경북대학교응용화학과 Department of Applied Chemistry Kyungpook National University 폴리우레탄계접착제 - 이론과응용기술 - 정인우경북대학교응용화학과 5/22/2006 inwoo@knu.ac.kr 1 누구를위한강의인가? 폴리우레탄관련업계종사자 폴리우레탄의초심자 폴리우레탄및접착제연구자등 2 1
몸풀기 X 퀴즈 폴리우레탄은라디칼중합메커니즘을따른다. ( X ) 폴리우레탄은열가소성탄성체이다. ( ) 폴리우레탄은이온결합특성이중요한인자로작용한다. ( X ) 폴리우레탄은수성타입보다는유성타입이모든측면에서물성이우수하다. ( ) 폴리우레탄은연성이좋아섬유로사용되기는어렵다. ( X ) 3 목차 폴리우레탄의개요 (1교시) 접착의일반이론과접착강도 (2교시) 수계형폴리우레탄접착제 (2.5교시) 폴리우레탄접착제의종류와특징 (3교시) 폴리우레탄접착제의조성과응용 (3교시) 4 2
폴리우레탄개요 (1 교시 ) 폴리우레탄의역사적배경 폴리우레탄의화학적구조 폴리우레탄의일반적특성 폴리우레탄의합성방법 중합단량체의역할 5 폴리우레탄의역사적배경 1937 tto Bayer (1902-1982) develops the novel polyisocyanate-polyaddition process. The basic idea which he documents from March 26 1937 relates to spinnable products made of hexane- 1,6-diisocyanate (HDI) and hexa-1,6-diamine (HDA). Publication of German Patent DRP 728981 on November 13 1937: "A process for the production of polyurethanes and polyureas". The team of inventors consisted of: tto Bayer, Werner 6 3
폴리우레탄의응용분야 Membrane Panels Fabrics Foams Sports Shoes Leather Automobile Tapes Paints adhesive Stadium Human organic 7 폴리우레탄의응용분야 8 4
폴리우레탄접착제국제특허현황 300 특허출원수 250 200 150 100 50 0 1960 1970 1980 1990 2000 2010 년도 통계자료, Scifinder 2004, ACS 9 폴리우레탄접착제국내특허현황 특허출원수 10 9 8 7 6 5 4 3 2 1 0 1985 1990 1995 2000 2005 년도 일본미국독일러시아중국프랑스한국 통계자료, Scifinder 2004, ACS 10 5
국내접착제공업현황 대부분소규모기업이약 80% 생산 국내접착제생산규모 1992 3240 억원규모로 86 년이후연평균 15% 신장 2003 7천억 종류별현황 폴리우레탄계접착제의생산량이빠르게증가 Hot-Melt, 순간접착제, UV 접착제등의고기능접착제는수입품에상당부분을의존 아크릴에멀젼계 (24%), 비닐아세테이트 (16%), 폴리우레탄계 (14%) 11 국내접착제생산량통계 2002년한국계면활성제, 접착제공업협동조합12 6
폴리우레탄연도별시장현황 기능성접착제의연구개발및특허출원요구 환경규제에대비한신접착공정의개발필요 13 환경규제에따른접착제의기술변화 VC 규제 전세계적인환경중요성인식대두 용제형부터수용성, 무용제형, Hot-Melt 형으로 용제형의젖음성특성등을충족 2003 년 5월부터주택및다중시설들의실내공간에대한 VC 규제가시작 기술변화추이 수성접착제 ( 에멀젼형 ) UV 경화형접착제 ( 반응형 ) Hot-Melt 형 (High Solid 형 ) 14 7
폴리우레탄의일반적구조 Versatile classes of polyurethane has been developed for sixty years Rich choice of building blocks Basic reaction between diisocyanate and polyols Polyether polyol Aromatic diisocyanate Diamine chain extender 15 폴리우레탄의일반적구조 Segmented Structure Soft segment: Matrix H nh Hard segment : Physical cross-linking CN NC H H H NH 2 H 2 N 16 8
폴리우레탄의합성방법 Polyol Chain extender Diisocyanate Urethane & Urea Reaction 17 폴리우레탄의합성방법 용제형폴리우레탄접착제의합성 1 액형 : NC-terminated prepolymer in solvent 수분경화형 2 액형 : H or NH2-terminated prepolymer in solvent + Crosslinker (polyisocyanate) 가교제경화형 ( 상온경화, 2-24 시간 ) Block 형 : Blocked prepolymer + Crosslinker (polyisocyanate) 가교제경화형 ( 가열경화, 60-100 도, 1 분 -1 시간 ) 이소시아네이트 (TDI, MDI) * IPDI, HDI - 반응온도 80도미만, 0.1-0.5wt% 촉매사용 - 폴리올과비슷한양의사슬연장제사용 - 용제 : MEK, Acetone, Ethyl acetate 등 18 9
폴리우레탄의합성방법 NC-terminated prepolymer NC/H 몰비 : 2~3 Polyol 의관능성기 : 2 또는 2 이상 Polyol 의분자량 : 1000~4000 g/mol 19 폴리우레탄의합성방법 사슬연장제 (2,3 관능기의아민및알코올 ) 에의한분자량증대 20 10
폴리우레탄의합성방법 수분경화에의한접착제의형성 R-NC + H 2 R-NH 2 + C 2 H R N (Urea) H N R R-NH 2 + + NC-R CN R NC H 2 (Amine) CN R N N R NC H N H CN R (Biuret) 21 폴리우레탄의합성방법 Biuret 및 Allophanate 의형성에의한가교반응 22 11
폴리우레탄의합성방법 수계형 ( 에멀젼형 ) 폴리우레탄의합성 NC/H ~ 1.2-3 Hydrophilic functionality DMPA, DMBA (CH) Sulfonate, Sulfate, etc. Neutralization Agent Phase inversion or Prepolymer pouring 23 폴리우레탄의합성방법 1액형폴리우레탄에멀젼의예 Blocked polyisocyanate dispersion by hydrophilic modification Isocyanurate trimer of HMDI and HDI Hydrophilic polyol or hydrophobic polyol/ionic extender Aqueous solution of crosslinker 비반응형 : NC/H ratio ~ 1.0 반응형 : NC/H ratio ~ 2.0-3.0 24 12
중합단량체의역할 이소시아네이트의구조에따른특징 방향족디이소시아네이트는지방족에비해우수한상호응집에너지 선형구조를가질경우 hard segment 의충진이용이 상간분리도변화에큰영향 사슬연장제 ( 쇄연장제 ) 의구조에따른특징 아민계사슬연장제는디올계에비해반응성이우수 낮은온도에서쉽게반응 우수한내화학성 Tg 상승 hard segment의간수소결합을강화 폴리올의구조에따른특징 폴리에스터에비해폴리에테르계폴리올이상분리특성, 내가수분해성등이우수하나, 기계적성질미비 분자량은접착온도조건에서결정화되지않는것이좋다 25 중합단량체의역할 폴리우레탄 -우레아고분자에서가능한수소결합의예 26 13
접착의일반이론과접착강도 (2 교시 ) 접착의일반이론 접착강도의측정 접착제설계시고려사항 27 접착제란? 동종또는이종의피착제 (substrate) 를접합하는데사용하는물질 물체를접착시키려면접착제를물체에도포하고서로붙인후에접착제가고화 ( 固化 ) 됨 접착제는처음에는액상이다가나중에고화후, 강도유지필수 접착제의종류 ( 접착제, 점착제, 실란트 ) 고분자용액형접착제 : 녹말풀, 가솔린에녹인고무풀, 신나 (thinner) 희석형폴리아세트산비닐계 ( 系 ) 등 반응형접착제 : 시아노아크릴레이트 / 비스아크릴레이트등 핫멜트형접착제 : 고체를가열하여용융시켜붙이는접착제 28 14
접착제의구성성분 접착제의요구사항 젖음성 접착강도 작업성 ( 경화시간, 세척용이성, 냄새, 점성등 ) 경제성 구성성분 가소제 푸탈산디부틸등 충진제 탄산칼슘, 카본블랙등 경화제 과산화물등 산화방지제 증점제 메틸셀룰로스등 방부제 펜타클로로페놀등 소포제 실리콘오일등 착색제 염료 / 안료등 29 접착메커니즘 접착 (adhesion) : 동종또는이종간의결합력 (interfacial force) 에의한접합 결합력 (interfacial force) : 화학적결합 (chemical bond) covalent, ionic : 물리적결합 (physical bond) van der Waals, H-bond, interlocking(rough surface), electrostatic, adsorption, etc. 30 15
접착메커니즘 Mechanical Interlocking SEM image and optical micrograph of abraded steel surface and crosssection of epoxy/steel Interface, respectively Peel adhesion of electroformed copper foil to epoxy laminates 31 접착메커니즘 화학적결합의형성예 (Primer, coupling agent) CH 2 CH 3 H 2 C C Si CH H H 2 CH 3 + 2 H 2 C CH 2 CH 3 H C Si H H H + H- H- H- H- H- H- Substrate Substrate Si C H CH + 2 Adhesive Vinyl monomer Vinyl macromonomer + Peroxide Initiator Amine Epoxy Vinyl Acrylate, etc. 32 16
접착이론 True adhesion strength Thermodynamic quantity Regardless of test rate Intrinsic adhesion strength Thermodynamic work of adhesion, W a W a = γ S + γ L γ SL Ex) For non-polar substrate, γ S, γ L ~ 25mJ/m 2, thus W a ~ 50mJ/m 2 Dupre Eq. Interfacial tension reduction by S-L interaction 33 접착이론 Practical adhesion strength Thermodynamic & kinetic quantity Depends on test rate and temperature due to viscoelastic energy dissipation 따라서, 실제적인접착의강도는더크게발현된다. G a : Adhesion energy ( 피착제와접착제를분리하는데필요한에너지 ) G a (~1-10J/m 2 )= G 0 + G d Energy dissipation by deformation Intrinsic adhesion G d = f (crack growth rate, temp. strain) 34 17
접착과젖음성 대부분의접착제가용제형인이유? 젖음성 (wettability) 란? γlv γ γs SV γsl γ SV = γ SL + γ LV cosθ F( 습윤장력 ) = γ L cosθ.. 젖음성 접촉각측정장치 35 접착이론 젖음성이왜중요한가? (Importance of wettability) Fully wetted Non-wetted Epoxy adhesive PE adhesive Epoxy substrate γ SV ( ) = γ SL + γ LV ( ) PE substrate γ SV ( ) = γ SL ( ) + γ LV ( )*(0~-1) 접착력 Nylon Metal 따라서피착제의표면장력이매우중요하다. Teflon γ SV 표면처리 (surface treatment) 36 18
접착이론 Adhesion 과 Cohesion Adhesion: 피착제와접착제간의상호작용 ( 접착력 ) Cohesion: 접착제간의상호작용 ( 응집력 ) Peel force Crack Crack Stick-slip Crack Cohesive fracture Interfacial fracture & Glassy fracture Peel rate 37 접착이론 Adhesive thickness and fracture PMMA adhesive with metal substrate (smooth surface) 38 19
접착이론 Chemical bonding effect 경화시간의증가 피착제와의화학적결합밀도수증가 접착력의증가 39 접착강도의측정 접착강도의종류 Tensile strength (a) kg f /cm 2 Shear strength (b) kg f /cm 2 Cleavage strength (c) kg f /cm 2 Peeling strength (d) kg f /cm 40 20
접착강도의측정 접착강도의측정법 Peel strength Tensile strength Shear strength Cleavage strength 41 접착강도의측정 접착측정시파괴형태 Cohesive failure (A) Adhesion failure (B) Mixed failure (C) Substrate failure (D) 42 21
접착강도의측정 Adhesion 측정에따른일반적인문제점 주변환경, 조건에따라 adhesion 의차이가발생 : 온도변화, 제품사용환경, 보관상태, 보관시간등 Adhesion 의정의문제 : 관찰수단의 resolution 의 level Testing Method : Testing method 결과상호간의관계가불분명함 시편 : 측정에사용되는시편이제품을얼마나반영할수있는가. Undetected residual stresses 기본적인고려사항 제품의실제사용환경과형태 Testing method 에따라결과의단위나경향이다르며, 또한각각이특징적으로제공할수있는정보의범위와종류도다름 실험환경이사용환경을얼마나잘반영했는가하는것이중요 43 접착제설계시고려사항 1차성능 초기접착력 (initial adhesion, tackiness) 1시간이내 : 분자량, 점성도, 젖음성등 상태접착력 (static adhesion) 24-48 48시간이후 : 젖음성, 분자량, 고분자조성, 접착온도 / 시간, 유리전이온도등 2차성능 유리전이온도, 가교밀도, 고분자조성, 작업성, 세척성, 내수, 내후성, 저장안정성등 접착력의향상을위해가장중요한것접착제와피착제의화학적결합의밀도! 44 22
수계형폴리우레탄접착제 원료 폴리우레탄이오노머의합성 프리폴리머혼합법에의한에멀젼형폴리우레탄 에멀젼형접착제의조성에따른물성 45 폴리우레탄의원료 디이소시아네이트 (Diisocyanate) 폴리우레탄의기본적인출발물질 C N R N C 방향족과지방족 반응성 황변성 물리화학적특성 가격 가교및블록이소시아네트 (blocked isocyanate) 46 23
폴리우레탄의원료 디이소시아네이트의종류및화학구조식 47 폴리우레탄의원료 NC 2 MDI NC H 2 C 2 6 HDI CN NC > > 11times TDI (para NC) > NC > >20times NC Neopentylic NC of IPDI NC NC Secondary NC of IPDI NC TDI (ortho NC) NC 48 24
폴리우레탄의원료 디이소시아네이트의상대적반응성비교 49 폴리우레탄의원료 이소시아네이트의여러가지화합물 50 25
폴리우레탄의원료 폴리올 (Polyol) 현재 90% 이상폴리에테르형폴리올사용 접착제용 : 폴리프로필렌글리콜 (PPG), 폴리테트라메틸렌글리콜 (PTMG) 폴리에스터형 : 강한결정성으로인한우수한상태접착력, 저온탄성 핫멜트형의접착제 : 폴리에스터형폴리올 폴리카프로락톤 : 우수한기계적성질, 고가, 생분해성 전체적기계적, 화학적성질을좌우 51 폴리우레탄의원료 폴리에테르형폴리올 (Polyether polyols) 종류 : PPG, PTMG and PEG 장점유연성우수한내가수분해성저가내용제성우수 단점낮은에너지를가진피착제에대한낮은접착력 UV 및내후성이상대적으로낮음폴리에스터계에비해낮은기계적물성 52 26
폴리우레탄의원료 폴리에스터형폴리올 (Polyester polyols) 종류 : adipate and caprolactone 장점내마모성우수낮은에너지를가진피착제에대한우수한접착력유연성우수한기계적강도단점낮은내용제성고가 53 폴리우레탄의원료 사슬연장제 NC 기를말단에가지는예비중합체로부터고분자량의폴리우레탄형성 가용성, 탄소수가 2-6 개정도 촉매 블록형이소시아네이트, 1 액형폴리이소시아네이트,NC- 말단우레탄예비중합체모두사용 3 차아민 (TEA) 유기금속화합물 54 27
폴리우레탄의이오노머의합성 Characteristics of WPUD Strong hydrogen bonding of urethane and urea groups Good flexibility, long durability, and good chemical- resistance Versatility in material selection and modification Type of WPUD Neutralization Emulsification Ionomer (cationic, anionic) and nonionic types External Emulsification Polymer and prepolymer emulsion, blocked (poly)isocyanates + High shear mixing 55 폴리우레탄의이오노머의합성 Water-based polyurethane Uniquely introduced ionic moiety into polyurethane Representative ionic groups Anionic Type: -CH, -S3H, -S3H, -P(H)2 Cationic Type: -NH2, -NH-, -NR2, -N + R3 Nonionic Type: -H, --, -CNH2 56 28
프리폴리머혼합법 CN CN H H H + NC H NC H Anionic Dispersions CN H CN H H CH + excess CN NC Prepolymer Formation (Polar Solvent) NC CN NC H CH H R 3 N Neutralization NC H Water CN H C - R 3 NH + Chain Extension NC CN N R H N H NC H Cationic Dispersions H NC H R H RC - NC excess + CN NC Prepolymer Formation CN H CN CN NC Extension with (H) 2 N-R or H 2 N-NH 2 NC N H H R Neutralization with RCH + + NC H N H H R RC - Water and Good Agitation 57 프리폴리머혼합법 Neutralization agent Phase Inversion Chain Extender Prepolymer Neutralization Dispersion Chain Extension 1. Prepolymer Step : Preparation of prepolymer and incorporation of ionic pendant group 2. Neutralization Step : Neutralization of ionic pendant group for the dispersion 3. Dispersion Step : Particle formation (consumption of 20-30% residual NC) 4. Chain Extension Step : Increase of molecular weight (chain extension using diamine) 58 29
프리폴리머혼합법 Configuration 1.Medium and highspeed stirrer 2. Prepolymer vessel 3. Water bath/circulator 4. Dispersion vessel 5. Water bath 6. Thermo-controller (for prepolymer transfer) 7. Micro-syringe pump for chain extender 8. Temperature recorder 59 프리폴리머합성 : NC 측정 (a) after mixing with PEB-1500 and DMPA (b) after mixing MDI to PEB-1500 and DMPA (c) H-terminated PU prepolymer (d) after mixing IPDI to H-terminated PU prepolymer (e) NC-terminated PU prepolymer (NC/H ratio = 1.20, DMPA = 7.5 wt. % of PEB-1500 and MDI/(MDI+IPDI) = 50.0 mole %) 60 30
사슬연장반응 = NC NC H 2 PU particle H H 2 2 H 2 N NH 2 NH 2 H2 N H 2 H 2 N NH 2 NC H 2 NC NH 2 H2 N Chain extension 2(R-N=C=) + H 2 R-NH-C-NH-R +C 2 Urea linkage = = NHCNH (C 6 H 12 )NHCNH Urea linkage High MW-Rich Shell Relative Reaction Rate with Diisocyanate (NC): Aliphatic NH 2 > Aromatic NH 2 (amine) > Primary H (hydroxyl) > water > Secondary H > Tertiary H > Phenolic H > Urea > Urethane > CH (carboxyl) 61 사슬연장반응에서의경쟁반응 R-NC + H 2 R-NH 2 + C 2 (Amine) R-NH 2 + NC-R H H N N R (Urea) R + CN R NC H 2 CN R N N H N H R CN (Biuret) R NC Biuret + Polyol with hydroxy groups or Chain Extender Cross-linked or Branched Polyurethane Thermal & Chemical Resistance 62 31
사슬연장제길이에따른사슬연장효과 Reaction rate by pulse-relaxation with varying chain extender Assumption: 1. Reaction doesn t take place inner particle 2. Reaction rate depends on the 1 st order of NC and NH conc. R p, initial = - d[nh]/dt = k p [NC][NH] No change until 2 hr 63 사슬연장제길이에따른사슬연장효과 Chain extension at high solid contents ~40-50% Particle Size (nm) 160 140 120 100 Ethylene Diamine Diaminobutane 1,6-Hexane Diamine 80 0 20 40 60 80 100 Chain Extension (%based on Residual NC) Inter-particle Chain Extension Intra-particle Chain Extension Coagulated particle Individual Stable particle 64 32
폴리우레탄에멀젼의안정화메커니즘 PU particle Repulsion Electrical double layer CH or C - NH + (Et) 3 - - - - - - - -- - - - Aqueous [Ionic] PU Dispersion is Stabilized by Diffusing Electrical Double Layers which Grow with Increasing Carboxyl Group on Particle Surface 65 에멀젼형폴리우레탄의성질 친수성그룹에따른입자의안정화메커니즘 66 33
에멀젼형폴리우레탄의성질 음이온성폴리우레탄에멀젼입자의특성 Potential, ψ ζ-potential κ -1 67 에멀젼형폴리우레탄의성질 제타전위측정 Micro-electrophoresis : ζ is determined by the velocity (υ)( ) of the particles in an driving electric field (E= 20Vcm - 1 ) ζ is calculated from the electrokinetic mobility µ = υ/e ζ= = (µ η)( ) / (ε( r ε 0 ) 68 34
에멀젼형폴리우레탄의성질 친수성그룹에따른접착제의저장안정성 이온성과비이온성접착제의비교 Dispersion type Freezing Temperature > 70 C Addition of electrolytes Strong shear forces Ionic Unstable Stable Unstable Partly stable Non-ionic Stable Unstable Stable Stable 69 에멀젼형폴리우레탄의성질 저장안정성파괴메커니즘 70 35
에멀젼형폴리우레탄의성질 열역학적측면 Surface tension Interfacial area Phase transition accompanies change in standard free energy, G = γ A G > 0 G < 0 Colloidal stability is poor (Lyophobic) Thermodynamically stable (Lyophilic) Coagulation 벌크상에서입자상으로진행될때의 Gibb 함수변화 71 에멀젼형폴리우레탄의성질 입자크기분포에따른점성도 R 1 = d p,l /d p,s1 R 2 = d p,l /d p,s2 A 2-dimensional representation of two different blends of particles, where the ratio of large to small particles is such that R 1 > R 2 72 36
에멀젼형폴리우레탄의성질 입자크기분포에따른점성도 Variation of the viscosity of a trimodal latex as a function of the solids content (here shown as percent volume of solid phase) at a fixed shear rate of 20 s -1. 73 NC/H 몰비에따른입자크기및점도변화 Higher NC/H makes MW of prepolymer Higher Particle size Larger Latex Viscosity Lower 74 37
NC/H 몰비에따른기계적물성변화 Higher NC/H makes MW of WPUD film Higher Thus, TS and Modulus increases however, Elongation decreases. 75 NC/H 몰비에따른기계적화학적특성변화 16 4 Xylene Rubbing 14 12 10 8 6 4 2 T- Bend Test (processing) 3 2 1 0 2.0 3.0 NC/H Ratio 0 1.0 2.0 3.0 4.0 NC/H mole ratio As NC/H mole ratio is increased, hard segment increased therefore chemical resistance increased but processing ability decreased. 76 38
폴리올의종류에따른입자크기변화 - Polyol: PBEAG 2000, PTMG 2000 - Diisocyanate : IPDI - Chain extender : EDA -DMPA : Particle size Size of Ester type PUD < Ether type PUD Critical DMPA content : 6 wt% (50-60 nm) PTMG - PUD PBEAG - PUD Figure 2. Particle size variation with DMPA content and polyol types 77 폴리올및프리폴리머의분자량에따른입자크기변화 At constant NC/H, Polyol MW Weight of Polyol DMPA % D p And constant solid contents, Polyol MW DMPA % D p Prepolymer MW Viscosity D p 78 39
폴리올의분자량에따른기계적물성변화 quoted from advances in urethane ionomers edited by H.X.Xiao and K.C.Rfisch 79 친수성그룹에따른입자크기변화 Anionic PU C-HN+ Prepolymer Amine-extended Polymer - Polyol : PTMG 2000 - Diisocyanate : IPDI - Chain extender : EDA Particle size depend on DMPA content 6 wt% of DMPA content : Critical particle size (50 60 nm) Comparison of NC-PPD with its chain extended PUD 80 40
친수성그룹의함량에따른기계적물성변화 quoted from advances in urethane ionomers edited by H.X.Xiao and K.C.Rfisch 81 폴리우레탄접착제의종류와특징 폴리우레탄접착제의종류 폴리우레탄접착제의특징 82 41
폴리우레탄접착제의종류와특징 반응형의경우낮은분자량유지 에멀젼형폴리우레탄접착제 대면적도포가어려움 83 폴리우레탄접착제의특징 폴리우레탄이좋은접착제가될수있는이유 대부분의피착제표면에대한효과적인젖음성 (PE 와 PP 같은낮은표면에너지를가지는것들은젖음성을위해사전처리해야함 ) 피착제와쉽게수소결합이가능 작은분자크기로인해다공질피착제에잘스며듦 활성수소를가지는피착제와공유결합을형성 84 42
폴리우레탄접착제의종류 : 1 액형에멀젼폴리우레탄접착제 1. 폴리우레탄분산체또는블록형폴리이소시아네이트형에서출발 2. 수분이증발되면서상온또는고온에서필름형성 3. 부가적인유화제에의한강제유화형소수성폴리우레탄고분자의유화또는자기유화성친수성폴리우레탄고분자의자기유화 The information above was obtained from Bayer's "Waterborne Polyurethane Coatings: ne and Two Component Systems" technical paper by Robert Henderson. 85 폴리우레탄접착제의종류 : 2 액형에멀젼폴리우레탄접착제 2액형폴리우레탄접착제 수분산이가능한 H 관능성기를가진작용기사용 이상적으로는첨가제를함유한 H 관능성에멀젼 (I 액 ) 과, 폴리이소시아네이트를함유한용액 (II 액 ) 을사용전에혼합하여안정한에멀젼형성 피착제에도포후상온또는고온에서열경화반응 CN CH 2 N C H N NC + CH 2 NH H N C N CN R N H H R N N NC R NC RNC N RNC N N RNC 86 43
폴리우레탄접착제의종류 : 우레탄 / 아크릴하이브리형접착제 Polyurethane dispersion Self-emulsification emulsification Elastomeric property High cost Polyacrylate Low cost Emulsifier required High dispersion stability Medium cost Good Mechanical/Thermal Properties TEM of Polyurethane Nanospheres Photo was taken after Ru 4 staining Magnification: x20,000 (bar = 200nm) 87 방향족 / 지방족혼성폴리우레탄에멀젼 Homogeneous particle MDI 50 Core-shell particle Inverted core-shell particle A B C IPDI-rich shell IPDI-rich core MDI-rich shell MDI-rich core Ultra-microtomed 60nm thickness, bar = 50nm, magnification = 100K, e-beam = 200kV D ls (nm) 87±4 69±2 51±2 M n (g/mol), PDI 12K, 1.8 11K, 2.9 10K, 2.6 88 44
폴리우레탄접착제의조성과응용 폴리우레탄접착제의조성 폴리우레탄접착제의응용 89 폴리우레탄접착제의조성 용도에따른 NC/H 몰비 최종물성에가장큰영향을미치는인자 접착제, 도료, 실란트, 및습기경화형폴리우레탄 방향족 [NC]/[H] =1.5~1.8 지방족 [NC]/[H] < 1.2 90 45
폴리우레탄접착제의조성 표면처리 수소결합력 대부분의극성표면을가진물질즉금속, 세라믹의접착에는좋은성능을발휘 PE 나 PP 등표면에너지가낮은경우별도의표면처리를통해접착제와의화학적물리적결합력을향상 91 폴리우레탄접착제의조성 표면처리법의종류와특징 92 46
폴리우레탄접착제의응용 응용분야 탄성체 (elastomers) 를섬유와금속의접착 금속, 플라스틱, 고무, 유리, 세라믹 ( 수소결합및활성수소 ) 건축, 자동차및수송용, 신발, 종이, 섬유, 테이프, 전자산업 반응성핫멜트접착제 - 높은초기접착력과강한상태접착력내열성, 내구성, 내용제성, 유연성 93 접합방식 (joint design) 가공용이성, 단가, 접합부분에걸리는응력등을고려하여설계 94 47
수계형폴리우레탄접착제성능평가 분산안정성 : 저장, freeze-thaw(cycles) (6개월안정화유지 ) 입자크기 : DLS, TEM (50-500nm) 고형분함량 : 중량법 (30-60wt%) 유리전이온도 : DSC, DMTA, DTA/TGA (-) 분자량 : GPC (Mw 5,000-200,000g/mol) 구조분석 : FT-IR, NMR (Designed structure) 잔류 NC 측정 : DBA Back Ti, FT-IR (-) 표면전하측정 : Zeta-potential analyzer ( -20-60 mv) 점도 : (Blookfield) Viscometer ( 10 ~ 90000 cp) 신율 : Instron (UTM) ( 100 ~ 600 %) 인장강도 : Instron (UTM) ( 100 ~ 500 kg f /cm 2 ) 접착력 : Instron (UTM) ( 100 ~ 500 kg f /cm 2 ) 95 수계형폴리우레탄접착제성능평가 산가의측정법 (CH, S 3 H) Resin type By using strong based, NaH or KH Phenolphthalein with the resin in benzene and alcohol mix. Latex type By using strong base, NaH or KH Conductometric or potentiometric titration 96 48
경청해주셔서감사합니다. 97 49