한수지 51(2), , 2018 Original Article Korean J Fish Aquat Sci 51(2), ,2018 어군에의한광대역음향산란신호의시간 - 주파수분석을위한 chirp 데이터수록및처리시스템의성능특성 이대재 * 부경대학교해양

Similar documents
한수지 48(2), , 2015 Original Article Korean J Fish Aquat Sci 48(2), ,2015 고등어 (Scomber japonicus), 불볼락 (Sebastes thompsoni) 및쥐노래미 (Hexagram

한수지 51(3), , 2018 Original Article Korean J Fish Aquat Sci 51(3), ,2018 확률신경망에의한해저저질의식별 이대재 * 부경대학교해양생산시스템관리학부 Classifying Seafloor Sedim

한수지 49(2), , 2016 Original Article Korean J Fish Aquat Sci 49(2), ,2016 인공신경망에의한 6 개어종의음향학적식별 이대재 * 부경대학교해양생산시스템관리학부 Acoustic Identificat

Slide 1

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

606 이대재 재료 및 방법 초음파 진동소자의 제작과 배열 본 연구에서는 공진주파수가 서로 다른 6개 주파수의 tonpilz 형 진동체를 설계, 제작한 후, Fig. 1a에서와 같이 2 3 패턴 으로 배열하여 Fig. 1b의 다중공진 음향변환기를 개발하였다. Fig.

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

인문사회과학기술융합학회

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

< C6AFC1FD28B1C7C7F5C1DF292E687770>

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Apr.; 29(4),


THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 25(11),

untitled

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

. 서론,, [1]., PLL.,., SiGe, CMOS SiGe CMOS [2],[3].,,. CMOS,.. 동적주파수분할기동작조건분석 3, Miller injection-locked, static. injection-locked static [4]., 1/n 그림

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Oct.; 27(10),

2

歯AG-MX70P한글매뉴얼.PDF

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770>

한수지 49(6), , 2016 Original Article Korean J Fish Aquat Sci 49(6), ,2016 음향산란층의식별을위한에코그램분석방법의비교 최석관 윤은아 1 * 한인우 1 오우석 1 국립수산과학원원양자원과, 1 전남

°í¼®ÁÖ Ãâ·Â

09권오설_ok.hwp

Coriolis.hwp

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

歯5-2-13(전미희외).PDF

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

RRH Class-J 5G [2].,. LTE 3G [3]. RRH, W-CDMA(Wideband Code Division Multiple Access), 3G, LTE. RRH RF, RF. 1 RRH, CPRI(Common Public Radio Interface)

08김현휘_ok.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 25(12),

<313920C0CCB1E2BFF82E687770>

DBPIA-NURIMEDIA

29 Ⅰ. 서론 물리학자들이 전파의 이론을 정립한 이후, 이를 기술적으로 실현함은 물론 적정 수준의 19세기 물리학자인 페러데이, 맥스웰, 헤르츠 등의 연구 결과로 인류는 전기장과 자기장의 변화 에 따른 전파를 만들어 낼 수 있게 되었고, 인류에 게 있어 없어서는 안되

(

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

: RTL-SDR (Young-Ju Kim: Implementation of Real-time Stereo Frequency Demodulator Using RTL-SDR) (Regular Paper) 24 3, (JBE Vol. 24, No. 3, May

Chapter4.hwp

박선영무선충전-내지

歯4.PDF

<30345F D F FC0CCB5BFC8F15FB5B5B7CEC5CDB3CEC0C720B0BBB1B8BACE20B0E6B0FCBCB3B0E8B0A120C5CDB3CE20B3BBBACEC1B6B8ED2E687770>

24 GHz 1Tx 2Rx FMCW ADAS(Advanced Driver Assistance System).,,,. 24 GHz,, [1] [4]. 65-nm CMOS FMCW 24 GHz FMCW.. 송수신기설계 1 1Tx 2Rx FMCW (Local Oscillat

09이훈열ok(163-

<3034B1E2B9DD32302DBAB8B0EDBCAD2D DC0FCC6C4C0DABFF BAB0C3A53420C8A8B3D7C6AEBFF6C5A9292E687770>

CD-6208_SM(new)

전자실습교육 프로그램

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

APOGEE Insight_KR_Base_3P11

¼º¿øÁø Ãâ·Â-1

03-서연옥.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

Microsoft Word - JAVS_UDT-1_상세_메뉴얼.doc

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 30(2),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1),

(JBE Vol. 23, No. 6, November 2018) (Special Paper) 23 6, (JBE Vol. 23, No. 6, November 2018) ISSN 2

1 : (Sunmin Lee et al.: Design and Implementation of Indoor Location Recognition System based on Fingerprint and Random Forest)., [1][2]. GPS(Global P

DWCOM15/17_manual

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 26(7),

1. Features IR-Compact non-contact infrared thermometer measures the infrared wavelength emitted from the target spot and converts it to standard curr

,.. 2, , 3.. 본론 2-1 가상잡음신호원생성원리, [8].,. 1.,,. 4 km (13.3 μs).,. 2 (PN code: Pseudo Noise co- 그림 2. Fig. 2. Pseudo noise code. de). (LFSR: Line

1. 서 론

±è¼ºÃ¶ Ãâ·Â-1

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 28(2),

서보교육자료배포용.ppt

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

3 : ATSC 3.0 (Jeongchang Kim et al.: Study on Synchronization Using Bootstrap Signals for ATSC 3.0 Systems) (Special Paper) 21 6, (JBE Vol. 21

11 함범철.hwp

폐비닐수거기-김태욱.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 3, Mar (NFC: non-foster Circuit).,. (non-foster match

歯DCS.PDF

[ 영어영문학 ] 제 55 권 4 호 (2010) ( ) ( ) ( ) 1) Kyuchul Yoon, Ji-Yeon Oh & Sang-Cheol Ahn. Teaching English prosody through English poems with clon

DBPIA-NURIMEDIA

Microsoft PowerPoint - AC3.pptx

<333820B1E8C8AFBFEB2D5A B8A620C0CCBFEBC7D120BDC7BFDC20C0A7C4A1C3DFC1A42E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE May; 27(5),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Aug.; 27(8),

À±½Â¿í Ãâ·Â

안전을 위한 주의사항 제품을 올바르게 사용하여 위험이나 재산상의 피해를 미리 막기 위한 내용이므로 반드시 지켜 주시기 바랍니다. 2 경고 설치 관련 지시사항을 위반했을 때 심각한 상해가 발생하거나 사망에 이를 가능성이 있는 경우 설치하기 전에 반드시 본 기기의 전원을

airDACManualOnline_Kor.key

FTTH 기술발표

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

Microsoft Word - KSR2016S168

전용]

<4D F736F F F696E74202D20454D49A3AF454D43BAEDB7CEBCC52EBBEABEF7BFEBC6F7C7D428BBEFC8ADC0FCC0DA >

09È«¼®¿µ 5~152s

???? 1

Microsoft Word - DCMD-1000 사용자 메뉴얼.docx

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A Research Trend

06_ÀÌÀçÈÆ¿Ü0926

Transcription:

한수지 51(2), 178-186, 2018 Original Article Korean J Fish Aquat Sci 51(2),178-186,2018 어군에의한광대역음향산란신호의시간 - 주파수분석을위한 chirp 데이터수록및처리시스템의성능특성 이대재 * 부경대학교해양생산시스템관리학부 Performance Characteristics of a Chirp Data Acquisition and Processing System for the Time-frequency Analysis of Broadband Acoustic Scattering Signals from Fish Schools Dae-Jae Lee* Division of Marine Production System Management, Pukyong National University, Busan 48513, Korea A chirp-echo data acquisition and processing system was developed for use as a simplified, PC-based chirp echosounder with some data processing software modules. The design of the software and hardware system was implemented via a field-programmable gate array (FPGA). Digital signal processing algorithms for driving a singlechannel chirp transmitter and dual-channel receivers with independent TVG (time varied gain) amplifier modules were incorporated into the FPGA for better real-time performance. The chirp-echo data acquisition and processing system consisted of a notebook PC, an FPGA board, and chirp sonar transmitter and receiver modules, which were constructed using three chirp transducers operating over a frequency range of 35-210 khz. The functionality of this PC-based chirp echo-sounder was tested in various field experiments. The results of these experiments showed that the developed PC-based chirp echo-sounder could be used in the acquisition, processing and analysis of broadband acoustic echoes related to fish species identification. Key words: Chirp data acquisition and processing system, Broadband acoustic echoes, Time-frequency analysis, Fish species identification 서론,., (Fässler et al., 2009)., - - (air chamber), contrast. echo (Foote, 1980; Stanton et al., 2010)., echo., echo,, echo (Simmons et al., 1996; Lee et al., 2014; Lee, 2014; Lee et al., 2015)., echo,, (Fernandes, 2009)., chirp,, chirp. FPGA (Field-Programmable Gate Array) (Digilent, 2011; Gądek et al., 2014) chirp echo,,,. https://doi.org/10.5657/kfas.2018.0178 Korean J Fish Aquat Sci 51(2) 178-186, April 2018 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licens (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Received 8 March 2018; Revised 7 April 2018; Accepted 9 April 2018 *Corresponding author: Tel: +82. 51. 629. 5889 Fax: +82. 51. 629. 5885 E-mail address: daejael@pknu.ac.kr Copyright 2018 The Korean Society of Fisheries and Aquatic Science 178 pissn:0374-8111, eissn:2287-8815

Chirp 데이터수록및처리시스템의성능특성 179 재료및방법 Chirp echo 데이터수록및처리시스템의설계 chirp echo FPGA (Digilent, 2011) Nexys 2 board (Spartan- 3E FPGA 1200K, Xilinx, USA). FPGA VGA (video graphics array), RS232 (recommended standard 232), USB (universal serial bus), PS/2 (personal system/2), LED (light-emitting diode),, PMOD (peripheral module), 5 V, 50 MHz (clock generator). GPIO (general purpose input/output),, 2 6 (pin) PMOD I/O FPGA trigger, TVG (time varied gain), chirp 2 1., 1 POMD I/O chirp echo FPGA. Chirp echo FPGA (1) chirp echo chirp, Fig. 1 chirp Airmar chirp (B256L, B265H, B75M) (Lee, 2017). (1) f 0 chirp, 2at+f 0 (instantaneous frequency)., - chirp (T ) (B),, 2a(=B/T ) (Cowell and Freear, 2010). s(t)=e j2 (at 2 +f 0 t +c) (1), chirp rate, chirp f 0 20 khz, 2a 200 khz chirp.,, chirp echo. 2. (dual beam) (side scan sonar). Chirp echo chirp 1 2,, TVG, A/D. A/D 12 bit ADC7476 (Texas instruments, USA) 1 MHz. 35-75 khz (Lee, 2017; B265L, Airmar), 75-130 khz (B75M, Airmar) 130-210 khz (B265H, Airmar) Fig. 1. Schematic diagram of the chirp data acquisition system for measuring and analyzing the broadband acoustic echoes from fish schools. The system consists of an FPGA (field-programmable gate array), two receiver modules composed of two channel TVG (time varied gain) amplifiers and A/D converter modules, a chirp signal generator implemented on a PC, a transmitter module composed of power amplifier and transformer, and three chirp transducers. The software modules for accomplishing the input/output, control and signal processing were created specifically for this application. The communication with FPGA hardware is managed by a USB-based protocol and associated USB interface. ADC, analog-to-digital converter; BPF, bandpass filter; DAC, digital-to-analog converter MOSFET, metal oxide semiconductor field effect transistor.

180 이대재, 35-210 khz. chirp FPGA 1.0 ms, 20-220 khz chirp. (transformer) chirp chirp., echo 2 B265LH 1,., 75-130 khz echo 2 B75M., (Lee, 2017). Chirp echo 신호의시간 - 주파수분석 SPWVD (smoothed pseudo wigner-ville distribution) chirp echo (Shui et al., 2007; Han and Kim, 2010)., SPWVD Table 1. Specifications of hardware modules consisting of the chirp data acquisition and processing system developed in this study Hardware modules FPGA Chirp transmitting module Chirp receiving module Chirp transducer Specification Xilinx Spartan-3E FPGA 1200K gate Four 12-pin Pmod interface VGA, PS/2, USB2 and serial ports Hirose FX2 connector 16 MB PSDRAM &16 MB strataflash ROM 50 MHz oscillator Chirp output pulse signal 20-220 khz Output power 100 W Chirp pulse duration 1.0ms TVG gain 96.8 db (0.48 db step) ADC 12 bit 1 MHz sampling Pre-amp gain 24 db Bandpass filter 25-85 khz (L), 100-220 khz (H) DAC 16 bit 5V output Airmar B265LH and B75M, Self-made transducer (Lee, 2017) Notebook PC Dell inspiron (2.53 GHz, windows 7, core i5) FPGA, field-programmable gate array; VGA, video graphics array; TVG, time varied gain; ADC, analog-to-digital converter; DAC, digital-to-analog converter.. SPWVD WVD (wigner-ville distribution) (Imberger and Boahsh, 1986), SPWVD (Blaska and Sedlacek, 2001; Dong and Cui, 2012) SPWVD x (f,t)= g(t)*( - + h( )[x(t+ ) x*(t- )] e -j d ) (2) 2 2., * t convolution, g(t) (time smoothing window function), h( ) (frequency smoothing window function). (2) convolution, SPWVD x (f,t)= - + h( ) - + g(s-t)[x (s+ )x*(s- )] ds e -j d (3) 2 2. (Shui et al., 2007), SPWVD x (f,n)= h(m) g(k) x(n+m+k) x*(n+m-k)e -j4 fk (4) m =- k =-, m k t index, x(n) echo. (4) echo -, SPWVD g(k) h(m),. chirp echo (4) echo -,. 현장실험에의한 echo 응답특성의측정및성능평가, chirp 2015 6 23 2016 2 4 ( 1,737 ) 5. chirp 2015 6 23 5,., chirp 2016 2 4 5, [tungsten carbide sphere with 6% cobalt binder (WC), 40 mm] echo

Chirp 데이터수록및처리시스템의성능특성 181 -., echo 2016 2 4 5 chirp. 결과및고찰 Chirp echo 데이터수록및처리시스템의성능특성, chirp echo Fig. 2 Fig. 3. Fig. 2 (a) FPGA 2 TVG 1,. Fig. 2 (b) echo., Fig. 3 2015 6 23 5, echo,. Fig. 3 chirp echo, 3., 2 chirp echo, echo,, 2., 2 chirp split beam, (Lee and Shin, 2001; Lee and Lee, 2010; Lee and Lee, 2011; Lee, 2011). Fig. 3 2 chirp. Fig. 2 chirp Fig. 3 20-220 khz,., 0-40 db, TVG no-tvg, 10 log (r), 20 log (r), 30 log (r), 40 log (r). Chirp echo, 255 ping 1., FFT window.,, chirp echo cursor., chirp echo - window., chirp echo Fig. 2. Photographs of the chirp data acquisition and processing system developed in this study. (a) An FPGA (Field-Programmable Gate Array) board connected to two receiver modules and a transmitter module. (b) A completed PC-based chirp echo-sounder composed of a chirp transceiver, a PC-based data processing system and an additional data monitoring system. SPWVD (4) - echo. chirp - echo., - echo (Lee, 2015a; Lee, 2015b; Lee et al., 2016; Lee, 2016). 교정구의시간 - 주파수 echo 응답특성, chirp

182 이대재 Fig. 3. Layout for the software module of the chirp data acquisition and processing system developed in this study. (WC, 40 mm) echo, Fig. 4. Fig. 4 2016 2 4 5, echogram. 5 9.5 m,. Fig. 4 chirp 4.0 m, chirp 3 m( 7 m) echo,. Fig. 4 7 m 9.5 m echo echo. echo. Fig. 4 chirp echo - chirp sonar,, Fig. 5 Fig. 6. Fig. 5 Fig. 2 chirp,, 35-75 khz echo. Fig. 5 (a), (b), (c) 2 -, (d) 3 - contour., Fig. 6,, 130-210 khz echo. Fig. 5 Fig. 6 (a), (b), (c) 2 -, (d) 3 - contour. Fig. 4 echo,,

Chirp 데이터수록및처리시스템의성능특성 183 Fig. 4. An echogram for the low frequency channel (35-75 khz) measured from a WC (tungsten carbide sphere with 6% cobalt binder) sphere (Dia. 40 mm) suspended just below the chirp transducer to test the functionality of the developed chirp data acquisition and processing system. Fig. 5 Fig. 6. echo., echo,, chirp 1.0 ms, 20-220 khz chirp, 0.1 ms, 35-75 khz - echo., chirp -., echo, Fig. 4 echo 0.7 ms, 100-210 khz., chirp echo -., 3 echo contour Fig. 6 (b) Fig. 5. Time response waveform (a), frequency spectrum (b), time-frequency image (c) and 3D contour plot (d) of the broadband echo signal from a 40 mm WC (tungsten carbide sphere with 6% cobalt binder) sphere suspended at about 3 meters depth on the beam axis just below the chirp transducer operating over the range of 35-75 khz.

184 이대재 Fig. 6. Time response waveform (a), frequency spectrum (b), time-frequency image (c) and 3D contour plot (d) of the broadband echo signal from a 40 mm WC (tungsten carbide sphere with 6% cobalt binder) sphere suspended at about 3 meters depth on the beam axis just below the chirp transducer operating over the range of 130-210 khz.. Fig. 5 Fig. 6 chirp rate, 400 khz/ms, 157 khz/ms, echo. FPGA chirp - chirp. 35-75 khz,, echo.,,, chirp - echo. 어군의시간 - 주파수 echo 응답특성, chirp echo, Fig. 7. Fig. 7 (a) 5 echogram, echo., Fig. 7 (b) Fig. 7 (a) 25 sonar ping chirp echo, Fig. 7 (c) Fig. 7 (b) echo 2 -. chirp

Chirp 데이터수록및처리시스템의성능특성 185 Fig. 7. Expended echogram (a), chirp echo waveform (b) and time-frequency image (c) for the broadband echo signal from seabed. The echo signal from fish aggregations near the seabed was acquired over the frequency range of 130-210 khz in the Busan northern harbor, Korea. The time-frequency image show that it is possible to separate and resolve the two echo signals if their time components for the echo signals from seabed and fish do not overlap in the time domain. echo.,., Fig. 7 (c) echo echo -., Fig. 7 (c) echo - -., -, echo.,. chirp,,,. 사사 (2017 ). References Baska J and Sedlacek M. 2001. Use of the intergral transforms for estimation of instantaneous frequency. Meas Sci Rev 1, 169-172. Cowell DMJ and Freear S. 2010. Separation of overlapping linear frequency modulated (LFM) signals using the Fractional Fourier Transform. IEEE Transactions on UFFC 57, 2324-2333. http://dx.doi.org/ 10.1109/TUFFC.2010.1693.

186 이대재 Digilent. 2011. Digilent Nexys2 Board Reference Manual. Digilent Inc, Pullman, WA, U.S.A., 1-17. Dong Y and Cui Y. 2012. Analysis of a new joint time-frequency distribution of suppressing cross-term. Res J Appl Sci Eng Technol 4, 1580-1584. Fässler SMM, Fernandes PG, Semple SIK and Brierley AS. 2009. Depthe-dependent swimbladder compression in herring Clupea haengus obserbed using magnetic resonance imaging. J Fish Bio 74, 296-303. http://dx.doi.org/ 10.1111/j.1095-8649.2008.02130.x. Fernandes PG. 2009. Classification trees for species identification of fish-school echotraces. ICES J Mar Sci 66, 1073-1080. http://dx.doi.org/10.1093/icesjms/fsp060. Foote KG. 1980. Importance of the swimbladder in acoustic scattering by fish: A Comparison of gadoid and mackerel target strengths. J Acoust Soc Am 67, 2084-2089. Gądek K, Dudzik M and Stręk A. 2014. A novel three-head ultrasonic system for distance measurements based on the correlation method. Meas Sci Rev 14, 331-336. http://dx.doi. org/ 10.2478/msr-2014-0045. Han SK and Kim HT. 2010. Efficient radar target recognition using a combination of range profile and time-frequency analysis. Progress Electrom Res 108, 131-141. http://dx.doi. org/ 10.2528/PIER10071601. Imberger J and Boashash B. 1986. Application of the Wigner- Ville distribution to temperature gradient microstructure: A new technique to study small-scale variations. J Physic Oceanography 16, 1997-2012. Lee DJ and Shin HI. 2001. Development of a split beam transducer for measuring fish size distribution. Bull Korean Soc Fish Tech 37, 196-213. Lee DJ and Lee WS. 2010. Design, fabrication and performance characteristics of a 50kHz Tonpilz type transducer with a half-wavelength diameter. J Korean Soc Fish Tech 46, 173-183. http://dx.doi.org/10.3796/ksft.2010.46.2.173. Lee DJ and Lee WS. 2011. Development of split-beam acoustic transducer for a 50 khz fish sizing echo sounder. Korean J Fish Aquat Sci 44, 413-422. http://dx.doi.org/10.5657/ KFAS. 2011.0413. Lee DJ. 2011. Estimation of angular location and directivity compensation of split-beam acoustic transducer for a 50 khz fish sizing echo sounder. Korean J Fish Aquat Sci 44, 423-430. http://dx.doi.org/10.5657/kfas. 2011.0423. Lee DJ, Kwak MS and Kang HY. 2014. Design and development of a broadband ultrasonic transducer operating over the frequency range of 40 to 75 khz. Korean J Fish Aquat Sci 47, 292-301. http://dx.doi.org/10.5657/kfas.2014.0292. Lee DJ. 2014. Bandwidth enhancement of a broadband ultrasonic mosaic transducer using 48 tonpilz transducer elements with 12 resonance frequencies. Korean J Fish Aquat Sci 47, 302-312. http://dx.doi.org/10.5657/kfas.2014.0302. Lee DJ, Kang HY and Kwak MS. 2015. Analysis and classification of broadband acoustic echoes from individual live fish using the pulse compression technique. Korean J Fish Aquat Sci 48, 207-220. http://dx.doi.org/10.5657/ KFAS.2015.0207. Lee DJ. 2015a. Time-frequency analysis of broadband acoustic scattering from chub mackerel Scomber japonicas, goldeye rockfish Sebestes thompsoni, and fat greenling Hexagrammos otakii. Korean J Fish Aquat Sci 48, 221-232. http:// dx.doi.org/10.5657/kfas.2015.0221. Lee DJ. 2015b. Changes in the orientation and frequency dependence of target strength due to morphological differences in the fish swim bladder. Korean J Fish Aquat Sci 48, 233-243. http://dx.doi.org/10.5657/kfas.2015.0233. Lee DJ, Kang HY and Pak YY. 2016. Time-frequency feature extraction of broadband echo signals from individual live fish for species identification. Korean J Fish Aquat Sci 49, 214-223. http://dx.doi.org/10.5657/kfas.2016.0214. Lee DJ. 2016. Acoustic identification of six fish species using an artificial neural network. Korean J Fish Aquat Sci 49, 224-233. http://dx.doi.org/10.5657/kfas.2016.0224. Lee DJ. 2017. Bandwidth improvement of a multi-resonant broadband acoustic transducer. Korean J Fish Aquat Sci 50, 605-615. http://dx.doi.org/10.5657/kfas.2017.0605. Shui PL, Shang HY and Zhao YB. 2007. Instantaneous frequency estimation based on directionally smoothed pseudo- Wegner-Ville distribution bank. IET Radar Sonar Navig 1, 317-325. http://dx.doi.org/10.1049/rsn:20060123. Simmons EJ, Armstong F and Copland PJ. 1996. Species identification using wideband backscattering with neural network and discriminant analysis. ICES J Mar Sci 53, 189-195. Stanton TK, Chu D, Jech JM and Irish JD. 2010. New broadband methods for resonance classification and high-resolution imagery of fish with swimbladders using a modified commercial broadband echosounder. ICES J Mar Sci 67, 365-378. http://dx.doi.org/10.1093/icesjms/fsp262.