1 : (Sung-Ho Bae et al.: A Novel Fast and High-Performance Image Quality Assessment Metric using a Simple Laplace Operator) (Special Paper) 21 2, 2016

Similar documents
(JBE Vol. 20, No. 6, November 2015) (Special Paper) 20 6, (JBE Vol. 20, No. 6, November 2015) ISSN

09권오설_ok.hwp

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

2 : (JEM) QTBT (Yong-Uk Yoon et al.: A Fast Decision Method of Quadtree plus Binary Tree (QTBT) Depth in JEM) (Special Paper) 22 5, (JBE Vol. 2

5 : HEVC GOP R-lambda (Dae-Eun Kim et al.: R-lambda Model based Rate Control for GOP Parallel Coding in A Real-Time HEVC Software Encoder) (Special Pa

1. 3DTV Fig. 1. Tentative terrestrial 3DTV broadcasting system. 3D 3DTV. 3DTV ATSC (Advanced Television Sys- tems Committee), 18Mbps [1]. 2D TV (High

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

07.045~051(D04_신상욱).fm

À±½Â¿í Ãâ·Â

2 : (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, (JBE

08김현휘_ok.hwp

(JBE Vol. 20, No. 5, September 2015) (Special Paper) 20 5, (JBE Vol. 20, No. 5, September 2015) ISS

DBPIA-NURIMEDIA

표지

방송공학회논문지 제18권 제2호

(JBE Vol. 20, No. 6, November 2015) (Regular Paper) 20 6, (JBE Vol. 20, No. 6, November 2015) ISSN

(JBE Vol. 24, No. 2, March 2019) (Regular Paper) 24 2, (JBE Vol. 24, No. 2, March 2019) ISSN

09박종진_ok.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

1. 서 론

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

(JBE Vol. 23, No. 2, March 2018) (Regular Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

(JBE Vol. 20, No. 2, March 2015) (Special Paper) 20 2, (JBE Vol. 20, No. 2, March 2015) ISSN

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: A Study on the Opti

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

02이주영_ok.hwp

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

#Ȳ¿ë¼®

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

2 : MMT QoS (Bokyun Jo et al. : Adaptive QoS Study for Video Streaming Service In MMT Protocol). MPEG-2 TS (Moving Picture Experts Group-2 Transport S

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

2 : (Juhyeok Mun et al.: Visual Object Tracking by Using Multiple Random Walkers) (Special Paper) 21 6, (JBE Vol. 21, No. 6, November 2016) ht

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

03이승호_ok.hwp

04김호걸(39~50)ok

15( ) SAV15-18.hwp

1 : HEVC Rough Mode Decision (Ji Hun Jang et al.: Down Sampling for Fast Rough Mode Decision for a Hardware-based HEVC Intra-frame encoder) (Special P

(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, (JBE Vol. 22, No. 2, March 2017) ISSN

Software Requirrment Analysis를 위한 정보 검색 기술의 응용

3 : S-JND HEVC (JaeRyun Kim et al.: A Perceptual Rate Control Algorithm with S-JND Model for HEVC Encoder) (Regular Paper) 21 6, (JBE Vol. 21,

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 30(3),

05( ) CPLV12-04.hwp

(JBE Vol. 24, No. 1, January 2019) (Regular Paper) 24 1, (JBE Vol. 24, No. 1, January 2019) ISSN 2287

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

차분 이미지 히스토그램을 이용한 이중 레벨 블록단위 가역 데이터 은닉 기법 1. 서론 멀티미디어 기술과 인터넷 환경의 발달로 인해 현대 사회에서 디지털 콘텐츠의 이용이 지속적 으로 증가하고 있다. 이러한 경향과 더불어 디지털 콘텐츠에 대한 소유권 및 저작권을 보호하기

DBPIA-NURIMEDIA

<31372DB9DABAB4C8A32E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

04-다시_고속철도61~80p

°í¼®ÁÖ Ãâ·Â

그림 2. 최근 출시된 스마트폰의 최대 확장 가능한 내장 및 외장 메모리 용량 원한다. 예전의 피쳐폰에 비해 대용량 메모리를 채택하고 있지 만, 아직 데스크톱 컴퓨터 에 비하면 턱없이 부족한 용량이다. 또한, 대용량 외장 메모리는 그 비용이 비싼 편이다. 그러므로 기존

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: * Strenghening the Cap

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

14.531~539(08-037).fm

(JBE Vol. 7, No. 4, July 0)., [].,,. [4,5,6] [7,8,9]., (bilateral filter, BF) [4,5]. BF., BF,. (joint bilateral filter, JBF) [7,8]. JBF,., BF., JBF,.

1 : S-JND HEVC (JaeRyun Kim et al.: S-JND based Perceptual Rate Control Algorithm of HEVC) (Regular Paper) 22 3, (JBE Vol. 22, No. 3, May 2017)

ȲÀμº Ãâ·Â

02양은용

., 3D HDTV. 3D HDTV,, 2 (TTA) [] 3D HDTV,,, /. (RAPA) 3DTV [2] 3DTV, 3DTV, DB(, / ), 3DTV. ATSC (Advanced Television Systems Committee) 8-VSB (8-Vesti

¼º¿øÁø Ãâ·Â-1

Æ÷Àå½Ã¼³94š

DBPIA-NURIMEDIA

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

1 : 360 VR (Da-yoon Nam et al.: Color and Illumination Compensation Algorithm for 360 VR Panorama Image) (Special Paper) 24 1, (JBE Vol. 24, No

DBPIA-NURIMEDIA

±è¼ºÃ¶ Ãâ·Â-1

19_9_767.hwp

02( ) SAV12-19.hwp

45-51 ¹Ú¼ø¸¸

3 : ATSC 3.0 (Jeongchang Kim et al.: Study on Synchronization Using Bootstrap Signals for ATSC 3.0 Systems) (Special Paper) 21 6, (JBE Vol. 21

04 김영규.hwp

19_9_767.hwp

< C6AFC1FD28C3E0B1B8292E687770>

RRH Class-J 5G [2].,. LTE 3G [3]. RRH, W-CDMA(Wideband Code Division Multiple Access), 3G, LTE. RRH RF, RF. 1 RRH, CPRI(Common Public Radio Interface)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),


1 : UHD (Heekwang Kim et al.: Segment Scheduling Scheme for Efficient Bandwidth Utilization of UHD Contents Streaming in Wireless Environment) (Specia

[ReadyToCameral]RUF¹öÆÛ(CSTA02-29).hwp

DBPIA-NURIMEDIA

2 : (Jaeyoung Kim et al.: A Statistical Approach for Improving the Embedding Capacity of Block Matching based Image Steganography) (Regular Paper) 22

Output file

08원재호( )


09È«¼®¿µ 5~152s


a), b), c), b) Distributed Video Coding Based on Selective Block Encoding Using Feedback of Motion Information Jin-soo Kim a), Jae-Gon Kim b), Kwang-d

. 서론,, [1]., PLL.,., SiGe, CMOS SiGe CMOS [2],[3].,,. CMOS,.. 동적주파수분할기동작조건분석 3, Miller injection-locked, static. injection-locked static [4]., 1/n 그림

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

歯1.PDF

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

김기남_ATDC2016_160620_[키노트].key

04임재아_ok.hwp

1 : (Sunmin Lee et al.: Design and Implementation of Indoor Location Recognition System based on Fingerprint and Random Forest)., [1][2]. GPS(Global P

03-서연옥.hwp

1 : MV-HEVC (Jae-Yung Lee et al.: Fast Disparity Motion Vector Searching Method for the MV-HEVC) High Efficiency Video Coding (HEVC) [1][2]. VCEG MPEG

Transcription:

1: (Sung-Ho Bae et al.: A Novel Fast and High-Performance Image Quality Assessment Metric using a Simple Laplace Operator) (Special Paper) 21 2, 2016 3 (JBE Vol. 21, No. 2, March 2016) http://dx.doi.org/10.5909/jbe.2016.21.2.157 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a) A Novel Fast and High-Performance Image Quality Assessment Metric using a Simple Laplace Operator Sung-Ho Bae a) and Munchurl Kim a), (Mean Squared Error: MSE) (, (metricability), (differentiability) (convexity)). MSE, (Image Quality Assessment: IQA). IQA MSE,., IQA. IQA, IQA. IQA, IQA., IQA IQA MSE,. Abstract In image processing and computer vision fields, mean squared error (MSE) has popularly been used as an objective metric in image quality optimization problems due to its desirable mathematical properties such as metricability, differentiability and convexity. However, as known that MSE is not highly correlated with perceived visual quality, much effort has been made to develop new image quality assessment (IQA) metrics having both the desirable mathematical properties aforementioned and high prediction performances for subjective visual quality scores. Although recent IQA metrics having the desirable mathematical properties have shown to give some promising results in prediction performance for visual quality scores, they also have high computation complexities. In order to alleviate this problem, we propose a new fast IQA metric using a simple Laplace operator. Since the Laplace operator used in our IQA metric can not only effectively mimic operations of receptive fields in retina for luminance stimulus but also be simply computed, our IQA metric can yield both very fast processing speed and high prediction performance. In order to verify the effectiveness of the proposed IQA metric, our method is compared to some state-of-the-art IQA metrics. The experimental results showed that the proposed IQA metric has the fastest running speed compared the IQA methods except MSE under comparison. Moreover, our IQA metric achieves the best prediction performance for subjective image quality scores among the state-of-the-art IQA metrics under test. Keyword : Human visual system, Simple Laplace operator, image quality assessment, computation complexity, mean squared error

(JBE Vol. 21, No. 2, March 2016). [1]., (Image Quality Assess- ment: IQA) [2]., IQA, (objective functions) (prior knowledge), - [3], [4]., IQA [5]-[9]. (Full- Reference: FR) IQA, (Reduced-Reference: RR) IQA, (No-Reference: NR) IQA [10]. IQA(FR-IQA). (Mean Squared Error: MSE) FR-IQA, (metricability), (differentiability) (convexity). a) (Korea Advanced Institute of Science and Technology, School of Electrical Engineering) Corresponding Author : (Munchurl Kim) E-mail: mkim@ee.kaist.ac.kr Tel: +82-42-350-7419 ORCID: http://orcid.org/0000-0003-0146-5419 () ( : 2014R1A2A2A01006642). 2015. Manuscript received January 19, 2016; Revised February 15, 2016; Accepted March 9, 2016. FR-IQA (Human Visual System: HVS), [1]., FR-IQA [10]-[20]. Wang SSIM(Structural SIMilarity) [11]. SSIM FR-IQA,.,, FR-IQA [19],[20]. FR-IQA. Brunet SSIM, SSIM (, -(quasi-convex) ), SSIM(Modified SSIM: MoSSIM) [19]. Xue (smoothing), PAMSE(Perceptual fidelity Aware Mean Squared Error) [20]. PAMSE - (weighted MSE)., MoSSIM PAMSE. FR-IQA (Simple Laplace operator-based Quality Metric: SLQM). FR-IQA (Human Visual System: HVS)

1: (Sung-Ho Bae et al.: A Novel Fast and High-Performance Image Quality Assessment Metric using a Simple Laplace Operator) FR-IQA.. 2 FR-IQA. 3 FR-IQA, 4,. 5. 6. II.,,, FR-IQA.,. FR-IQA ( ). MoSSIM [19] PAMSE [20] MSE. MoSSIM PAMSE. 1. Modified SSIM(MoSSIM) Wang SSIM HVS, FR-IQA [11]. SSIM (luminance), (contrast) (structure). SSIM, (, ( 0) ), (similarity form). SSIM (1), (2).,,. (2) 0. (2), (1). SSIM. (3).,. SSIM FR-IQA, SSIM., SSIM,,. 1 (2) SSIM,. 1, SSIM,

(JBE Vol. 21, No. 2, March 2016). (partially ordered condition)., MoSSIM,, (Pearson Linear Correlation Coefficient, PLCC). 2. Perceptual Fidelity Aware Mean Squared Error(PAMSE) 1. SSIM ( ) Fig. 1. An example of the similarity form in SSIM for, Brunet FR-IQA SSIM(Modi- fied SSIM, MoSSIM), SSIM, [19]. MoSSIM SSIM (1) (2) (4), (5).,,. (5) 0. (5) (Normalized Mean Squared Error, NMSE), (quasi-convex) [19]. MoSSIM. MoSSIM, Xue MSE FR-IQA, MSE FR-IQA (Perceptual fidelity Aware Mean Squared Error, PAMSE) [20]. PAMSE MoSSIM. PAMSE (6).,. (6),. (6) (7)., (7) PAMSE. PAMSE, MoSSIM., (7) ( )

1: (Sung-Ho Bae et al.: A Novel Fast and High-Performance Image Quality Assessment Metric using a Simple Laplace Operator), PAMSE. III. Simple Laplace operator based Quality Metric(SLQM) ( ) FR-IQA. Simple Laplace operator based Quality Metric (SLQM). SLQM, Luv ( 4 )., SLQM Luv. =,, (luminance) (chrominance). SLQM 3. SLQM, (8). HVS., HVS 1 (retina) (cons and rods), (optical nerve) (visual cortex)., ( ) [20]. FR-IQA HVS, SLQM. (8) (divergence) MSE ( )., (9).. (7) MSE PAMSE SLQM (9).,., (DC ). PAMSE., SLQM DC,.,, MSE. HVS, ( ) 4 (factor) (down-sampling, color sub-sampling). (10).

(JBE Vol. 21, No. 2, March 2016), 4. SLQM 3., SLQM (11).,., SLQM (11) MSE,. SLQM ( ). V. SLQM SLQM., i) SLQM ii) SLQM (10) (11). 4 (TID2013 [21], TID2008 [22], CSIQ [18], LIVE [23] ). 1., 4., SROC(Spearman Rank-Order Correlation coefficient), KROC(Kendall Rank-Order Correlation coefficients), PLCC(Pearson Linear Correlation coefficient) RMSE(Root Mean Squared Error). SROC, KROC, PLCC IQA, FR-IQA. RMSE(Root Mean Squared Error) FR-IQA, 0 FR-IQA. FR-IQA -, [24] PLCC RMSE. 4 1. Table 1. Information of eight publicly available IQA databases Databases The number of reference images The number of distorted images The number of distortion types The number of subjects TID2013 25 3000 24 917 TID2008 25 1700 17 838 CSIQ 30 866 6 35 LIVE 29 779 5 161

1: (Sung-Ho Bae et al.: A Novel Fast and High-Performance Image Quality Assessment Metric using a Simple Laplace Operator) 2. (HSV, XYZ, RGB, YCbCr, YIQ) SLQM Table 2. Performance of SLQM for five different color spaces (HSV, XYZ, RGB, YCbCr, YIQ) Dataset Measure SLQM HSV SLQM XYZ SLQM RGB SLQM YIQ SLQM YCbCr SLQM Luv TID 2013 TID 2008 CSIQ LIVE Overall SROC 0.6757 0.7400 0.7748 0.7868 0.8337 0.8419 KROC 0.5103 0.5584 0.5894 0.6066 0.6592 0.6663 PLCC 0.6617 0.6359 0.7777 0.7064 0.7585 0.7639 RMSE 0.9295 0.9568 0.7793 0.8774 0.8079 0.8000 SROC 0.6190 0.7028 0.7943 0.7709 0.8147 0.8212 KROC 0.4668 0.5285 0.5986 0.5927 0.6466 0.6481 PLCC 0.5915 0.5859 0.7766 0.6852 0.7176 0.7234 RMSE 1.0820 1.0875 0.8454 0.9773 0.9346 0.9265 SROC 0.8082 0.8368 0.8915 0.8888 0.9066 0.9108 KROC 0.6275 0.6335 0.6998 0.7077 0.7293 0.7352 PLCC 0.7947 0.5920 0.8731 0.7260 0.7696 0.7878 RMSE 0.1594 0.2116 0.1280 0.1805 0.1676 0.1617 SROC 0.9446 0.9340 0.9326 0.9396 0.9440 0.9399 KROC 0.8026 0.7854 0.7817 0.7944 0.8018 0.7940 PLCC 0.9237 0.5276 0.9246 0.6418 0.6368 0.6254 RMSE 8.8548 19.637 8.8082 17.727 17.823 18.038 SROC 0.7188 0.7723 0.8190 0.8191 0.8550 0.8603 KROC 0.5583 0.5946 0.6352 0.6445 0.6866 0.6898 PLCC 0.7003 0.6008 0.8121 0.6938 0.7311 0.7358, SROC KROC FR-IQA [10]., SLQM, 5,, XYZ, HSV, RGB, YCbCr, Luv. SLQM SLQM (, YIQ SLQM SLQM YIQ ). 2. Luv. SLQM Luv. IQA,., SLQM (9) MSE (10) MSE. (9) (SLQM L ) (10) (SLQM uv ). 3 Luv (11) (SLQM Luv ), (9) SLQM L, (10) SLQM uv., 3 (L) Laplace MSE (u,v) MSE. 3 (9) (10) SLQM. SLQM (9) MSE (10) MSE (11).,

(JBE Vol. 21, No. 2, March 2016) 3. Luv (SLQM Luv), (SLQM L), (SLQM uv) Table 3. Performance comparison of SLQM Luv, SLQM L and SLQM uv Dataset Measure SLQM L SLQM uv SLQM Luv TID 2013 TID 2008 CSIQ LIVE (Overall) SROC 0.7695 0.6105 0.8419 KROC 0.6030 0.4461 0.6663 PLCC 0.7349 0.5115 0.7639 RMSE 0.8408 1.0652 0.8000 SROC 0.8105 0.5189 0.8212 KROC 0.6358 0.3777 0.6481 PLCC 0.6941 0.4884 0.7234 RMSE 0.9660 1.1710 0.9265 SROC 0.8964 0.7196 0.9108 KROC 0.7140 0.5155 0.7352 PLCC 0.7484 0.5498 0.7878 RMSE 0.1741 0.2193 0.1617 SROC 0.9373 0.8489 0.9399 KROC 0.7904 0.6682 0.7940 PLCC 0.6326 0.4879 0.6254 RMSE 17.9032 20.1776 18.038 SROC 0.8221 0.6369 0.8603 KROC 0.6543 0.4708 0.6898 PLCC 0.6946 0.4753 0.7358 MSE L, u, v (9) MSE. SLQM mod1., 4 IQA (TID2013, TID2008, CSIQ, LIVE) SLQM mod1 SROC = 0.8322, KROC = 0.6574, PLCC = 0.7146 MSE SLQM SROC, KROC, PLCC 2.8%-, 3.2%- 2.1%-., u v (10) MSE (9) MSE. IQA., ( Bayes ) ( ) ( ).. u v (10) MSE. VI. SLQM. FR-IQA SLQM

1: (Sung-Ho Bae et al.: A Novel Fast and High-Performance Image Quality Assessment Metric using a Simple Laplace Operator) 3 FR- IQA (PSNR, MoSSIM [19], PAMSE [20] ). MoSSIM, PAMSE., SLQM (10)., MoSSIM PAMSE (10). MoSSIM PAMSE MoSSIMc, PAMSEc. IQA 4 (LIVE, CSIQ, TID2008, TID2013), 1. 4 FR-IQA., 4 SLQM FR-IQA ( ) SROC, KROC. PSNR, SROC KROC FR-IQA. PSNR MSE, MSE HVS. PAMSE LIVE (SROC, KROC ). PAMSE LIVE (,, JPEG ) [20]. SROC, KROC SLQM PAMSE PSNR 12%~15%. MoSSIM, SROC, KROC 5%-, 7%-. FR-IQA FR-IQA ( 4. Table 4. Performance of FR-IQA methods under test Dataset Measure PAMSE PAMSEc MoSSIM MoSSIMc SLQM TID 2013 TID 2008 CSIQ LIVE Overall SROC 0.6454 0.7049 0.7514 0.7517 0.8419 KROC 0.4966 0.5431 0.5651 0.5651 0.6663 PLCC 0.6642 0.6978 0.7899 0.7894 0.7639 RMSE 0.9261 0.8879 0.7598 0.7609 0.8000 SROC 0.6216 0.6395 0.8078 0.8081 0.8212 KROC 0.4823 0.4861 0.6055 0.6055 0.6481 PLCC 0.5943 0.6068 0.7920 0.7914 0.7234 RMSE 1.0783 1.0666 0.8187 0.8203 0.9265 SROC 0.8249 0.8388 0.8148 0.8156 0.9108 KROC 0.6623 0.6759 0.6387 0.6389 0.7352 PLCC 0.7179 0.8209 0.8502 0.8498 0.7878 RMSE 0.1719 0.1499 0.1380 0.1384 0.1617 SROC 0.9431 0.9382 0.9421 0.9463 0.9399 KROC 0.8020 0.7921 0.7939 0.8065 0.7940 PLCC 0.9060 0.9177 0.9388 0.9386 0.6254 RMSE 9.4510 9.1837 7.9532 7.9750 18.038 SROC 0.7076 0.7406 0.8030 0.8040 0.8603 KROC 0.5606 0.5832 0.6196 0.6216 0.6898 PLCC 0.6894 0.7235 0.8207 0.8203 0.7358

(JBE Vol. 21, No. 2, March 2016) ), (10) PAMSEc MoSSIMc (PAMSE, MoSSIM) 4. PAMSEc PAMSE SROC KROC 3.3%-, 2.3%-. MoSSIMc. MSE (10) FR-IQA. SLQM PAMSE MoSSIM., PAMSE, PAMSEc, MoSSIM, MoSSIMc. SLQM. 24 GB RAM 3.2 GHz Intel i7 TM, MATLAB TM R2013a. TID2013, (frames per second, fps). 5 FR-IQA (fps). SLQM PSNR 3 FR-IQA. PAMSE SLQM, MoSSIM ( 1.8). 5 PSNR PAMSE. FR-IQA SLQM MoSSIM, SLQM 1.8. 2 PAMSE, MoSSIM, SLQM ( SROC) (fps). 2 MoSSIM PAMSE. 5. FR-IQA Table 5. Average running speeds of four FR-IQA methods FR-IQA methods fps PSNR 526.51 PAMSE 129.37 MoSSIM 73.97 SLQM 134.15 2. PAMSE, MoSSIM, SLQM() (SROC) (fps) Fig. 2. Comparisons of PAMSE, MoSSIM, SLQM in running speed (fps) and prediction performance (SROC) VII. FR-IQA. HVS FR-IQA., SLQM FR-IQA,.,.

1: (Sung-Ho Bae et al.: A Novel Fast and High-Performance Image Quality Assessment Metric using a Simple Laplace Operator) (References) [1] Z. Wang and A. C. Bovik, Mean squared error: Love it or leave it? A new look at signal fidelity measures, IEEE Signal Process. Mag., vol. 26, no. 1, pp. 98-117, Jan. 2009. [2] S.-H. Bae, J. Kim, M. Kim, S. H. Cho, and J. S. Choi, Assessments of subjective video quality on HEVC-encoded 4K-UHD video for beyond-hdtv broadcasting services, IEEE Trans. on Broadcast., vol. 59, no. 2, pp. 209-222, Jun. 2013. [3] J.-S. Choi, S.-H. Bae and M. Kim, Single image super-resolution based on self-examples using context-dependent subpatches, IEEE Int. Conf. on Image Proc, Sept. 27-30, 2015. [4] J.-S. Choi, S.-H. Bae and M. Kim, A no-reference perceptual blurriness metric based fast super-resolution of still pictures using sparse representation, Proc. SPIE, vol. 9401, pp. 94010N.1-94010N.7, Mar. 2015. [5] J. Kim, S.-H. Bae, and M. Kim, An HEVC-compliant perceptual video coding scheme based on JND models for variable block-sized transform kernels, IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 11, pp. 1786-1800, Sept. 2015. [6] S.-H Bae and M. Kim, A novel DCT-based JND model for luminance adaptation effect in DCT frequency, IEEE Signal Process. Lett., vol. 20, no. 9, pp. 893-896, Sept. 2013 [7] S.-H. Bae and M. Kim, A new DCT-based JND model of monochrome images for contrast masking effects with texture complexity and frequency, IEEE Int. Conf. on Image Proc, Melborne, Australia, Sept. 15-18, pp. 431-434, 2013. [8] S.-H Bae and M. Kim, A novel generalized DCT-based JND profile based on an elaborate CM-JND model for variable block-sized transforms in monochrome images, IEEE Trans. on Image Process., vol. 23, no. 8, Aug. 2014. [9] S.-H. Bae and M. Kim, A DCT-based Total JND Profile for Spatio-Temporal and Foveated Masking Effects, IEEE Trans. Circuits Syst. Video Technol., to appear, 2016. [10] L. Zhang, L. Zhang, X. Mou, and D. Zhang, A comprehensive evaluation of full reference image quality assessment algorithms, Proc. 19th IEEE Int. Conf. Image Process., pp. 14771480, Sep./Oct. 2012. [11] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. on Image Process., vol. 13, pp. 600-612, Apr. 2004. [12] Z. Wang and Q. Li, Information content weighting for perceptual image quality assessment, IEEE Trans. Image Process., vol. 20, no. 5, pp. 1185-1198, May 2011. [13] Z. Wang, E. P. Simoncelli, and A. C. Bovik, Multiscale structural similarity for image quality assessment, Proc. 37th Asilomar Conf. Signals, Syst., Comput., pp. 13981402, Nov. 2003. [14] S.-H. Bae, M. Kim, A Novel SSIM Index for Image Quality Assessment using a New Luminance Adaptation Effect Model in Pixel Intensity Domain, IEEE Video Comm. and Image Proc., Dec. 13-16, 2015. [15] S.-H. Bae and M. Kim, A novel image quality assessment based on an adaptive feature for image characteristics and distortion types, IEEE Video Comm. and Image Proc., Dec. 13-16, 2015. [16] S.-H. Bae and M. Kim, Elaborate Image Quality Assessment with a Novel Luminance Adaptation Effect Model, Journal of Broadcast Engineering, vol. 20, no. 6, pp. 1-10, Nov. 2015. [17] S.-H. Bae and M. Kim, A Novel Image Quality Assessment with Globally and Locally Consilient Visual Quality Perception, IEEE Trans. on Image Process., to appear, 2016. [18] E. C. Larson and D. M. Chandler, Most apparent distortion: Full-reference image quality assessment and the role of strategy, J. Electron. Imag., vol. 19, no. 1, pp. 001006:1001006:21, Jan. 2010. [19] D. Brunet, E. R Vrscay, and Z. Wang. On the mathematical properties of the structural similarity index, IEEE Trans. Image Process., vol. 21, no.4, pp. 1488-1499, Oct. 2012. [20] W. Xue, X. Mou, L. Zhang, X. Feng, Perceptual fidelity aware mean squared error, Proc. IEEE Int. Conf. Computer Vision, Dec. 2013, pp. 705712. [21] N. Ponomarenko et al., Color image database TID2013: Peculiarities and preliminary results, Proc. 4th Eur. Workshop Vis. Inf. Process., Jun. 2013, pp. 106111. [22] N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian, M. Carli, and F. Battisti, TID2008-A database for evaluation of full-reference visual quality assessment metrics, Adv. Modern Radioelectron., vol. 10, pp. 3045, 2009. [23] H.R. Sheikh, M.F. Sabir, and A.C. Bovik, A statistical evaluation of recent full reference image quality assessment algorithms, IEEE Trans. Image Process., vol. 15, no. 11, pp. 3440-3451, Nov. 2006. [24] Final Report From the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment VQEG. Available: http://www.vqeg.org, 2000.

(JBE Vol. 21, No. 2, March 2016) - 2011 2 : - 2012 8 : - 2012 9 ~ : - ORCID : http://orcid.org/0000-0000-8961-7204 - : Human Visual Perception based Computational Vision - 1989 2 : - 1992 12 : University of Florida, Dept. of Electrical and Computer Engineering, - 1996 8 : University of Florida, Dept. of Electrical and Computer Engineering, - 1997 1 ~ 2001 1 :, - 2001 2 ~ 2009 2 : / - 2009 3 ~ : / - ORCID : http://orcid.org/0000-0003-0146-5419 - : Perceptual Video Coding, SDR/HDR Image/Video Quality Assessment and Modeling, Super-Resolution, Image/Video Analysis and Understanding, Pattern Recognition, Machine Learning