ppm, Fe/Ni acetate 사용 ) 300 Temperature ( o C) 250 200 150 100 50 Specimen Surface Outlet Solution Inlet Solution Preheater Pressure(Kgf/cm 2 ) DH (cc/kg) DO (ppb) ph Conductivity (ms/cm) 0 120 100 80 60 40 20 0 7.0 6.9 6.8 6.7 6.6 0.8 0.6 0.4 0.2 0.0 30 25 20 15 10 5 0 160 140 120 100 80 60 40 20 0 50 100 150 200 250 300 350 400 수소주입농도 : 21 cc/kg 고압펌프이상정지, 90 분후재작동 0 50 100 150 200 250 300 350 400 Time (hours) DH 검출기단위를 cc/kg 으로변환 Inlet - 355 -

350 A6 ( Li : 5 ppm, B : 1500 ppm, Fe : 2 ppm, Ni : 2 ppm, Fe/Ni acetate 사용 ) 300 Temperature ( o C) 250 200 150 100 50 Specimen Surface Outlet Solution Inlet Solution Preheater Pressure(Kgf/cm 2 ) DH (cc/kg) DO (ppb) ph Conductivity (ms/cm) 0 120 100 80 60 40 20 0 7.0 6.9 6.8 6.7 6.6 0.8 0.6 0.4 0.2 0.0 30 28 26 24 110 22 100 90 80 70 60 50 0 50 100 150 200 250 300 350 400 수소주입농도 : 21 cc/kg Inlet 0 50 100 150 200 250 300 350 400 Time (hours) - 356 -

350 A7 ( Li : 2.2 ppm, B : 1500 ppm, Fe : 2 ppm, Ni : 2 ppm, Fe/Ni acetate 사용 ) 300 Temperature ( o C) 250 200 150 100 50 Specimen Surface Outlet Solution Inlet Solution Preheater 순간정전으로인한전원 off Pressure(Kgf/cm 2 ) DH (cc/kg) DO (ppb) ph Conductivity (ms/cm) 0 120 100 80 60 40 20 0 7.0 6.9 6.8 6.7 6.6 0.8 0.6 0.4 0.2 0.0 30 28 26 24 22 100 80 60 40 20 0 50 100 150 200 250 300 350 400 수소주입농도 : 21 cc/kg Inlet 0 50 100 150 200 250 300 350 400 Time (hours) - 357 -

350 A8 ( Li : 1.5 ppm, B : 500 ppm, Fe : 2 ppm, Ni : 2 ppm, Fe/Ni acetate 사용 ) 300 Temperature ( o C) 250 200 150 100 50 Specimen Surface Outlet Solution Inlet Solution Preheater Pressure(Kgf/cm 2 ) 0 120 100 80 60 40 20 0 0 50 100 150 200 250 300 350 400 7.0 6.9 DH (cc/kg) DO (ppb) ph 6.8 6.7 6.6 0.8 0.6 0.4 0.2 0.0 200 180 160 140 120 26.8 26.6 수소주입농도 : 21 cc/kg DH 센서이상 실험종료후 DO, DH 압력센서보정 Conductivity (ms/cm) 100 80 60 40 20 0 50 100 150 200 250 300 350 400 Time (hours) Inlet - 358 -

350 A9 ( Li : 1.5 ppm, B : 170 ppm, Fe : 2 ppm, Ni : 2 ppm, Fe/Ni acetate 사용 ) 300 Temperature ( o C) 250 200 150 100 50 Specimen Surface Outlet Solution Inlet Solution Preheater Pressure(Kgf/cm 2 ) 0 120 100 80 60 40 20 0 0 50 100 150 200 250 300 350 400 DH (cc/kg) DO (ppb) ph Conductivity (ms/cm) 7.0 6.9 6.8 6.7 6.6 6 5 4 3 2 1 0 30 25 20 15 10 5 0 100 80 60 40 20 수소주입농도 : 21 cc/kg Inlet 0 50 100 150 200 250 300 350 400 Time (hours) - 359 -

350 A10 ( Li : 5 ppm, B : 885 ppm, Fe : 2 ppm, Ni : 2 ppm, Fe/Ni acetate 사용 ) 300 Temperature ( o C) 250 200 150 100 50 Specimen Surface Outlet Solution Inlet Solution Preheater Pressure(Kgf/cm 2 ) 0 120 100 80 60 40 20 0 0 50 100 150 200 250 300 350 400 Preheater 에서 heating zone 으로가는배관에서누수발생 ; 배관수정 리본히터불량 ; 교체 DH (cc/kg) DO (ppb) ph Conductivity (ms/cm) 7.0 6.9 6.8 6.7 6.6 6 5 4 3 2 1 0 30 25 20 15 10 5 0 100 80 60 40 20 수소주입농도 : 21 cc/kg Inlet 0 50 100 150 200 250 300 350 400 Time (hours) - 360 -

350 A11 ( Li : 2.5 ppm, B : 885 ppm, Fe : 2 ppm, Ni : 2 ppm, Fe/Ni acetate 사용 ) 300 Temperature ( o C) 250 200 150 100 50 Specimen Surface Outlet Solution Inlet Solution Preheater Pressure(Kgf/cm 2 ) 0 120 100 80 60 40 20 0 0 50 100 150 200 250 300 350 400 고압펌프전단필터교환시펌핑이상 ; 약 90 분후재가동 7.0 DH (cc/kg) DO (ppb) ph 6.9 6.8 6.7 6.6 20 15 10 5 0 30 25 20 15 10 5 0 수소주입농도 : 21 cc/kg 실험중 DO, DH 센서이상 실험후 DO, DH 센서보정 100 Conductivity (ms/cm) 80 60 40 20 Inlet 0 50 100 150 200 250 300 350 400 Time (hours) - 361 -

350 A12 ( Li : 3.5 ppm, B : 1500 ppm, Fe : 2 ppm, Ni : 2 ppm, Fe/Ni acetate 사용 ) 300 Temperature ( o C) 250 200 150 100 50 Specimen Surface Outlet Solution Inlet Solution Preheater Pressure(Kgf/cm 2 ) DH (cc/kg) DO (ppb) ph 0 120 100 80 60 40 20 0 7.0 6.9 6.8 6.7 6.6 0.4 0.3 0.2 0.1 0.0 10 5 0 50 100 150 200 250 300 350 400 수소주입농도 : 5 cc/kg Conductivity (ms/cm) 0 100 80 60 40 20 0 50 100 150 200 250 300 350 400 Time (hours) Inlet - 362 -

350 A13 ( Li : 3.5 ppm, B : 1500 ppm, Fe : 2 ppm, Ni : 2 ppm, Fe/Ni acetate 사용 ) 300 Temperature ( o C) 250 200 150 100 50 Specimen Surface Outlet Solution Inlet Solution Preheater Pressure(Kgf/cm 2 ) DH (cc/kg) DO (ppb) ph Conductivity (ms/cm) 0 120 100 80 60 40 20 0 7.1 7.0 6.9 6.8 6.7 6.6 0.4 0.3 0.2 0.1 0.0 50 40 30 20 10 0 100 80 60 40 20 0 50 100 150 200 250 300 350 400 수소주입농도 : 40 cc/kg Inlet 0 50 100 150 200 250 300 350 400 Time (hours) - 363 -

350 A14 ( Li : 3.5 ppm, B : 1500 ppm, Fe : 2 ppm, Ni : 2 ppm, Fe/Ni acetate 사용 ) 300 Temperature ( o C) 250 200 150 100 50 Specimen Surface Outlet Solution Inlet Solution Preheater Pressure(Kgf/cm 2 ) 0 120 100 80 60 40 20 0 0 50 100 150 200 250 300 350 400 7.0 6.9 DH (cc/kg) DO (ppb) ph 6.8 6.7 6.6 20 15 10 5 0 100 80 60 40 수소주입농도 : 70 cc/kg DO 센서이상, 실험후센서보정 DH 센서이상, 실험후센서보정 100 Conductivity (ms/cm) 80 60 40 20 Inlet 0 50 100 150 200 250 300 350 400 Time (hours) - 364 -

Temperature ( o C) 350 300 250 200 150 100 50 A14 ( Li : 3.5 ppm, B : 1500 ppm, Fe : 2 ppm, Ni : 2 ppm, Fe/Ni acetate사용 ) (A4 재시험 ) Specimen Surface Outlet Solution Inlet Solution Preheater Pressure(Kgf/cm 2 ) 0 120 100 80 60 40 20 0 0 50 100 150 200 250 300 350 400 DH (cc/kg) DO (ppb) ph Conductivity (ms/cm) 7.0 6.9 6.8 6.7 6.6 0.4 0.3 0.2 0.1 0.0 300 250 200 150 100 50 0 100 80 60 40 20 수소주입농도 : 70 cc/kg 배관을수정하여 Inlet/Outlet 에서전도도를동시측정 Inlet Outlet 0 50 100 150 200 250 300 350 400 Time (hours) - 365 -

350 A16 ( Li : 3.5 ppm, B : 1500 ppm, Fe : 2 ppm, Ni : 2 ppm, Fe/Ni acetate 사용 ) 300 Temperature ( o C) 250 200 150 100 Specimen Surface Outlet Solution Inlet Solution Preheater Ar gas 교체시기포에의해 level sensor 오작동 ; 40 분정도 heater off 50 Pressure(Kgf/cm 2 ) 0 120 100 80 60 40 20 0 7.0 0 50 100 150 200 250 300 350 400 실험용액 0.5 cc/min 으로연속주입 (Makeup tank 농도 Li: 3.5 ppm, B: 1,500 ppm, Fe: 240 ppm, Ni: 240 ppm) DH (cc/kg) DO (ppb) ph Conductivity (ms/cm) 6.5 6.0 0.4 0.3 0.2 0.1 0.0 80 60 40 20 0 100 80 60 40 20 수소주입농도 : 50 cc/kg 0 50 100 150 200 250 300 350 400 Time (hours) Inlet Outlet - 366 -

- 367 -

- 368 -

- 369 -

- 370 -

- 371 -

- 372 -

- 373 -

- 374 -

- 375 -

- 376 -

최종보고서요약서 - 377 -