_ _ _ http://systemsbiology.snu.ac.kr/., (dynamics).,,,,.,..,. (systems biology). DNA,,,.,.,, 30
.,.. [1-4].,.. (control engineering) (systems science) (systems theory).,.. (post-genome era)., ( ),. [1-3]. 1929 Cannon (homeostasis). 1945 Bertalanffy (open system), 1945 Wiener (cybernetics). 1958 Ashby,, Rosen (M, R). 1968 Mesarovic, (,, ),,. 1970 Jacob Monod (cell cybernetics), 1975 Segel (enzyme kinetics), 1978 Miller Vol. 31, No. 2 (2005) 31
. 1996 Heinrich Schuster, Goldbeter, 1997 Fell. Venter (1999), Hartwell (1999), Nurse (2000), Fraser (2000) Nature Cell. Weaver (1948), Meinhardt (1988), Kauffman (1995), Haken (1997), Harrison (1993), Goodwin (2001) (disorganized complexity) (organized complexity).,. [3], [5-7]. (bioinformatics),.,., ( (-omics) ),.. (correlation) ( ) (causality).. ( ), ( ),. 32
,.. 1.. (DNA microarray) [8-12]..,, ( ). [13-15]. 2. 2005 5 Vol. 31, No. 2 (2005) 33
. Cell, Nature, Science, IEEE Magazine, 2004 IEE Systems Biology (http://www.iee.org/sb) Royal Academy of Science, Springer-Verlag, Nature. IEE Systems Biology 2006 20%. 2006 BMC(, ) Synthetic and Systems Biology(http://www.ssbjournal.com). 2003 1 MIT Computational and Systems Biology initiative (CSBi) (http://csbi.mit.edu) 2003 9 Department of Systems Biology (http://sysbio.med.harvard.edu/).,,,.,. Institute of Systems Biology(http://www.systemsbiology.org) ERATO Kitano Symbiotic Systems Biology(http://www.symbio.jst.go.jp), (SBML, SBW, http://www.sbw-sbml.org), Seattle Institute of Systems Biology (http:// www.systemsbiology.net). (BMBF) 2003 (http://www.systembiologie.de), (BBSRC, EPSRC ). 2003,,, EU 2003. 2005 5 Dublin 500. 2003 4 1. 2003.. 34
. 1979 Shuler (minimal cell model) [16]. Tyson Novak 1993, 2004 Swat [17-19]. Berg 1983, Mello (2003), Rao (2004) (chemotaxis) [20-22]., (metabolic engineering) (metabolic pathway)... [23], [24]. E-cell (http://www.e-cell.org/) [25], [26]., in silico [27]. ( :, http://systemsbiology.snu.ac.kr) (two-component system) 21 Vol. 31, No. 2 (2005) 35
., 36 cross-talk, UhpB/UhpA KdpD/kdpE cross-talk. cross-talk. ArcB/ArcA, TorR/TorS, BarA/UvrY, EvgA/EvgS unorthodox phosphorelay ( 3)., ( Reverse Engineering ) ( 4)., QSM(Quorum Sensing Molecule). :,, ( ) (, ) 36
(in vitro in vivo),,,,,,, (scaling)..,,.. (mining) (associations). (signaling pathway).,.. ( ).. (tailor-made therapy) (FDA ),,... (discrete event dynamic systems) (continuous variable dynamic systems) (hybrid systems) Vol. 31, No. 2 (2005) 37
.. (open-mind).,. E-Cell Virtual Cell... [1] O. Wolkenhauer, H. Kitano, and K.-H. Cho, Systems biology: Looking at opportunities and challenges in applying systems theory to molecular and cell biology, IEEE Control Systems Magazine, Vol. 23, No. 4, pp. 38-48, 2003. [2] O. Wolkenhauer, K.-H. Cho, and W. Kolch, Systems biology: Towards and understanding of the dynamics of life, BIOforum Europe, Vol. 6, pp. 2-4, 2003. [3] K.-H. Cho and O. Wolkenhauer, Analysis and modeling of signal transduction pathways in systems biology, Biochemical Society Transactions, Vol. 31, No. 6, pp. 1503-1509, 2003. [4] O. Wolkenhauer, W. Kolch, and K.-H. Cho, Mathematical Systems Biology: Genomic Cybernetics, In Computations in Cells and Tissues: Perspectives and Tools of Thought, R. Paton (Ed.), Springer-Verlag: London, pp. 305-325, 2004. [5] K.-H. Cho, S.-Y. Shin, W. Kolch, and O. Wolkenhauer, Experimental design in systems biology based on parameter sensitivity analysis with Monte Carlo method: A case study for the TNFα mediated NF-κB signal transduction pathway, SIMULATION: Transactions of the Society for Modeling and Simulation International, Vol. 79, No. 12, pp. 726-739, 2003. [6] K.-H. Cho, S.-Y. Shin, H.-W. Kim, O. Wolkenhauer, B. McFerran, and W. Kolch, Mathematical Modeling of the Influence of RKIP on the ERK Pathway, In Computational Methods in Systems Biology, C. Priami (Ed.), Lecture Notes in Computer Science (LNCS), LNCS 2602, Springer-Verlag: Berlin, Heidelberg, pp. 127-141, 2003. [7] K.-H. Cho, S.-Y. Shin, H.-W. Lee, and O. Wolkenhauer, Investigations into the analysis and modeling of the TNF mediated NF- B signaling pathway, Genome Research, Vol. 13, No. 11, pp. 2413-2422, 2003. [8] Z. Kutalik, J. Inwald, S. V. Gordon, R. G. Hewinson, K.-H. Cho, and O. Wolkenhauer, Advanced significance analysis of microarray data based on weighted resampling: A comparative study and application to gene deletions in Mycobacterium bovis, Bioinformatics, Vol. 20, No. 3, pp. 357-363, 2003. [9] C. S. Möller, F. Klawonn, K.-H. Cho, H. Yin, and O. Wolkenhauer, Clustering of unevenly sampled gene expression time-series data, Fuzzy Sets and Systems, Vol. 152, Issue 1, pp. 49-66, May 2005. [10] J. Nunez-Garcia, Z. Kutalik, K.-H. Cho, and O. Wolkenhauer, Level sets and minimum volume sets of probability density functions, International Journal of Approximate Reasoning, Vol. 34, No. 1, pp. 25-47, 2003. [11] C. S. Möller, K.-H. Cho, and O. Wolkenhauer, DNA microarray data clustering based on temporal variation: FCV with TSD preclustering, Applied Bioinformatics, Vol. 2, No. 1, pp. 35-45, 2003. [12] C. S. Möller, F. Klawonn, K.-H. Cho, and O. Wolkenhauer, Fuzzy Clustering of Short Time-Series and Unevenly Distributed Sampling Points, In Intelligent Data Analysis, M. R. Berthold et al. (Ed.), Lecture Notes in Computer Science (LNCS), LNCS 2810, Springer-Verlag: Berlin, Heidelberg, pp. 330-340, 2003. [13] K.-H. Cho, S.-M. Choo, P. Wellstead, and O. Wolkenhauer, A unified framework for unraveling the functional interaction structure of a biomolecular network based on stimulus-response experimental data, FEBS Letters, Vol. 579, Issue 20, pp. 4520-4528, 2005. [14] K.-H. Cho, S.-Y. Shin, and S.-M. Choo, Unraveling the functional interaction structure of a cellular network from temporal slope information of experimental data, FEBS Journal, Vol. 272, pp. 3950-3959, 2005. [15] H. Schmidt, K.-H. Cho, and E. W. Jacobsen, Identification of small scale biochemical networks based on general type system perturbations, FEBS Journal, Vol. 272, Issue 9, pp. 2141-2151, May 2005. [16] M. L. Shuler, L. S., and D. CC., A mathematical model for the growth of a single bacterial cell, Ann. NY Acad. Sci., Vol. 326, pp. 35-55, 1979. [17] B. Novak, and J. J. Tyson, Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos, J. Cell Sci. Vol. 106, pp. 1153-1168, 1993. [18] K. C. Chen, A. Csikasz-Nagy, B. Gyorffy, J. Val, B. Novak, and J. J. Tyson, Kinetic analysis of a molecular model of the budding 38
yeast cell cycle, Mol. Biol. Cell, Vol 11, pp. 369-391, 2000 [19] M. Swat, A. Kel, and H. Herzel, Bifurcation analysis of the regulatory modules of the mammalian G1/S transition, Bioinformatics, Vol. 20, pp. 1506-1511, 2004. [20] V. Sourjik, and H. C. Berg, Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer, PNAS, Vol. 99, pp. 12669-12674, 2002. [21] B. A. Mello, and Y. Tu, Perfect and Near-Perfect Adaptation in a Model of Bacterial Chemotaxis, Biophys. J., Vol. 84, pp. 2943-2956, 2003. [22] C. V. Rao, J. R. Kirby, and A. P. Arkin, Design and Diversity in Bacterial Chemotaxis: A Comparative Study in Escherichia coli and Bacillus subtilis, PLOS Biol., Vol. 2, pp. 0239-0252, 2004. [23] A. Sevilla, J. W. Schmid, K. Mauch, J. L. Iborra, M. Reuss, and M. Canovas. Model of central and trimethylammonium metabolism for optimizing l-carnitine production by E. coli, Metab. Eng., In-press, Aug 2005. [24] A. M. Sanchez, G. N. Bennett, and K. Y. San, Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity, Metab. Eng., Vol. 7, pp. 229-239, May 2005. [25] M. Tomita, K. Hashimoto, K. Takahashi, T. S. Shimizu, Y. Matsuzaki, F. Miyoshi, K. Saito, S. Tanida, K. Yugi, J. C. Venter, and C. A. Hutchison III, E-CELL: software environment for whole-cell simulation, Bioinformatics, Vol. 15, pp. 72-84, Jan 1999. [26] K. Yugi and M. Tomita, A general computational model of mitochondrial metabolism, Bioinformatics, Vol. 20, pp. 1795-1796, 2004. [27] S. Basu, Y. Gerchman, C. H. Collins, F. H. Arnold, and R. Weiss, A synthetic multicellular system for programmed pattern formation, Nature. Vol. 434, pp. 1130-1134, Apr 2005. Vol. 31, No. 2 (2005) 39