2013 년도한국철도학회추계학술대회논문집 KSR2013A083 철도차량용견인전동기를위한추진인버터의비선형성보상에관한연구 Study on compensation method of the nonlinearity of the propulsion inverter for railway traction motor 정신명, 박찬배, 김재희, 이준호, 이수길, 이병송 Shin-Myung Jung, Chan-Bae Park, Jae-Hee Kim, Jun-Ho ee, Soo-Gil ee, Byeong-Song ee Abstract In general, there exist voltage differences between the voltage commands and the output voltages of the propulsion inverter for railway traction motor, which are caused by the intended -time to prevent the arm-short of a leg and the nonlinearities of switching devices. This phenomena is clearly shown up at low speed region and reduces the entire system efficiency and performances. In this paper, a simple observation and compensation method of the nonlinearities of the propulsion inverter is proposed. The proposed method is based on MRAS techniue and able to simply observe and compensate the differences between the voltage commands and the real output voltages. To show the effectiveness of the proposed method, the experiments are carried out for the digitally controlled drive system. Keywords : Propulsion inverter, nonlinearity, traction motor 초록일반적으로견인전동기구동을위한추진인버터의출력전압과출력전압명령사이에는전압차이가발생하는데, 이는스위치레그의암쇼트를막기위해인위적으로인가하는데드타임과스위치의비선형성때문에나타난다. 이러한현상은견인전동기의속도가낮을수록극명하게나타나는데, 이는시스템효율, 성능등을떨어뜨리는요인이된다. 본논문에서는이러한추진인버터의비선형성을관측하고보상하기위한새로운방식의보상기법을제안한다. 제안한방법은 MRAS 기반의간단한방식으로손쉽게출력전압과출력전압명령사이의전압차이를관측하고보상할수있다. 유효성검증을위해실험을수행하였고, 그결과추진인버터의비선형성을보상하여성능을향상시킬수있었다. 주요어 : 추진인버터, 비선형성, 견인전동기 1. 서론철도차량용견인전동기구동을위한펄스폭변조 (PWM) 전압원인버터 (VSI) 는전압명령과실제전압간의전압차이, 곧전압왜곡이존재하는데, 이는스위치레그의전원단단락으로인한사고를없애고자인위적으로인가하는데드타임과스위치의전압강하, 점호및소호 교신저자 : 한국철도기술연구원고속철도연구본부 (caesarju@krri.re.kr) 한국철도기술연구원고속철도연구본부
지연시간등스위치의고유특성에기인한다. 이전압왜곡은저속영역에서더욱극명하게나타나며 [1], 이는전류의왜곡으로이어지게되어결국에는토크의왜곡이발생하여제어성능이크게떨어지는결과를초래한다. 이러한문제점을극복하고자여러가지방법들이소개되어왔다 [1]-[6]. 하지만, 부가적으로전압센서와같은하드웨어를사용하거나, 구현이복잡하여그적용이쉽지않다. 따라서, 본논문에서는부가적인하드웨어사용없이, 간단하고정확하게전압왜곡을관측하고보상하는방법을제안하고자한다. 2. 본론 2.1 적응제어기법을이용한전압왜곡관측기 동기좌표계에서영구자석동기전동기의전류방정식을나타내면다음과같다. di Rs ωe m e λω dt s i 1 v = + + s di R d s i d v s d ω e 0 dt s (1) 여기서, i 와 i d 는 축과 d축에서의전류이며, ω e 는회전자의전기적위치, λ m 은영구자석에의해생성되는쇄교자속을의미한다. 적응제어기법 (MRAS; Model Reference Adaptive System) 을적용하기위한기준모델방정식은 di R m s0 ωe m0 e λ ω dt s0 i 1 v = + + s0 di R dm s0 i d s 0 v d ω e 0 dt s0 (2) 로나타낼수있으며, 여기에서 v 와 v d 는각각 축과 d축에서의전압명령이고, i m 과 i dm 은각각 축과 d축에서의전류, 그리고 0 은각파라미터의공칭값을의미한다. 식 (1) 과식 (2) 로부터추진인버터의비선형성에의해기인하는전압명령과실제전압사이의전압차이는다음과같다. dim di v v = v = s dt dt didm did vd vd = vd = s dt dt (3)
여기서, 각파라미터인 R s0, s0, λ m0 은실제값인 R s, s, λ m 과같다고가정하였다. 식 (3) 으로부터 k번째 PWM 주기에서의전압왜곡을구해보면다음과같다. ( ) ( ) im k i k v ( k) = s T s ( ) ( ) i k i k vd ( k) dm d = s Ts (4) 여기서, 모델에서의전류 i m (k) 와 i dm (k) 는식 (2) 로부터다음과같이구할수있다. Ts i ( k) = i ( k 1) + v ( k 1) R i ( k 1) ω i ( k 1) ω λ m s0 e s0 d e m0 s 0 T i k i k v k R i k i k s ( ) = ( 1) + ( 1) ( 1) + ω ( 1) dm d d s0 d e s0 s 0 (5) 2.2 전압왜곡보상방법 전압왜곡은식 (4) 와식 (5) 를통해구할수있으며, 제어를위해생성된전압명령에피드- 포워드방식으로보상하는방식을택한다. 따라서, 최종적으로생성되는전압명령은다음과같다. ( ) = ( ) + ( ) + ( ) ( ) = ( ) + ( ) + ( ) v k u k e k v k v k u k e k v k d d d d (6) 여기서, u 와 u d 는각각 축과 d축의비결합된 (de-coupled) PI 전류제어기의출력이며, e (k) 와 e d (k) 는다음과같이나타낼수있다. e = ω i + λ ω s e d m e e = ω i d s e (7) Fig. 1은제안된방법으로전압왜곡을관측하고, 이를보상하는제어기의구성도를나타낸것이다. 제안된방법으로별도의하드웨어사용없이전압왜곡을관측하고이를전류제어기에피드-포어드함으로써전압왜곡을보상한다.
Fig. 1 Current control block diagram using the proposed voltage distortion observer for the compensation of the nonlinearities of the propulsion inverter 2.3 실험결과 실험을위해사용된영구자석동기전동기의파라미터와인버터에사용된전력용반도체의파라미터를 Table 1과 Table 2에나타내었다. Fig. 2는영구자석동기전동기를저속영역에서운전시키면서전압왜곡을보상하지않았을때의전류파형이다. 전류파형에왜곡이발생하는것을확인할수있으며, 토크에영향을주는 i d 전류에도왜곡현상이발생하여토크의왜곡이발생함을예상할수있다. Fig. 3은제안된방법으로전압왜곡을관측하여보상하였을 Table 1: Specifications of the test PMSM Rated Power 750 [W] # of poles 8 Rated Torue 2.4 [Nm] Rated Speed 3000 [r/min] Phase Resistance 0.49 [Ω] Rated Current 6.0 [A] inkage Flux 0.0667 [Wb] Phase Inductance 6.9 [mh] Table 2: Specifications of the Three-phase PWM VSI DC-link Voltage 300 [V] Switching Freuency 11 [khz] Dead-time 2.8 [usec] Switching Device IGBT Turn-on Time 25 [nsec] Turn-off Time 115 [nsec] Saturation Voltage 2.5 [V] Forward Voltage 1.95 [V] Fairchild datasheet (FGH40N60SFD)
Fig. 2 Experimental results of the current waveforms without -time compensation Fig. 3 Experimental results of the current waveforms with the proposed voltage distortion observer 때의전류파형이다. Fig. 2와달리제안된전압왜곡관측기를사용하여전압왜곡을관측하고보상함으로써전류파형이크게개선된것을알수있다. 이를통해전류하모닉을크게줄일수있을것으로예상되며, 전류의왜곡이없기때문에토크맥동역시줄어들어제어성능이개선될것으로기대할수있다. 3. 결론 본논문에서는철도차량용견인전동기추진을위한인버터의비선형성으로인한전압왜곡을적응제어기법을사용하여관측하고보상하는방법을제안하였다. 전압왜곡은크게두가지
이유로발생하는데, 첫째는인버터스위치레그의전원단단락을막기위해인위적으로인가하는데드타임과스위치의비선형성, 즉, 전압강하, 점호및소호지연시간등때문에나타난다. 전압왜곡은저속영역에서더심하게나타나는데, 이는곧전류의왜곡을초래하여하모닉증가와토크리플등으로이어지게되어시스템성능이크게떨어지게된다. 그러나, 제안된방법을통해전압왜곡을관측하고보상하게되면전압왜곡을줄여이를크게개선할수있음을실험을통해검증하였다. 참고문헌 [1] J. Holtz, J. Quan (2002) Sensorless vector control of induction motors at very low speed using a nonlinear inverter model and parameter identification, IEEE Transactions on Industrial Applications, 38(2), pp. 1087-1095. [2] J. W. Choi, S. K. Sul (1996) Inverter output voltage synthesis using novel time compensation, IEEE Transactions on Power Electronics, 11(2), pp. 221-227. [3] A. R. Munoz, T. A. ipo (1999) On-line -time compensation techniue for open-loop PWM-VSI drives, IEEE Transactions on Power Electronics, 14(4), pp. 683-689. [4] F. Blaabjerg, J. K. Pederson, P. Thoegersen (1997) Improved modulation techniues for PWM-VSI drives, IEEE Transactions on Industrial Electronics, 44(1), pp. 87-95. [5] H. S. Kim, K. H. Kim, M. J. Youn (2003) On-line -time compensation method based on time delay control, IEEE Transactions on Control System Technology, 11(2), pp. 279-285. [6] H. W. Kim, H. S. Kim, M. J. Youn (2004) Online observation and compensation of voltage distortion in PWM VSI for PMSM, IEE Electric Power Applications, 151(5), pp. 534-542.