대한치과보철학회지 :Vol. 45, No. 4, 2007 다양한골질에서임플랜트수용부형성방법이임플랜트 1 차안정성에미치는영향 전남대학교치의학전문대학원치과보철학교실, * 구강악안면외과학교실 최득철 방몽숙 오희균 * Ⅰ. 서론최근에임플랜트가상실된치아의수복방법으로보편화되면서임플랜트의생체적합성연구와함께생체기능성에대한연구가많이시행되고있다. 임플랜트가악골에식립된후정상치아와같은기능을수행하려면식립된임플랜트계면과골과의견고한유착이이루어져야한다. 견고한골유착을형성하기위해서는임플랜트식립후안정성을얻어야한다. 임플랜트식립시에얻어지는 1차안정성은숙주골내에식립된임플랜트가초기에안정되게고정됨을의미하며주로골과임플랜트계면에서의접촉상태에의존한다. 1차안정성은악골의골질과수술방법에의해주로결정이되며상대적으로연약한 (soft) 골질에서는임플랜트의디자인에영향을받는다. 1 Albreksson과 Branemark 2 는임플랜트 1차안정성이임플랜트식립부위의골질과골량, 임플랜트구조, 식립기술등의영향을받으며, 2가지주된요인은골과임플랜트의접촉양, 임플랜트-조직계면에서의압축응력이다고하였다. 임플랜트식립부위의골질분류는 Lekholm과 Zarb 3,4 의분류법이임상적으로많이이용되고있다. 이분류법은골질을 4가지 type으로분류한다. Type 1 골질은대부분균질한피질골이고, type 2는두꺼운피질골층이치밀한해면골을둘러싸고있는양상이며, type 3 골질은얇은피질골층이치밀한해면골을둘러싸고있는양상이고, type 4 골질은얇은피 질골층이밀도가약한해면골을둘러싸고있는골로정의하고있다. Lekholm과 Zarb 3 는 type 1~3 골질에식립된임플랜트가임상적으로장기간성공률이높은반면에 type 4 골질에식립된임플랜트는장기간성공율이비교적낮으며, type 4 골질에서는임플랜트 1차안정성이불량하므로골유착이성공적으로일어나지않아실패율이높다고하였다. Type 4 골질에서임플랜트 1차안정성을증진시키기위해임플랜트주위골을압축시키거나반대측또는인접피질골에임플랜트를고정하는방법들이사용되고있다. 성공적인임플랜트사용을위해서는불량한골질에서도양호한임플랜트안정성과골유착을얻고장기적으로골유착을유지하는하는것등이필요하다. 이를위해임플랜트고정체의표면과형태등의개발뿐만아니라임플랜트안정성과골유착정도를검사하기위한연구들이보고되었다. 5,6 Glauser 등 7 과 Friberg 등 8 은임플랜트식립후초기및기능시의임플랜트안정성을정량적으로측정할수있다면식립한임플랜트성패에대한조기예견이가능하여임플랜트실패를줄일수있다고하였으며임플랜트의골유착에있어서임플랜트안정성측정은식립시부터장시간의성공여부를평가하는데중요하다고하였다. 본연구는다양한골질에서임플랜트수용부형성방법에따른임플랜트 1차안정성정도를 Osstell TM, Osstell TM mentor 및 Periotest 로측정하고, 식립시부하되는식립토크를측정하여비교분석함으로써 469
임플랜트수용부형성방법이임플랜트 1차안정성에미치는영향을검사하고자시행하였다. Korea) 를사용하여 4종골질의목재판에각군당 6개씩의임플란트를각각식립하였다. Ⅱ. 연구재료및방법 1. 실험재료본연구에서사용된목재판은 Osstem사 (Osstem Co., Korea) 에서 type 1, 2, 3, 4 골질과유사하게제작된 4종골질의임플랜트실습용목재판시편 ( 크기 : 50 15 15 mm) 을사용하였고, 임플랜트는직경 4.0mm, 길이 10mm RBM(resorbable blasting media) 으로표면처리한 US II 오스템임플랜트 (Osstem Co., Korea) 를사용하였다. 3) 1차안정성측정 (1) Osstell TM 측정식립된임플랜트에 2개의압전체 (piezocermic element) 가부착된 L자형작은변화기의수직면을식립된임플랜트에위치시킨다음변환기는 2.5mm 지대주에미리연결하여임플랜트고정체에 10Ncm 정도의힘으로전용드라이브로연결하고임플랜트가식립된골의장축과폭에해당한부위에서공명진동수를측정하였다. 측정된주파수는액정화면에임플랜트안정성지수 (Implant Stability Quotient, ISQ) 0-100으로표시되었다. 2. 실험방법 1) 목재판고정 Type 1, 2, 3, 4 골질과유사하게제작된 4종의목재판시편을임플란트식립시움직임이없도록하기위해실험대위에바이스를이용하여견고하게고정하였다. (2) Osstell TM mentor 측정전용드라이버로자석팁을임플랜트가식립된골의장축과폭방향으로임플랜트고정체에 10 Ncm 정도의힘으로전용드라이브로연결하고공명진동수를측정하였다. 측정된주파수는액정화면에임플랜트안정성지수 (Implant Stability Quotient, ISQ) 0-100로표시되었다. 2) 실험군의분류와임플랜트식립 Type 1, 2, 3, 4 골질과유사하게제작된각각의목재판에대조군은제조회사의지시에따라, 실험군은 table 1과같이다양한방법으로수용부를형성하였다. 임플란트는직경 4mm, 길이 10mm의 RBM 표면처리한 USII 오스템임플란트 (Osstem Co., (3) Periotest 측정먼저 Periotest (Siemens AG, Germany) 의핸드피스를임플랜트가식립된골질과평행되도록위치한후측정하려는임플랜트고정체 mounter의하방 1/3 부위에수직되게타격하여 PTV를측정하였다. Table Ⅰ. The groups were divided according to implant preparation methods Groups 1.8mm 2.0mm 2.7mm 2,7mm 3.0mm 3.3mm 3.3mm countersink tapping 3.0mm guide initial pilot twist twist pilot twist drill drill osteotome drill drill drill drill drill drill drill control O O O O O O O O O X 1 O O O O O X X X X X 2 O O O O O X X O X X 3 O O O O O X X O O X 4 O O O O O O O X X X 5 O O O O O O O O X X 6 O O X X X X X X X O 470
(4) 식립토크 (Insertion torque) 측정 INTRA surg 300(KaVo., Germany) 엔진으로임플랜트식립시나타나는식립토크를측정하였다. 각군에서임플랜트수용부를형성하고임플랜트식립용핸드피스에임플랜트식립체를장착하고주수하에 50 rpm의저속으로임플랜트를식립하였으며식립시 INTRA surg 300(KaVo., Germany) 엔진에달린액정화면에표시되는식립토크값의최대수치를기록하였다. 2) Osstell TM mentor test 측정결과 Osstell TM mentor로측정된각군의 1차안정성값은 3군, 4군, 5군, 대조군, 1군, 2군의순서로안정성이증가되었다. 3) Periotest test 측정결과 Periotest 로측정된각군의1차안정성값은대조군, 3군, 2군, 4군, 5군, 1군의순서로안정성이증가되었다 4) 통계분석모든측정치들에정규성검정을시행하였다. 각골질에서각각의기구를이용하여측정된각군간의 1 차안정성및식립토크에대한평균비교를위해일원배치분산분석을시행하고, Duncan 방법으로사후분석을시행하였다. Osstell과 Osstell mento에의해측정된값들의연관성을알아보기위해대응표본 t 검정을시행하였다. 각각의통계적분석은 Windows 용 SPSS V12.0을이용하였으며, 95% 신뢰수준으로통계처리하였다. 4) 식립토크측정결과임플란트식립시 kavo 임플란트엔진에측정된최대식립토크값은대조군, 5군, 3군, 2군, 4군, 및 1군의순서로증가되었다. Ⅲ. 결과 1. Type 1 골질시편에서 1차안정성측정결과 (Table II, Fig. 1) 1) Osstell TM test 측정결과 Osstell TM 로측정된각군의1차안정성값은대조군, 2군, 5군, 3군, 4군, 1군의순서로안정성이증가되었다. Fig. 1. Mean values of primary stability in type 1 wooden plate. * : (p<0.05) Table Ⅱ. Primary stability of implant in type I wooden plate Osstell TM Osstell TM mento Periotest Insertion torque Groups Duncan Duncan Duncan Duncan Mean±SD Mean±SD Mean±SD Mean±SD HSD HSD HSD HSD Control 66.4±5.58 A 69.4±11.00 AB -2.6±1.22 B 37.0±10.63 AB 1 74.6±1.83 B 72.6±3.86 B -4.4±0.97 A 51.2±3.43 D 2 68.9±4.98 A 73.8±2.21 B -3.1±1.03 B 44.8±10.06 CD 3 70.7±4.33 AB 61.9±13.70 A -2.7±1.86 B 43.3±7.15 BC 4 71.4±5.87 AB 67.6±7.15 AB -3.5±0.94 AB 45.8±6.70 CD 5 70.2±7.04 AB 68.3±7.26 AB -3.6±0.63 AB 34.5±7.15 A 471
2. Type 2 골질시편에서 1차안정성측정결과 (Table III, Fig. 2) 1) Osstell TM test 측정결과 Osstell TM 로측정된각군의1차안정성값은통계학적으로유의한차이는없었다. 2) Osstell TM mentor test 측정결과 Osstell TM mentor로측정된각군의 1차안정성값은 2군, 3군, 대조군, 5군, 4군,1군의순서로안정성이증가되었다. 3) Periotest test 측정결과 Periotest 로측정된각군의1차안정성값은5군, 3군, 2군, 4군, 대조군, 1군의순서로안정성이증가되었다. 2) Osstell TM mentor test 측정결과 Osstell TM mentor로측정된각군의 1차안정성값은 5군, 4군, 3군, 2군, 대조군, 6군, 1군의순서로안정성이증가되었다. 3) Periotest test 측정결과 Periotest 로측정된각군의1차안정성값은 3군, 4군, 대조군, 5군, 2군, 1군, 6군순서로증가되었다. 4) 식립토크측정결과임플란트식립시측정된최대식립토크값은 5군, 4군, 3군, 대조군, 1군, 2군, 6군의순서로증가되었다. 4) 식립토크측정결과임플란트식립시측정된최대식립토크값은대조군, 3군, 5군, 2군, 1군, 4군의순서로증가되었다. 3. Type 3 골질시편에서 1차안정성측정결과 (Table IV, Fig. 3) 1) Osstell TM test 측정결과 Osstell TM 로측정된각군의1차안정성값은대조군, 2군, 3군, 6군, 5군, 4군, 1군순으로안정성이증가되었다. Fig. 2. Mean values of primary stability in type 2 wooden plate. * : (p<0.05) Table Ⅲ. Primary stability of implant in type 2 wooden plate Osstell TM Osstell TM mento Periotest Insertion torque Groups Duncan Duncan Duncan Duncan Mean±SD Mean±SD Mean±SD Mean±SD HSD HSD HSD HSD Control 63.0±8.21 A 63.2±2.59 AB -2.7±1.18 A 11.7±2.89 A 1 66.9±5.67 A 70.6±3.79 C -3.2±0.81 A 20.6±2.07 B 2 65.1±9.01 A 61.3±4.65 A -2.2±1.49 A 14.2±2.94 A 3 61.9±6.32 A 62.7±3.34 AB -1.0±1.03 B 13.2±2.35 A 4 66.3±6.75 A 65.0±3.86 B -2.5±1.43 A 23.0±8.74 B 5 60.1±8.49 A 63.7±2.78 AB -0.9±0.99 B 14.2±3.91 A 472
4. Type 4 골질시편에서 1차안정성측정결과 (Table V, Fig. 4) 5군, 2군, 대조군, 4군, 1군, 6군의순서로증가되었다. 1) Osstell TM test 측정결과 Osstell TM 로측정된각군의 1차안정성값은 3군, 2) Osstell TM mentor test 측정결과 Osstell TM mentor로측정된각군의 1차안정성값 Fig. 3. Mean values of primary stability in type 3 wooden plate. * : (p<0.05) Fig. 4. Mean values of primary stability in type 4 wooden plate. * : (p<0.05) Table Ⅳ. Primary stability of implant in type 3 wooden plate Osstell TM Osstell TM mento Periotest Insertion torque Groups Duncan Duncan Duncan Duncan Mean±SD Mean±SD Mean±SD Mean±SD HSD HSD HSD HSD Control 52.2±5.97 A 57.7±3.00 B 2.2±1.40 C 11.3±5.58 A 1 74.2±11.61 C 64.5±5.28 C 0.4±1.63 A 11.9±4.70 A 2 58.1±7.42 B 56.5±4.87 AB 1.6±0.99 AB 14.0±8.64 A 3 58.8±5.34 AB 56.7±4.14 AB 2.4±1.15 C 10.2±4.17 A 4 66.4±8.29 B 55.4±4.85 AB 2.3±1.30 AB 9.5±2.86 A 5 62.7±10.27 B 51.7±6.45 A 1.6±1.39 AB 9.3±2.78 A 6 60.6±4.72 B 62.9±5.59 C 0.4±1.42 A 20.4±3.98 B Table Ⅴ. Primary stability of implant in type 4 wooden plate Osstell TM Osstell TM mento Periotest Insertion torque Groups Duncan Duncan Duncan Duncan Mean±SD Mean±SD Mean±SD Mean±SD HSD HSD HSD HSD Control 55.9±5.28 AB 33.9±3.89 A 7.4±2.74 BC 4.1±1.24 ABC 1 64.3±9.48 C 51.3±6.20 D 3.6±2.07 A 4.9±1.56 BCD 2 55.3±6.33 AB 39.3±7.31 BC 3.9±2.54 A 3.5±0.82 AB 3 50.3±8.26 A 37.3±4.58 AB 8.8±2.25 C 4.2±1.83 ABCD 4 60.9±5.87 BC 44.0±5.90 C 5.7±1.68 AB 5.1±1.66 CD 5 52.4±5.43 A 39.2±4.95 BC 9.4±2.19 C 3.3±1.08 A 6 64.8±7.70 C 54.8±6.56 D 4.5±0.79 A 5.5±1.93 D 473
은대조군, 3군, 5군, 2군, 4군, 1군, 6군의순서로증가되었다. 3) Periotest test 측정결과 Periotest 로측정된각군의1차안정성값은5군, 3군, 대조군, 4군, 6군, 2군, 1군의순서로증가되었다. 5. 골질에따른 1차안정성측정결과 1) Osstell TM test 측정결과 Osstell TM 로측정된각군의1차안정성값은골질이약할수록약간낮아지는경향을나타냈으나, 모든군에서골질에따른 1차안정성값은통계학적으로유의한차이가없었다.(Fig. 5) 4) 식립토크측정결과임플란트식립시측정된최대식립토크값은 5군, 2군, 대조군, 3군, 1군, 4군, 6군의순서로증가되었다. 2) Osstell TM mentor test 측정결과 Osstell TM mentor로측정된각군의 1차안정성값은 Osstell TM test로측정한바와같이골질이약할수록약간낮아지는경향을나타냈으나, 모든군에서 Fig. 5. The mean values of Osstell TM test in type 1, 2, 3, and 4 wooden plates. * : (p<0.05) Fig. 6. The mean values of Osstell TM mentor test in type 1, 2, 3, and 4 wooden plates. * : (p<0.05) Fig. 7. The mean values of Periotest in type 1, 2, 3, and 4 wooden plates. * : (p<0.05) Fig. 8. The mean values of insertion torque test in type 1, 2, 3, and 4 wooden plates. * : (p<0.05) 474
Table Ⅵ. Results of paired t test between the measurements of Osstell TM and Osstell TM mento according to types of bone quality Types Mean±SD p 1 1.3±9.78 0.36 2-0.1±7.90 0.90 3 1.9±10.72 0.22 4 14.8±8.62 0.00 골질에따른 1차안정성값은통계학적으로유의한차이가없었다.(Fig.6) 3) Periotest test 측정결과 Periotest 로측정한 1차안정성값은 type 4에서가장낮았으며 type 1,2,3 군간에는통계학적으로유의한차이가없었다.(Fig.7) 4) 식립토크측정결과골질에따른임플란트식립시측정된최대식립토크값은 type1에서가장높았으며, 그외 type2, type3, type4 골질순으로나타났다. 6. 대응표본 T 검정결과 이들두기구로측정한값들은 type 1, type 2 및 type 3 골질에서는통계학적으로유의한차이가없었으나, type 4 골질에서는 Osstell TM 로측정한값들이 Osstell TM mento로측정한값보다평균 14.8± 8.6 더크게나타났으며, 두기구로측정한값들은통계학적으로유의한차이가있었다 (p<0.01, Table VI). Ⅳ. 고찰 임플랜트의 1차안정성은주로생역학적인요인에의해결정된다. 양호한 1차안정성은임플랜트의미세동요를감소시켜골과임플랜트계면에서섬유성조직이형성될가능성을감소시키기때문에성공적인골유착을얻는데중요하다. 일반적으로골밀도, 임플랜트길이, 임플랜트표면의거칠기와디자인, 임플랜트식립방법등이임플랜트 1차안정성에영향을주는요소들로알려져있다. 18 본연구에서는 이들요소중에서골밀도와임플랜트수용부형성방법이임플랜트 1차안정성에미치는영향을평가하고자시행하였다. 본연구에서는임플랜트식립부위의상태가임플랜트안정성에미치는영향을배제하기위하여균일한골밀도를가진임플랜트실습용목재판시편을선택하여사용하였다. 각골질의목재판에다양한방법으로임플랜트수용부를형성하고임플랜트식립시식립토크를측정하였고, 식립후비침습적인방법들중에서임상에서많이사용되고있는 Periotest, Osstell TM 과 Osstell TM mentor를이용하여임플랜트 1차안정성을측정해봄으로써다양한골질에서임플랜트수용부형성방법에따른임플랜트 1차안정성에미치는영향을평가하였다. Nkenke 등 23 은 Periotest에비해 Osstell TM 을이용한공명주파수분석법이임플랜트식립부위의골특성에더신뢰성이있다고하였다. Osstell TM mentor는자석팁을이용하여유선인 Osstell TM 기구를무선으로개조하여사용하기간편하게만든기구이다. 본연구에서 Osstell TM 과 Osstell TM mentor를이용하여임플랜트 1차안정성을측정한결과 Periotest 처럼측정조건에따라동일한임플랜트에서도약간수치가다르게측정되어각임플랜트에서 4회측정하여평균값을구하여측정치로사용하였다. Olsson 등 24 은상악완전무치악인 10 명의환자에게 61 개의임플랜트를식립직후임플랜트 1차안정성은 60.1± 3.6 로측정되었으며 4개월후에는 62.8± 1.6 로증가하였다고하였다. 본연구에서 Osstell TM 과 Osstell TM mentor로임플랜트 1차안정성을측정한결과 type 1과 type 2 골질시편에서는임플랜트수용부형성방법에관계없이평균계측값이 60 이상을나타내양호한 1차안정성을나타냈으나 type 3과 type 4 골질시편에서는임플랜트수용부를임플랜트보다적은직경의 drill이나 osteotome을이용하여임플랜트수용부를형성한경우에서평균계측값이 60 이상을나타냈다. 따라서골질이유약한골질에서는임플랜트직경보다작게수용부를형성하거나 osteotome으로임플랜트식립부위를압축하여임플랜트를식립하는것이양호한임플랜트 1차안정성을얻을수있다고사료된다. 본연구에서 Osstell TM 로측정한 1차안정성값은 Osstell TM mentor와유사하게 type 1, 475
type 2, type 3, type 4 순으로골질이약할수록약간높아지는경향을나타냈다. 또한, Osstell TM 과 Osstell TM mento 측정치가약간다르게측정되었으나 type 1-3 골질에서는서로유의한차이가없었으나 type 4 골질에서는 Osstell TM 로측정한값들이 Osstell TM mentor로측정한값보다평균 14.8± 8.6 높게나타났다. 본연구에서 Periotest 를이용하여임플랜트 1차안정성을측정한결과측정조건에따라약간수치가다르게측정되어각임플랜트에서 4회측정하여평균값을구하여측정치로사용하였다. 본연구에서임플랜트수용부형성방법에따라 PTV 평균치간에차이가있었으나대체적으로 type 1과 type 2 골질시편에서는식립된임플랜트직경보다적은 drill로임플랜트수용부를형성한 1군이다른군에비해높은 1차안정성을나타냈으며 type 3과 type 4 골질시편에서는 1군과 osteotome을이용한 6군에서높은임플랜트안정성을나타냈다. 골질에따른 PTV값비교에서모든군에서 type 4 골질시편에서가장낮은임플랜트 1차안정성을나타냈으며 (p<0.05), 그외 type 3, type 2 및 type 1 골질시편순으로 1차안정성이증가되어나타났으나 type 1-3 골질간에는골질에따른통계학적유의한차이는없었다 (Fig. 7). 본연구에서임플랜트 1차안정성을측정하는 4가지방법을사용하였는데 Osstell TM, Osstell TM mentor 및 Periotest 방법은동일한임플랜트에서도측정방법에따라측정값이다소다르게측정되어각임플랜트에서 4회측정하여평균값을구하였으나식립토크는임플랜트식립시 1회측정하였지만다른가구로측정한것과거의유사하게임플랜트 1차안정성을나타냈다. 골질에따른식립토크값은 type 1, type 2, type 3, type 4 골질시편순으로감소하였고각골질간에통계학적으로유이한차이가있었다 (p<0.05). 따라서식립토크를이용한임플랜트 1차안정성을평가하는방법이가장간단하고 Periotest 등부가적인기구나측정과정의불필요, 측정시간의단축등의장점을가지고있고, 또신뢰성있는측정값을얻을수있다고생각된다. 본연구에서 countersink drill을사용하지않은경우가사용한경우보다임플랜트 1차안정성이약간높게나타났다 (p<0.05). Type 1-3 골질시편에서는측정방법에따라통계학적으로유의한차이가다르게나타났으나 type 4 골질시편에서는 Periotest 로측정한 1군과 2군을제외하고는모두 countersink drill을사용하지않은경우 (1군과 4군 ) 가사용한경우 (2군과 5군 ) 보다더높은 1차안정성을나타냈다 (p<0.05). 본연구에서모든골질시편에서 Periotest 로측정한경우에는나사선을형성하지않은경우 (2군) 가형성한 3군에비해양호한 1차안정성을나타냈으나다른 3가지방법으로측정한경우에는유의한차이가없었다. 본연구에 type 3과 type 4 골질시편에서 osteotome을이용한임플랜트식립시높은 1차안정성을나타냄을확인하였다 (p<0.05). 골질에따른임플랜트안정성을평가한결과 4종류의안정성평가방법모두에서 type 1 골질시편에서가장안정성값을나타냈으며그외 type 2, type 3, type 4순서로골질이유약한 type 4 골질시편에서가장낮은안정성값을나타냈다. 골질에따른통계학적인유의성평가결과안정성평가방법에따라다소다르게나타났다. 즉, Osstell TM, Osstell TM mentor 및 Periotest 로측정시에는골질에따른안정성차이는없는것으로나타났으나식립토크로측정한경우에는각골질간의유의한차이가있는것으로나타났다 (p<0.05). 본연구에서각골질에서다양한임플랜트수용방법에따른임플랜트 1차안정성을 4가지방법으로측정한결과특히골질이유약한악골에서는최소한의 drilling이나 osteotome을이용하여임플랜트수용부를형성하는것이임플랜트 1차안정성을얻는데유리함을알수있었다. 그리고 1차안정성은측정기구나방법에따라다소의차이가있는것으로나타났다. 따라서임상에서임플랜트식립시임플랜트 1차안정성은시술의간편성과시간절약등을고려할때식립토크를이용하여측정하는것이좋으리라사료된다. 476
Ⅴ. 결론본연구는다양한골질에서임플랜트수용부형성방법에따른임플랜트 1차안정성정도를 Osstell TM, Osstell TM mentor, Periotest 및식립토크로측정하여비교분석함으로써임플랜트수용부형성방법이임플랜트 1차안정성에미치는영향을검사하여다음과같은결과들을얻었다. 1. Type 1과 type 2 골질시편에서 1차안정성은측정방법에따라다소의차이가있었으나모든측정방법에서 1군의 1차안정성이다른군들에비해더높게나타났다 (p<0.05). 2. Type 3 골질시편에서 Osstell 측정치는 1군이다른군들에비해 1차안정성이높았으나, Osstell mentor와 Periotest를이용한측정치는 1군과 6군이, 그리고식립토크측정치는 6군이다른군들에비해높은 1차안정성을보였다 (p<0.05). 3. Type 4 골질시편에서 1군과 6군에서다른군들에비해통계학적으로높은 1차안정성을보였다 (p<0.05). 4. 골질에따른 1차안정성을측정한결과골질이약할수록낮은 1차안정성을나타내는경향이있었으나 Osstell과 Osstell mentor로측정된값들은통계학적으로유의한차이가없는반면에, 식립토크로측정한값들은통계학적으로유의한차이가있었다 (p<0.05). 5. Type 4 골질시편에서 Osstell로측정한값들이 Osstell mentor로측정한값보다평균 14.8± 8.6 높게나타났다. 이상의결과들은최소한의 drilling이나 osteotome 을이용하여임플랜트수용부를형성하는것이임플랜트 1차안정성을얻는데유용하며식립토크측정법이가장간단하고신뢰할만한방법임을시사한다. 참고문헌 1. Watzek G. Implants in qualitatively compromised bone. Quintessence pp67-94, 2005. 2. Albreksson T, Branemark PI. Osseointegrated titanium implants: Requirements for ensuring a long-lasting direct bone to implant anchorage in man. Acta Orthop Scand 1981;52:155-170. 3. Lekholm U, Zarb GA. Patient selection and preparation. In : Branemark PI, Zarb GA : Aging, Osteoporosis, and clinical dentistry. Chicago, Quintessence pp67-84, 1985. 4. Watzek G, UIm C. Compromised alveolar bone quality in edentulous jaws. In: Zarb GA, Lekholm U, Albreksson T. Aging, Osteoporosis, and Dental Implants. Chicago: Quintessence pp67-84, 2002. 5. Park C, Cho IH. New technology for implant stability measurement. Dental Success 2000;10:842-846. 6. Han JH, Heo SJ. Implant system selection for successful osseointegration. Dental Success 2000;10:943-951. 7. Glauser R, Sennerby L, Meridith N. Resonance frequency analysis of implants subjected to immediate or early functional occlusal loading: successful vs.failing implants. Clin Implant Den Rel Res 2004; 15:428-434. 8. Friberg B, Sennerby L, Johansson P, Strd KG, Lekholm U. Stability measurements of one stage Branemark implants during healing in mandibles: A clinical resonance frequency analysis study. In J oral Maxillofac Surg 1999;28:266-272. 9. Johansson P, Sturd KG. Assessment of bone quality from cutting resistance during implant surgery. Int J Oral Maxillofac Implants 1994;9:279-288. 10. Friberg B, Sennerby L, Johansson P, Sturd KG, Lekholm U. Evaluation of bone density using cutting resistance measurements and microradiography: An in vitro study in pig ribs. Clin Oral Implants Res 1995;6:164-171. 477
11. Friberg B, Lekholm U. A comparison between cutting torque and resonance frequency measurements of maxillary implants. A 20-month clinical study. Int J Oral Maxillofac Surg 1999;28:297-303. 12. Drago CG. A prospective study to assess osseointegration of dental endosseous implants with the Periotest instrument. Int J Oral Maxillofac Implants 2000;15:389-395. 13. Caulier H, Kalk W, Jansen JA. The relationship of some histologic parameters, radiographic evaluations, and Periotest measurements of oral implants: An experimental animal study. Int J Oral Maxillofac Implant 1997;12:380-386. 14. Meredith N, Book K, Friberg B. Resonance frequency measurements of implants stability in vivo: A cross-sectional and longitudinal study of resonance frequency measurements on implants in the edentulous and partially dentate maxilla. Clin Oral Implants Res 1997;8:226-233. 15. Huang HM, Lee SY, Yeh CY, Lin CT. Resonance frequency assessment of dental implant stability with various bone qualities: A numerical approach. Clin Oral Implants Res 2002;13:65-74. 16. Truhlar RS, Lauciello F, Morris HF. The influence of bone quality on Periotest values of endosseous dental implants at stage II surgery. J Oral Maxillofac Surg 1997;55:55-61. 17. Mericske-Stern R, Milani D, Mericske E. Periotest measurements and osseointegration of mandibular ITI implants supporting overdentures. Clin Oral Implants Res 1995;6:73-82. 18. Meredith N. Assessment of Implant stability as prognostic determinant. Int J Prosthodont 1998;11:491-501. 19. Lekholm U, Zarb GA. Patient selection and preparation, in Branemark PI, Zarb GA, Albrektsson T(eds): Tissue integrated prostheses: Osseointegration in clinical dentistry. Chicago, Quintessence pp199-209, 1985. 20. Nkenke E, Hahn M, Weinzierl K. Implant stability and histomorphometry: a correlation study in human cadevers using stepped cylinder implants. Clin Implant Dent Rel Res 2003;14:601-609. 21. Derhami K, Worfaardt J, Dent M. Assessment of the Periotest device in baseline mobility measurements of craniofacial implants. Oral and Maxillofacial Implants 1995;10:221-229. 22. Meredith N. Assessment of Implant stability as prognostic determinant. Int J Prosthodont 1998;11:491-501. 23. Nkenke E, Kloss F, Wiltfang J, Schultze- Mosgau S, Radespiel-Troger M, Loos K, Neukam FW. Histomorphometric and fluorescence microscopic analysis of bone remodelling after installation of implants using osteotome technique. Clin Oral Implants Res 2002;13:595-602. 24. Olsson M, Urde G, Andersen JB. Early loading of maxillary fixed cross-arch dental prostheses supported by six or eight oxidized titanium implants: results after 1 year of loading, case series: Clin Implant Dent Rel Res 2003;5:81-85. 25. Teerlinck G, Quirynen M. Darius : Periotest: an objective clinical diagnosis of bone apposition toward implants. Int J Oral Maxillofac Implants 1991;6:55-61. 26. Caulier H, Naert I, Kallk. The relationship of some histologic parameters, radiographic evaluations, and Priotest method as measurements of oral implants: An experimental animal study. Int J Oral Maxillofac 478
Implants 1997;12:380-386. 27. Carr AB, Larsen PE, Papazoglou E. Reverse torque failure of screw-shaped implants in baboons: baseline date for abutment torque application. Int J Oral Maxillofac Implants 1995;10:167-174. 28. Summer RB. A new concept in maxillary implants surgery: The osteotome technique. Compend Contin Educ Dent 1994; 15:152-158. 29. Glauser G, Naef R. The osteotome technique-a different method of implant placement in the posterior maxilla. Implantol 1998;2:103-120. Reprint request to: Mong-Sook Vang, D.D.S., M.S.D., Ph D. Department of Prosthodontics, College of Dentistry, Chonnam National University 5, Hak-Dong, Dong-Gu, Gwang ju, 501-757, Korea msvang@hanmail.net 479
ABSTRACT EFFECT OF PREPARATION METHODS OF RECIPIENT SITE ON PRIMARY IMPLANT STABILITY IN VARIOUS BONE QUALITIES De-Zhe Cui, D.D.S., Mong-Sook Vang, D.D.S., Ph.D, Hee-Kyun Oh*, D.D.S., Ph.D. Department of Prosthodontics, *Department of Oral & Maxillofacial Surgery, College of Dentistry, Chonnam University Statement of problem: After placing the implant on the jaw, firm osseointegration between the implant interface and the bone should be achieved so that it can perform the same function as the normal teeth. That is, stability of the implant is required in order to form firm osseointegration Purpose: This study was performed to evaluate the effect of implant preparation methods on primary implant stability in various bone qualities. Material and methods: The recipient sites were prepared by various methods on 4 types of wooden plates (Osstem Co., Korea) which have similar mechanical properties with 4 types of human bone quality. The groups were divided according to implant preparation methods: In the control group the recipient sites were prepared from 1.8 mm guide drill, 2.0 mm initial drill, 2.7 mm pilot drill, 2.7 mm twist drill, 3.0 mm twist drill, 3.3 mm pilot drill, 3.3 mm twist drill, countersink drill, and tapping drill sequentially and 6 RBM surfaced GSII Osstem implants (Osstem Co., Korea) were installed in each type of wooden plates; In group 1, the recipient sites were prepared from 1.8 mm guide drill to 3.0 twist drill sequentially without countersink drill nor tapping drill and implants were placed; In group 2, the recipient sites were prepared from 1.8 mm guide drill to 3.0 mm twist drill, and countersink drill sequentially without tapping drill and implants were placed; In group 3, the recipient sites were prepared from 1.8 mm guide drill to 3.0 mm twist drill, countersink drill, and tapping drill sequentially and implants were placed; In group 4, the recipient sites were prepared from 1.8 mm guide drill to 3.3 mm twist drill sequentially without countersink drill nor tapping drill and implants were placed; In group 5, the recipient sites were prepared from 1.8 mm guide drill to 3.3 mm twist drill and countersink drill sequentially without tapping drill and implants were placed; In group 6, the recipient sites were prepared with 2.0 mm twist drill and 3.0 mm osteotome and implants were placed. The insertion torque was measured by INTRA surg 300 (KaVo., Germany). After installation of implants, the primary implant stability was measured by using Osstell TM, Osstell TM mentor, and Periotest, and insertion torque test. The statistical analysis of the results was analyzed using SPSS ver. 12.0. Student t-tests and one-way analysis of variance (ANOVA) were used. 480
Results: The results obtained were as follows; 1. In type I and II bone quality plates, although the mean value of primary implant stability was somewhat different according to test methods, the primary implant stability of group 1 was significantly higher than those of other groups (p<0.05). 2. In type III bone quality plate, the primary implant stability of group 1 was significantly higher than those of other groups in Osstell TM test, the primary stability of group 1 and group 6 were significantly higher than those of other groups in Osstell TM mentor and Periotest, and the stability of group 6 was significantly higher than those of other groups in insertion torque test (p<0.05). 3. In type IV bone quality plate, the primary implant stability of group 6 was significantly higher than those of other groups (p<0.05). 4. As the quality of bone was softer, the primary implant stability tended to be lower in values. This tendency was not significantly different in Osstell TM and Osstell TM mentor tests, but it was significantly different in insertion torque test (p<0.05). 5. In type IV bone quality plate, the mean values of primary implant stability which were calculated by Osstell TM was 14.8±8.6 higher than the values calculated by Osstell TM mentor. Conclusion: These results suggest that the recipient implant preparation by using minimal drilling and osteotome may be useful in obtaining the primary implant stability and the insertion torque test seems be the most simple and predictable method. Key words : Bone qualities, Primary implant stability, Recipient site 481