21.. 2050 50% Cool Earth 50. 97% 10,,,. / 2009 5.. 2030 2030 11%, CO 2 8 1 CO 2. CO 2 CO 2 45%. ( ) ( ) 2 11.,, 3,,,,,,,, 8.. 20082% 2030 11%, 2050 20%. 13,000 TOE, 2012 (250~1000kW ) 300, (10~50kW) 2,000, (3kW ) 10,000, 15,000 580. 300, 11
., IGCC. 2.1. 2.1.1..,. ().,., (passive) (active).,,.,,,, Table 1.. (250~1200), Fig. 1,,,. (power tower) (heliostat),,,. /,, Fig. 2,. Heliostat Table 1. 60 100 300 300 PTC Dish CPC Power Tower, Tromb Wall (, ) (, ) (, ) (),,,,,, (,),, Fig. 1.. Fig. 2. ( + ). 12
/, (Fig. 2 )/ 700~1000.. rankine cycle 40%., (Dish Type), kw kw. 5 bar 700 1,000,, ORC (Organic Rankin Cycle). ORC, 40%. (Fig. 3 ) Fig. 3. ( + ). 2.1.2. Fig. 2 Fig. 3 (volumetric receiver),,., Table 2,. (thin-wall multi-channeled honeycomb), -., (, ) (SiC, silicon carbide),. SiC,. SOLAIR Project (Advanced Solar Volumetric Air Receiver for Commercial Solar Tower Power Plants- ERK6-CT-1999-00021) SiC Table 2. Optical/Thermodynamic Requirements Material Requirements High absorption Dark Optical extinction High porosity Heat transfer surface High cell density High fluxes Temperature resistance Radial heat transfer Thermal conductivity High permeability 3D-structure 13
SiC (recrystallized SiC) SiC (reaction Sintered SiC). (Fig. 4 ) SOLAIR,,, Fig. 4. SiC : (a) Volumetric receiver honeycomb units (b) Modular SOLAIR-200kW receiver assembly (c) SOLAIR- 200kW receiver assembly, and (d) SOLAIR-200kW receiver operation., /. 2.2. 2.2.1..,... Fig. 5 2009,, 27%. 10%, 20%. Fig. 5.. 14
, ( 1).. Power in the wind = 1/2AV 3 ( 1) (: air density, A : area of the circle swept by rotor, V : wind velocity),. 2.2.2. (FRP ; Fiber Reinforced Plastic), GFRP (Glass FRP). 30% 120m.,.,. Fig. 6., hybrid. (electrical pitting erosion). current arc,. Fig. 7.,., (steel races with ceramic bearing). current arc, Fig. 6.. Fig. 7. The race damage in both cases above is attributed to stray current from an improperly grounded generator. Electricity takes the path of least resistance, and sometimes that is through a bearing. 15
,.,,, (1 $10,000 ). SAINT- GOBAIN silicon nitride (Si 3N 4) CERBEC, Fig. 8. (ferroelectric) piezoelectric, electrostrictive magnetostrictive. 2.3. IGCC 2.3.1. (IGCC, Integrated Gasification Combined Cycle) (PFBC, Pressurized Fluidized-Bed Combustion), Integrated Gasification Advanced Cycle (IGAC) Integrated Gasification Fuel Cell (IGFC). IGCC,,,,. IGCC, SOx, NOx, CO 2 (). IGCC, (gasifier),, (,, reactor),, Fig. 9 IGCC.,,,.,. Fig. 8. SAINT-GOBAIN CERBEC (hybrid bearing). 16
Fig. 9. (IGCC). 2.3.2. IGCC IGCC 2, 1, 2..,, GBF (Granular Bed Filter),..,. IGCC 10,000ppm~20,000ppm 400~500, 20~30 10ppm. IGCC 500 PFBC 750~900, 25 PFBC 6~10 2. (S, sulfur), (CO 2), (SOx), NOx. IGCC, 17
, (sulfate), (, ), (chloride), (fluoride) (phosphate) (ionic species) (trace elements).,,. (). vessel,., (thermal shock). (thermal fatigue). Fig. 11, (CFCC). 1980 PFBC, PCFBC IGCC. Fig. 11.. (PM, SOx, CO 2, Hg ). 10,,,...,. 1. PSA Annual Report 97 - Technical Description and Project Achievements, pp.49-67 2. Christos C. Agrafiotis, Ilias Mavroidis, Athanasios G. Konstandopoulos, Bernard Hoffschmidt, Per Stobbe, Manuel Romero, and Valerio Fernandez-Quero, Evaluation of Porous Silicon Carbide Monolithic Honeycombs as Volumetric Receivers/collectors of Concentrated Solar Radiation, Solar Energy Materials & Solar Cells, 91 474-88 (2007) 3. Peter Heller, Markus Pfänder, Thersten Denk, Felix Tellez, Antonio Valverde, Jesús Fernandez, and Arik Ring, Test and Evaluation of a Solar Powered Gas 18
Turbine System, Solar Energy, 80 1225-30 (2006) 4. M. Becker, Th. Fend, B. Hoffschmidt, R. Pitz-Paal, O. Reutter, V. Stamatov, M. Steven, and D. Trimis, Theoretical and Numerical Investigation of Flow Stability in Porous Materials Applied as Volumetric Solar Receivers, Solar Energy, 80 1241-48 (2006) 5. Thomas Fend, Robert-Pitz-Paal, Oliver Reutter, Jörg Bauer, and Bernhard Hoffschmidt, Two Novel Highporosity Materials as Volumetric Receivers for Concentrated Solar Radiation, Solar Energy Materials & Sloar Cells, 84 291-304 (2004) 6. Zhiyong Wu, Cyril Caliot, Fengwu Bai, Gilles Flamant, Zhifeng Wang, Jinsong Zhang, and Chong Tian, Experimental and Numerical Studies of the Pressure Drop in Ceramic Foams for Volumetric Solar Receiver Applications, Applied Energy, 87 504-13 (2010) 7. T.K. Barlas and G.A.M. van Kuik, Review of State of Art in Smart Rotor Contro Research for Wind Turbines, Progress in Aerospace Science, 46 1-27 (2010) 8. Karan Mason, Carbon/glass Hybrids Used in Composite Wind Turbine Rotor Blade Design, Composites Technology (2004) 9. Paul Dvorak, Ceramic Coated Bearing Handles Stray Current, Windpower Engineering (May 29, 2009) 1978. 1987. 1994. 2004. / 2004. 2007.. 1985. 1987. 1995. 2007.. 2003. 2005. 2006.. KAIST 19