2 : (Minsong Ki et al.: Lower Tail Light Learning-based Forward Vehicle Detection System Irrelevant to the Vehicle Types) (Regular) 21 4, (JBE

Similar documents
(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, (JBE Vol. 22, No. 2, March 2017) ISSN

(JBE Vol. 22, No. 3, May 2017) (Special Paper) 22 3, (JBE Vol. 22, No. 3, May 2017) ISSN (O

09권오설_ok.hwp

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

2 : HOG-SP (Myungwoo Lee et al.: Recognition of Symbolic Road Marking using HOG-SP and Improved Lane Detection) (Regular Paper) 21 1, (JBE Vol.

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

2 : (Juhyeok Mun et al.: Visual Object Tracking by Using Multiple Random Walkers) (Special Paper) 21 6, (JBE Vol. 21, No. 6, November 2016) ht

(JBE Vol. 22, o. 4, July 2017). 10 (ITS, Intelligent Transportation System) [1]-[3],. ITS.. [4],[5],[6],[7],[8].,..... [4]-[6],[9]... [4],[5]. (OF, Op

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

45-51 ¹Ú¼ø¸¸

<372DBCF6C1A42E687770>

2 : (EunJu Lee et al.: Speed-limit Sign Recognition Using Convolutional Neural Network Based on Random Forest). (Advanced Driver Assistant System, ADA

DBPIA-NURIMEDIA

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

(JBE Vol. 20, No. 5, September 2015) (Special Paper) 20 5, (JBE Vol. 20, No. 5, September 2015) ISS

02( ) SAV12-19.hwp

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

07.045~051(D04_신상욱).fm

PDF

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

<31325FB1E8B0E6BCBA2E687770>

08김현휘_ok.hwp

1 : 360 VR (Da-yoon Nam et al.: Color and Illumination Compensation Algorithm for 360 VR Panorama Image) (Special Paper) 24 1, (JBE Vol. 24, No

2 : 3 (Myeongah Cho et al.: Three-Dimensional Rotation Angle Preprocessing and Weighted Blending for Fast Panoramic Image Method) (Special Paper) 23 2

À±½Â¿í Ãâ·Â

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

19_9_767.hwp

Æ÷Àå82š

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

untitled

1 : (Sunmin Lee et al.: Design and Implementation of Indoor Location Recognition System based on Fingerprint and Random Forest)., [1][2]. GPS(Global P

(JBE Vol. 24, No. 1, January 2019) (Regular Paper) 24 1, (JBE Vol. 24, No. 1, January 2019) ISSN 2287

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

2 : (JEM) QTBT (Yong-Uk Yoon et al.: A Fast Decision Method of Quadtree plus Binary Tree (QTBT) Depth in JEM) (Special Paper) 22 5, (JBE Vol. 2

<4D F736F F D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>

°í¼®ÁÖ Ãâ·Â

,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3

Æ÷Àå82š

07변성우_ok.hwp

04±èÂù¿í(19-23)

인문사회과학기술융합학회

DBPIA-NURIMEDIA

04 최진규.hwp

(JBE Vol. 20, No. 6, November 2015) (Regular Paper) 20 6, (JBE Vol. 20, No. 6, November 2015) ISSN

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

(JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

DBPIA-NURIMEDIA

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

6.24-9년 6월

#Ȳ¿ë¼®

6 : (Gicheol Kim et al.: Object Tracking Method using Deep Learing and Kalman Filter) (Regular Paper) 24 3, (JBE Vol. 24, No. 3, May 2019) http

12È«±â¼±¿Ü339~370

[ReadyToCameral]RUF¹öÆÛ(CSTA02-29).hwp

FMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2

Æ÷Àå½Ã¼³94š


04 김영규.hwp

(JBE Vol. 7, No. 4, July 0)., [].,,. [4,5,6] [7,8,9]., (bilateral filter, BF) [4,5]. BF., BF,. (joint bilateral filter, JBF) [7,8]. JBF,., BF., JBF,.

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

2 : (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, (JBE

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

박선영무선충전-내지

DBPIA-NURIMEDIA

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

02이재원_ok.hwp

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

2014_ pdf

09È«¼®¿µ 5~152s

63-69±è´ë¿µ

<343620B3EBB1A4C7F62DBDBAB8B6C6AEC6F9BFEB20C2F7BCB1C0CCC5BBB0E6BAB820BED6C7C3B8AEC4C9C0CCBCC720B0B3B9DF2E687770>

10신동석.hwp

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

10황인성_ok.hwp

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

0125_ 워크샵 발표자료_완성.key

04임재아_ok.hwp

05( ) CPLV12-04.hwp

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

Microsoft Word - KSR2012A021.doc

03-서연옥.hwp

(JBE Vol. 24, No. 2, March 2019) (Special Paper) 24 2, (JBE Vol. 24, No. 2, March 2019) ISSN

02Á¶ÇýÁø

03±èÀçÈÖ¾ÈÁ¤ÅÂ

<31372DB9DABAB4C8A32E687770>

<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770>

(JBE Vol. 21, No. 4, July 2016) (Regular Paper) 21 4, (JBE Vol. 21, No. 4, July 2016) ISSN

DBPIA-NURIMEDIA


디지털포렌식학회 논문양식

DBPIA-NURIMEDIA

<B3EDB9AEC1FD5F3235C1FD2E687770>

<B8F1C2F72E687770>

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

1. 서 론

Transcription:

2 : (Minsong Ki et al.: Lower Tail Light Learning-based Forward Vehicle Detection System Irrelevant to the Vehicle Types) (Regular) 21 4, 2016 7 (JBE Vol. 21, No. 4, July 2016) http://dx.doi.org/10.5909/jbe.2016.21.4.609 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), b), a) Lower Tail Light Learning-based Forward Vehicle Detection System Irrelevant to the Vehicle Types Minsong Ki a), Sooyeong Kwak b), and Hyeran Byun a)..,, SUV. Haar-like feature. HOG(Histogram Of Gradient) SVM(Support Vector Machine). 95%. Abstract Recently, there are active studies on a forward collision warning system to prevent the accidents and improve convenience of drivers. For collision evasion, the vehicle detection system is required. In general, existing learning-based vehicle detection methods use the entire appearance of the vehicles from rear-view images, so that each vehicle types should be learned separately since they have distinct rear-view appearance regarding the types. To overcome such shortcoming, we learn Haar-like features from the lower part of the vehicles which contain tail lights to detect vehicles leveraging the fact that the lower part is consistent regardless of vehicle types. As a verification procedure, we detect tail lights to distinguish actual vehicles and non-vehicles. If candidates are too small to detect the tail lights, we use HOG(Histogram Of Gradient) feature and SVM(Support Vector Machine) classifier to reduce false alarms. The proposed forward vehicle detection method shows accuracy of 95% even in the complicated images with many buildings by the road, regardless of vehicle types. Keyword : Vehicle detection, tail-light lower section, tail-light detection, Haar-like feature, SVM a) (Yonsei University, Dept. Computer Science) b) (Hanbat National University, Dept. Electronics and Control Engineering) Corresponding Author : (Hyeran Byun) E-mail: hrbyun@yonsei.ac.kr Tel: +82-2-2123-3876 ORCID: http://orcid.org/0000-0002-3082-3214 2016 ( ) (No. R7117-16-0157, Deep Learning ). Manuscript received May 13, 2016; Revised July 5, 2016; Accepted July 7, 2016.

(JBE Vol. 21, No. 4, July 2016). (FCWS: Forward Collision Warning System) (ADAS: Advanced Driver Assistance System) [1,2,3]...... 2. (HG: Hypothesis Generation) (HV: Hypothesis Verification) [1,5,6,7]. HG.,,, [4,8,9], [10], [11]. [1]. 1 [1,8,9,10,11]., SUV,. 1-(a).. 1-(b).. 2, 3. 4, 5. 6. 1. (a) (b) Fig. 1. (a) Example of traditional system (b) A result of the proposed system

2 : (Minsong Ki et al.: Lower Tail Light Learning-based Forward Vehicle Detection System Irrelevant to the Vehicle Types) 2. Fig. 2. The flow chart of the proposed system. 2. [12] Haar-like [13] 1.. HSV [14]. HOG(Histogram of Oriented Gradient) SVM(Support Vector Machine) [15,16].. 1. (Simplest Color Balance). Nicolas Limare [12]. R, G, B 0 255,. O(Nlog(N)). O(N) [12].. 1~3%. 3%. 2% 99.. 3.

(JBE Vol. 21, No. 4, July 2016) (a) 3. (a) (b) Fig. 3. (a) Input image (b) After preprocessing(color balance) image (b). 1. Haar-like (HG: Hypothesis Generation) 1. Viola Jones Haar-like [13]. Haar-like. Haar-like 4-(a). 4-(b), 3 Haar-like. Haar-like.. cascade 12 4. (a) Haar-like (b) Haar-like Fig. 4. (a) A Example of Haar-like feature mask (b) Haar-like feature mask selection

2 : (Minsong Ki et al.: Lower Tail Light Learning-based Forward Vehicle Detection System Irrelevant to the Vehicle Types), 2:1. 2. 1...,. 5 30%. 30%~60%.. 3. (HV: Hypothesis Verification).. 4.1 4.2 HSV. (Hue), (Saturation), (Value). Hue 0 ( 360 ).. 1. 1 HSV Ronan O Malley [17]. 6-(b) 6-(c). 6-(d). 1. HSV Table 1. HSV Color threshold in red region 5. Fig. 5. Position verification of the vehicle candidate region Minimum Maximum Hue(H) 342 9 Saturation(S) 0.4645 1.0 Value(V) 0.2 1.0 (a) (b) (c) (d) 6. (a) (b) HSV (c) (d) Fig. 6. (a) Vehicle candidate region (b) Convert to HSV color image (c) A result of tail-light detection for binary image (d) A final result of tail-light detection

(JBE Vol. 21, No. 4, July 2016) 4.. 2... ROI(Region Of Interest) 1. 7-(b). (a) (b) 7. (a) (b) Fig. 7. (a) A result of candidate blob detection (b) Tail-light verification with Euclidean distance 5. HOG SVM. 1200. HOG(Histogram Of Gradient) SVM(Support Vector Machine) [15,16]. HOG.. 64x32 2048 HOG SVM. 8. 8-(a)... Microsoft Visual studio 2012 OpenCV C++, Intel i7-3.40ghz CPU PC. 720x480.. 5.2, 5.3. 1. 2, 5410, 9137. (a) 8. (a) (b) Fig. 8. (a) A result of positive patches of vehicle (b) A result of negative patches of vehicle (b)

기민송 외 인 후미등 하단 학습기반의 차종에 무관한 전방 차량 검출 시스템 615 2 : (Minsong Ki et al.: Lower Tail Light Learning-based Forward Vehicle Detection System Irrelevant to the Vehicle Types) 표 2. 학습 데이터 셋 Table 2. Training data set Total Positive Negative 5410 9137 Example 그림 9. 테스트 셋의 예시 Fig. 9. Examples of test set 패치는 후미등 하단 부만을 획득하고, 부정 패치는 고정된 크기로 분할하여 사용한다. 실험에 사용한 테스트 셋은 총 200장의 영상이며 차량 내부에서 촬영한 주간 환경의 블랙 박스 영상 이미지이다. 표 3에서는 테스트 셋을 구성하는 차종의 수를 명시하였고, 그림 9는 테스트 셋 예를 보여주 며 도로 주변에 건물이 많고 승용차, 트럭 등이 포함된 비교 적 복잡한 환경의 영상임을 확인 할 수 있다. 정량적 평가를 위해 식 2와 같은 F-measure를 이용하여 정확도를 측정하 였다. 표 3. 테스트 셋 구성 Table 3. Test dataset composition Total Car Truck SUV 535 423 62 50 2. (2) 제안하는 자동차 검출 시스템의 실험 결과 자동차 외형은 승용차, 승합차, 트럭, 버스 등과 같이 각기 다르지만 후미등 하단 부의 모양은 거의 유사하다. 따라서 본 논문에서는 후미등 하단 부만 학습하여 차량을 검출하였 다. 표 4에서는 후면 전체와 후미등 하단 부의 학습 셋에 따 른 차량 검출 성능 차이를 나타낸다. 이에 따른 분석을 위해 앞서 기술한 테스트 셋과 별도로 승용차와 SUV, 트럭이 포 함된 200장의 주행 영상을 통해 실험 하였다. 후미등 하단 부만 학습한 결과가 후면 전체를 학습한 결과에 비해 14% 높은 검출률을 보였다. 그림 10은 학습 데이터 셋에 따른 차 표 4. 후면 전체와 제안하는 후미등 하단 부 학습 셋에 따른 성능 비교 Table 4. Performance comparison between whole back side and the proposed scheme Training set Precision Recall F-measure The whole back side 0.77 0.90 0.81 Tail-light lower section 0.95 0.96 0.95

(JBE Vol. 21, No. 4, July 2016) 10. Fig. 10. A result of training whole vehicle back side and tail-light lower section. FN (False Negative)., SUV., SUV F-measure., SUV. 5. 2 720 x 480 1800. SUV,. TPR(True Positive Rate), FDR(False Detection Rate).

2 : (Minsong Ki et al.: Lower Tail Light Learning-based Forward Vehicle Detection System Irrelevant to the Vehicle Types) (a) (b) (c) (d) (e) (f) (g) (h) 11. : (a-d) (e-h) Fig. 11. A result of the proposed system on test image data sets: (a-d) good case (e-h) bad case 5. Table 5. Performance evaluation of black box video # of frames Place TPR(%) FDR(%) Video1 1800 Highway 95.6 0.4 Video2 1800 Highway 95.8 0.5 11 (a-d). 11-(e),. (g),(h). 3. Haar-like, LBP (Local Binary Patterns), HOG(Histogram Of Gradient) 3 4.3 4.4 6 [13,15,18]. FN(False Negative). Haar-like. 12 Haar, LBP, HOG. Haar-like F-measure 6%. Haar-like. 6. 3 Table 6. Performance evaluation of three features Precision Recall F-measure Haar-like[13] 0.95 0.96 0.95 LBP[18] 0.90 0.92 0.90 HOG[15] 0.89 0.92 0.89

(JBE Vol. 21, No. 4, July 2016) LBP HOG Haar-like 12. 3 Fig. 12. A result of vehicle detection with three different features... Haar-like 1.. HOG SVM.,. Haar-like.. (References) [1] Zehang, On-road vehicle detection a Review., IEEE Transactions on Pattern analysis and machine intelligence, vol.28, pp.694-711, 2006. [2] EunJu Lee, Jae-Yeal Nam, ByoungChul Ko, Speed-limit Sign Recognition Using Convolutional Neural Network Based on Random Forest, The Korean Institute of Broadcast and Media Engineers, pp.938-949, 2015.

2 : (Minsong Ki et al.: Lower Tail Light Learning-based Forward Vehicle Detection System Irrelevant to the Vehicle Types) [3] Kum, Chang-Hoon, Cho, Dong-Chan, Kim, Whoi-Yul, Development of Lane Detection System using Surrounding View Image of Vehicle, The Korean Institute of Broadcast and Media Engineers, pp.331-334, 2013. [4] Hyung-Sub Kang, Dong-Chan Cho and Whoi-Yul Kim, Passing Vehicle Detection using Local Binary Pattern Histogram, The Korean Institute of Broadcast and Media Engineers, pp.261-264, 2010. [5] Thomas Schamm, Christoph von Carlowitz, and J. Marius Z ollner, On-road vehicle detection during dusk and at night, IEEE Transactions on Intelligent Vehicles Symposium, San Diego, CA, USA, pp.418-423, 2010. [6] Minkyu Cheon, Wonju Lee, Changyong Yoon, and Mignon Park, Vision-Based Vehicle Detection System With Consideration of the Detecting Location, IEEE Transactions on Intelligent Transportation Systems, vol.13, no.3, pp.1243-1252, April, 2012. [7] Sungji Han, Youngjoon Han and Hernsoo Hahn, Vehicle Detection Method using Haar-like Feature on Real Time System, World Academy of Science, Engineering and Techonology 59, 2009. [8] A. Kuehnle, Symmetry-Based Recognition for Vehicle Rears, Pattern Recognition Letters, vol.12, no.4, pp.249-258, 1991. [9] Zielke, Thomas, Michael Brauckmann, and Werner Vonseelen, Intensity and edge-based symmetry detection with an application to car-following CVGIP: Image Understanding, vol.58, pp.177-190, 1993. [10] U. Franke and I. Kutzbach, Fast Stereo Based Object Detection for Stop and Go Traffic, Intelligent Vehicles, pp. 339-344, 1996. [11] A. Giachetti, M. Campani, and V. Torre, The Use of Optical Flow for Road Navigation, IEEE Transactions on Robotics and Automation, vol.14, no.1, pp.34-48, 1998. [12] Nicolas Limare, et al. Simplest color balance., Image Processing On Line, 1, October, 2011. [13] Viola, Paul, and Michael Jones, "Rapid object detection using a boosted cascade of simple features.", IEEE Transactions on Computer Vision and Pattern Recognition, vol.1, 2001. [14] P. E. Danielsson, Euclidean distance mapping Comput. Graphics mage Processing, vol.14, pp.227-248, 1980. [15] Dalal, Navneet, and Bill Triggs, "Histograms of oriented gradients for human detection.", IEEE Transactions on Computer Vision and Pattern Recognition, vol.1, 2005. [16] Suykens, Johan AK, and Joos Vandewalle, "Least squares support vector machine classifiers.", Neural processing letters 9.3, pp. 293-300, 1999. [17] O'Malley, Ronan, Edward Jones, and Martin Glavin. Rear-lamp vehicle detection and tracking in low-exposure color video for night conditions., IEEE Transactions on Intelligent Transportation Systems, vol.11, no.2, pp. 453-462, 2010. [18] T. Ahonen, A. Hadid, and M. Pietikinen, Face description with local binary patterns: Application to face recognition, PAMI 2006. - 2014 : - 2014 ~ : - ORCID : http://orcid.org/0000-0003-3458-5951 - :,, - 2010 : ( ) - 2010 ~ 2011 1 : - 2011 ~ : - ORCID : http://orcid.org/0000-0002-4064-5108 - :,,

(JBE Vol. 21, No. 4, July 2016) - 1980 : ( ) - 1983 : ( ) - 1987 : University of Illinois, Computer Science(M.S.) - 1993 : Purdue University, Computer Science(Ph.D.) - 1994 ~ 1995 : - 1995 ~ 1998 : - 1998 ~ 2003 : - 2003 ~ : - ORCID : http://orcid.org/0000-0002-3082-3214 - :,,