ๆญฏ174๊ตฌ๊ฒฝํšŒ.PDF

Similar documents
12(4) 10.fm

ๆญฏ์ „์šฉ]

16-๊ธฐ06 ํ™˜๊ฒฝํ•˜์ค‘237~246p

Coriolis.hwp

์ €์ž‘์žํ‘œ์‹œ - ๋น„์˜๋ฆฌ - ๋ณ€๊ฒฝ๊ธˆ์ง€ 2.0 ๋Œ€ํ•œ๋ฏผ๊ตญ ์ด์šฉ์ž๋Š”์•„๋ž˜์˜์กฐ๊ฑด์„๋”ฐ๋ฅด๋Š”๊ฒฝ์šฐ์—ํ•œํ•˜์—ฌ์ž์œ ๋กญ๊ฒŒ ์ด์ €์ž‘๋ฌผ์„๋ณต์ œ, ๋ฐฐํฌ, ์ „์†ก, ์ „์‹œ, ๊ณต์—ฐ๋ฐ๋ฐฉ์†กํ• ์ˆ˜์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์Œ๊ณผ๊ฐ™์€์กฐ๊ฑด์„๋”ฐ๋ผ์•ผํ•ฉ๋‹ˆ๋‹ค : ์ €์ž‘์žํ‘œ์‹œ. ๊ท€ํ•˜๋Š”์›์ €์ž‘์ž๋ฅผํ‘œ์‹œํ•˜์—ฌ์•ผํ•ฉ๋‹ˆ๋‹ค. ๋น„์˜๋ฆฌ. ๊ท€ํ•˜๋Š”์ด์ €์ž‘๋ฌผ์„์˜๋ฆฌ๋ชฉ์ ์œผ๋กœ์ด์šฉํ• 

(ํ…Œ๋งˆ)33~66

ePapyrus PDF Document

page 1end

์ €์ž‘์žํ‘œ์‹œ - ๋น„์˜๋ฆฌ - ๋ณ€๊ฒฝ๊ธˆ์ง€ 2.0 ๋Œ€ํ•œ๋ฏผ๊ตญ ์ด์šฉ์ž๋Š”์•„๋ž˜์˜์กฐ๊ฑด์„๋”ฐ๋ฅด๋Š”๊ฒฝ์šฐ์—ํ•œํ•˜์—ฌ์ž์œ ๋กญ๊ฒŒ ์ด์ €์ž‘๋ฌผ์„๋ณต์ œ, ๋ฐฐํฌ, ์ „์†ก, ์ „์‹œ, ๊ณต์—ฐ๋ฐ๋ฐฉ์†กํ• ์ˆ˜์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์Œ๊ณผ๊ฐ™์€์กฐ๊ฑด์„๋”ฐ๋ผ์•ผํ•ฉ๋‹ˆ๋‹ค : ์ €์ž‘์žํ‘œ์‹œ. ๊ท€ํ•˜๋Š”์›์ €์ž‘์ž๋ฅผํ‘œ์‹œํ•˜์—ฌ์•ผํ•ฉ๋‹ˆ๋‹ค. ๋น„์˜๋ฆฌ. ๊ท€ํ•˜๋Š”์ด์ €์ž‘๋ฌผ์„์˜๋ฆฌ๋ชฉ์ ์œผ๋กœ์ด์šฉํ• 

untitled

ๆญฏRCM

KAERI/TR-2128/2002 : SMART ์ œ์–ด๋ด‰๊ตฌ๋™์žฅ์น˜ ๊ธฐ๋ณธ์„ค๊ณ„ ๋ณด๊ณ ์„œ

, Yard Bottom Slamming, Slamming,, 10-8 Probability Level Bottom Slamming., Bottom Slamming,, Evaluation, Allowable Criteria, Ballast Reduction, Botto

14.531~539(08-037).fm

ๆญฏTrap๊ด€๋ จ.PDF

ๆญฏ49์†์šฑ.PDF

fm


๊ณ ๋ฒ”์„.PDF

DBPIA-NURIMEDIA

Berechenbar mehr Leistung fur thermoplastische Kunststoffverschraubungen

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ฮต r =4.4)

์Šฌ๋ผ์ด๋“œ ์ œ๋ชฉ ์—†์Œ

DC Link Application DC Link capacitor can be universally used for the assembly of low inductance DC buffer circuits and DC filtering, smoothing. They

GLHPS-D

#KM560

(Table of Contents) 2 (Specifications) 3 ~ 10 (Introduction) 11 (Storage Bins) 11 (Legs) 11 (Important Operating Requirements) 11 (Location Selection)

PJTROHMPCJPS.hwp

< C6AFC1FD28B1C7C7F5C1DF292E687770>

๊ณตํ•™๋ฐ•์‚ฌํ•™์œ„ ๋…ผ๋ฌธ ์šด์˜ ์ค‘ ํ„ฐ๋„ํ™•๋Œ€ ๊ตด์ฐฉ์‹œ ์ง€๋ฐ˜๊ฑฐ๋™ ํŠน์„ฑ๋ถ„์„ ๋ฐ ํ”„๋กœํ…ํ„ฐ ์„ค๊ณ„ Ground Behavior Analysis and Protector Design during the Enlargement of a Tunnel in Operation 2011๋…„ 2์›” ์ธํ•˜๋Œ€

(2) : :, ฮฑ. ฮฑ (3)., (3). ฮฑ ฮฑ (4) (4). (3). (1) (2) Antoine. (5) (6) 80, ฮฑ =181.08kPa, =47.38kPa.. Figure 1.

exp

๊ธฐ๋Šฅ.PDF


#KM-235(110222)

<BACEBDBAC5CD20BAEAB7CEBCC52D A2DC3D6C1BE2D312D E6169>

๋ฉด์ง€

ๆญฏ๊ตญ๋ฌธ-Heatran์†Œ๊ฐœ์ž๋ฃŒ1111.PDF

Alloy Group Material Al 1000,,, Cu Mg 2000 ( 2219 ) Rivet, Mn 3000 Al,,, Si 4000 Mg 5000 Mg Si 6000, Zn 7000, Mg Table 2 Al (%

27(5A)-07(5806).fm

untitled

- 2 -

<BAB0C3A5BABBB9AE2E687770>

Vertical Probe Card Technology Pin Technology 1) Probe Pin Testable Pitch:03 (Matrix) Minimum Pin Length:2.67 High Speed Test Application:Test Socket

#KM-340BL


Microsoft PowerPoint - ch03ysk2012.ppt [ํ˜ธํ™˜ ๋ชจ๋“œ]

(specifications) 3 ~ 10 (introduction) 11 (storage bin) 11 (legs) 11 (important operating requirements) 11 (location selection) 12 (storage bin) 12 (i

#KM-250(PB)

์„œ๊ฐ•๋Œ€ํ•™๊ต ๊ธฐ์ดˆ๊ณผํ•™์—ฐ๊ตฌ์†Œ๋Œ€ํ•™์ค‘์ ์—ฐ๊ตฌ์†Œ ์‹ฌํฌ์ง€์—„๊ธฐ์ดˆ๊ณผํ•™์—ฐ๊ตฌ์†Œ

<313920C0CCB1E2BFF82E687770>

2) Available Sizes ๊ณต๊ธ‰ ๊ฐ€๋Šฅ (1) A์—ด์—ฐ 1 30Kg๊ธ‰ < Kg๊ธ‰ < Kg๊ธ‰ ์‚ฌ์ „ํ˜‘์˜ ํ•„์š” (Please consult us in advance) < 1.6 < 1.9

07.pert.cpm

๋ณด๊ณ ์„œ(๊ฒ‰ํ‘œ์ง€).PDF

KM-380BL,BLB(100908)

- 2 -

DOOSAN HEAVY INDUSTRIES & CONSTRUCTION TOOL STEEL FOR DIE CASTING & HOT STAMPING The ever-faster pace of change necessitates products of ever-higher p

DBPIA-NURIMEDIA


ๆญฏ๊ฒฝ์˜ํ˜์‹  ๋‹จ๊ณ„๋ณ„ ํ”„๋กœ๊ทธ๋žจ ์‚ฌ๋ก€.ppt

#KM-1751/1791..

ํ•œ๊ตญ์ฝ˜๋ฒ ์–ด-AP8p

์Šฌ๋ผ์ด๋“œ 1

878 Yu Kim, Dongjae Kim ์ง€๋ง‰ ์šฉ๋Ÿ‰์ˆ˜์ค€๊นŒ์ง€๋„ ๋ฉˆ์ถค ๊ทœ์น™์ด ๋งŒ์กฑ๋˜์ง€ ์•Š์•„ ์‹œํ–‰์ด ์ข…๋ฃŒ๋˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ์—๋Š” MTD์˜ ์ถ”์ •์ด ๋ถˆ๊ฐ€ ๋Šฅํ•˜๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. ์ตœ๊ทผ ์ด SM๋ฐฉ๋ฒ•์˜ ๋‹จ์ ์„ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด O Quigley ๋“ฑ (1990)์ด ์ œ์•ˆํ•œ CRM(Continu

*KM-380BL,BLB724.

<453A5C736F6E67616D656E675CBBE7BFEBBCB3B8EDBCAD26C4ABB4D9B7CF2E2E2E>

KAERIAR hwp

<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>

๋ฒ ์ด๋‚˜์ดํŠธ ํ•จ์œ  ์ด์ƒ์กฐ์ง๊ฐ•์— ๊ด€ํ•œ ์—ฐ๊ตฌ

1.25Cr-0.5Mo ๊ฐ•์„์ด์šฉํ•œํ•ฉ์„ฑ๊ฐ€์Šค์กฐ์„ฑ๋ณ€ํ™”์—๋”ฐ๋ฅธ SNG 1 ์ฐจ๋ฐ˜์‘๊ธฐ์˜๋ถ€์‹ํŠน์„ฑ์—๊ด€ํ•œ์‹คํ—˜์ ์—ฐ๊ตฌ ๊น€์ง„ํ˜„ 1, ์กฐํ™ํ˜„ 2* 1 ์กฐ์„ ์ด๊ณต๋Œ€ํ•™๊ต์ž๋™์ฐจ๊ณผ, 2 ์กฐ์„ ๋Œ€ํ•™๊ต๊ธฐ๊ณ„๊ณตํ•™๊ณผ Experimental Study on Corrosion Characteristics of 1.2

~41-๊ธฐ์ˆ 2-์ถฉ์ ์ง€๋ฐ˜

MIL-C-99 Class C, R Style Connector, Receptacle, lectrical, Wall mounting YH7(MS7 Style) PLCS ์ „๊ธฐ์ ํŠน์„ฑ (lectrical ata) ltitude erating Service Rating Nom

Microsoft Word - KSR2013A291

2015

ๆญฏcoolingtower๊ฐœ์š”_1_.PDF

<38305FC0B1C3A2BCB12D4D41544C41422C D756C696E6BB8A620C0CCBFEBC7D12E687770>

100, Jan. 21, ํ˜ธ, Jan. 21, , Jan. 21, 2005

#KLZ-371(PB)

์œ ํ•ด์ค‘๊ธˆ์†์•ˆ์ •๋™์œ„์›์†Œ์˜ ๋ถ„์„์ •๋ฐ€ / ์ •ํ™•๋„ํ–ฅ์ƒ์—ฐ๊ตฌ (I) ํ™˜๊ฒฝ๊ธฐ๋ฐ˜์—ฐ๊ตฌ๋ถ€ํ™˜๊ฒฝ์ธก์ •๋ถ„์„์„ผํ„ฐ,,,,,,,, 2012


ยฐรญยผยฎรร– รƒรขยทร‚

#KM-1750/1790..

82 ์ œ 1 ๋ฐœํ‘œ์žฅ (2 ์ผ๊ธˆ ) CFD ์‘์šฉ [V] ์ด๋‚จํ›ˆ 1*, ๋ฅ˜ํƒœ๊ด‘ 2 NUMERICAL VERIFICATION OF SHAKE TABLE TEST FOR THE LIQUID STORAGE TANK N. Lee and T. Yoo 1.,.,,,.,. Baek e

์‹œ์ž‘ํ•˜๊ธฐ ์‹œ์ž‘ํ•  ์ค€๋น„๊ฐ€ ๋˜์—ˆ์œผ๋ฉด ๋‹ค์Œ ์„ค๋ช…์— ๋”ฐ๋ผ ์„ค๋ฌธ์กฐ์‚ฌ๋ฅผ ์‹ค์‹œํ•œ๋‹ค. 1๋‹จ๊ณ„: ํ—ˆ๋ฝ๋ฐ›๊ธฐ ํด๋Ÿฝ์„ ๋– ๋‚˜๋Š” ํšŒ์›์—๊ฒŒ ์— ์‘ํ•ด ์ค„ ๊ฒƒ์ธ์ง€ ๋ฌผ์–ด๋ณธ๋‹ค. ์ด ์„ค๋ฌธ ์กฐ์‚ฌ๋Š” ํด๋Ÿฝ์˜ ๋ฌธ์ œ์ ์„ ๋ณด์™„ํ•ด ํ–ฅํ›„ ๊ฐ™์€ ์ด์œ ๋กœ ์ดํƒˆํ•˜๋Š” ํšŒ์›๋“ค์ด ์—†๋„๋ก ํ•˜๊ธฐ ์œ„ํ•œ ๊ฒƒ์ด๋ฉฐ, ์‘๋‹ต ๋‚ด์šฉ์€ ๋Œ€์™ธ๋น„๋กœ ์ฒ˜

Extended Calculations


ePapyrus PDF Document

2016๋…„ 5์›”ํ˜ธ E ์„ธ๊ณ„๋กœ, ๋ฏธ๋ž˜๋กœ ๋‚˜์•„๊ฐ€๋Š” ํž˜. nergy ์šฐ๋ฆฌ์˜ ์—ด์ •๊ณผ ๋…ธ๋ ฅ์ด KEPCO E&C์˜ ์—๋„ˆ์ง€๋ฅผ ๋งŒ๋“ค์–ด๋ƒ…๋‹ˆ๋‹ค. C ommunication ๋” ํ˜„๋ช…ํ•˜๊ฒŒ, ๋” ์—ฌ์œ ๋กญ๊ฒŒ ๋” ๊ฑด๊ฐ•ํ•˜๊ฒŒ, ๋” ์ ๊ทน์ ์œผ๋กœ ์ด ์„ธ์ƒ๊ณผ ์†Œํ†ตํ•ฉ๋‹ˆ๋‹ค. 04 K-Message ๊ฒฝ์˜ ๋ฉ”์‹œ์ง€

<31332EBEC6C6AEB8B6C4C9C6C3C0BB20C8B0BFEBC7D120C6D0C5B0C1F6B5F0C0DAC0CE20BFACB1B82E687770>

๋‚˜์‚ฌ์‹๋ณผ๋ฐธ๋ธŒ.indd

DBPIA-NURIMEDIA

01_ํ”ผ๋ถ€๊ณผPart-01

04_์ด๊ทผ์›_21~27.hwp

์ „์šฉ]

08์›์žฌํ˜ธ( )

15 ํ™๋ณด๋‹ด๋‹น๊ด€ (์–ธ๋ก ํ™๋ณด๋‹ด๋‹น) ๊น€๋ณ‘ํ˜ธ ( ้‡‘ ็ง‰ ้Žฌ ) 16 (ํ–‰์ •๋‹ด๋‹น) ๋ฐ•์ฐฌํ•ด ( ๆœด ้‘ฝ ๆตท ) ์˜ˆ์‚ฐ๋‹ด๋‹น๊ด€ 17 (๋ณต์ง€ํ–‰์ •๋‹ด๋‹น) ์ดํ˜์žฌ ( ๏งก ่ตซ ๅœจ ) 18 (๋ณด์œก๋‹ด๋‹น) ์ฃผ์‚ฌ ์ด์˜์ž„ ( ๏งก ๆณณ ไปป ) ๊ธฐ๋™๊ทผ๋ฌดํ•ด์ œ. 19 (์žฅ์• ์ธ๋‹ด๋‹น) ๋ฐ•๋…ธํ˜ ( ๆœด ๏คน ็ˆ€ ) ๊ธฐ๋™

.....pdf

04-๋‹ค์‹œ_๊ณ ์†์ฒ ๋„61~80p

a.ps

Transcription:

000 KALIMER - Creep-Fatigue Damage Evaluation of KALIMER Reactor Internal Structures for Elevated Temperature, 150 KALIMER ASME Code Case N-01-4 0 - - - Abstract In this paper, the design limits of the stress, the accumulated inelastic strain, and a creep-fatigue damage are evaluated using the ASME Code Case N-01-4 to check the structural integrity of the baffle annulus structures in KALIMER reactor internal structures, which are subjected the elevated temperatures during normal operations For the loading conditions, the normal operating temperatures and the seismic OBE are considered From the evaluations, the stress limits are satisfied with enough margins and the inelastic strain limits also satisfied when using the simplified inelastic method For the creep-fatigue damage evaluations, the conservative parameters are used if possible From the creepfatigue damage evaluations, all parts of interest satisfy the design rules but the reactor vessel liner part at the elevation of hot pool free surface has large creep damage 1 KALIMER,,, (Baffle annulus structure)

(1) KALIMER 50 o C KALIMER 0 - KALIMER () ASME Code Case N-01-4 (), () KALIMER ASME Code Case N-01-4 - KALIMER Fig1,,,,,,,, Fig Fig Fig4,, (Collector cylinder) COMMIX Fig5 Fig6 [4] Fig7 Hot standby(0 o C)

(Heat-up) (Cool-down) Fig8 Hot standby(0 o C) 00 Reactor Head (RH) 00 850 5000 1650 Thermal Insulation Plate (TIP) Baffle Plate (BP) Reactor Vessel Liner (RVL) (BP) Reactor Vessel (RV) UIS 6050 Support Barrel (SB) Separation Plate (SP) Containment Vessel (CV) Upper Internal Structure (UIS) 1000 1900 140 Inlet Pipe (IPP) Inlet Plenum (IP) Flow Guide (FG) Radiation Shield (RS) Core Support (CS) 16810 17710 18460 19100 Core 17000 18850 Fig 1 Conceptually Designed KALIMER RI Fig Elevations and Flow Path in RI 1 : Conduction : Convection : Radiation T gas =40 o C EL 00 Hot Pool Free Surface EL 1 EL 15 EL 44 1 EL 65 EL 105 Cold Pool SB RVL RV CV CC SW EL 15 Fig Axisymmetric Analysis Model of RI Fig4 Heat Transfer Mechanism in Baffle Annulus

Section No10 Section No5 Section No Section No9 Section No8 Section No Section No4 Section No7 Section No1 Section No6 Fig 5 Temperature Distributions(Normal Operation) Fig 6 Stresses and Section Points o C Time Block From Hot Standby To Steady State Operation (8760 hrs) 50 0 1 Time Fig7 Assumed Normal Operation Cycles in Analysis Stress Intensity or Strain Maximum Value for Steady State Operation Minimum Value for Hot Standby Condition (assumed as zero stress and strain) Fig 8 Assumed Stress Cycles in Analysis Time

47 o C ASME Section III Subsection NG (5) 47 o C ASME Code Case N-01-4 (4) ( ) ( 10) - ASME Code Case N-01-4 [4] 4-41 A, B C - p n N + j= 1 d j k= 1 q t T d k D (1) D = total creep-fatigue damage P = number of different cycle types (n) j = number of applied repetitions of cycle type, j (N d ) j = number of design allowable cycles for cycle type, j q = number of time intervals for the creep damage calculation (T d ) k = allowable time duration determined from the stress-to-rupture curves 0 0 04 06 08 10 n N d Fig 9 Creep-Fatigue Damage Curve Fig 9 ASME Code Case t Td 10 08 06 04 0 04 and 16 Stainless Steels -1/4Cr-1Mo and Ni-Fe-Cr Alloy 800H

N-01-4 - 4 ε equiv, i = (1 + ν * [( ε ) ( ε xi zi ε ε yi xi ) ) + ( ε yi + ( γ ε xyi zi ) + γ + yzi + γ i [] () ν * = 0 ν * = 05 Table 1() ε max Table1 Maximum Value of Calculated Equivalent Strain Ranges (Normal Operation) Node No De x x 10 - De y x 10 - De z x 10 - De xy x 10 - De max x 10 - Lower 458 01560-0068 -04985 0011 0549 SB/SP 976-019167 01404 00888-00110 048 Upper 481 01041 08790-056018 006714 0600 SB/SP 99 018707-004557 -01861 00910 04 SB/BP 797 00405-006 -00078 0006 0040 19-01659 0009 000649-0006 001 SP/SB 1-00540 -007418 00996-00097 01 144-010761 010150-016458 00056 0187 BP/SB 111-001996 001185-00060 000004 001 474 001565 00049-00586 -000009 00 SP/RVL 50 0004-00960 007688 0008 0081 506-019588 -00118 0790-006514 09 RVL/SP 510 015016-05460 0618-004516 0584 748-09405 0506 0091-005 0480 RVL-Cold 509 001470-00677 -00107 00004 000 Free 747-00591 00041 01049 00055 0095 RVL at BP 79 017070-0165 -04155 000486 09 Elev 077-007976 061-0081 000686 065 RVL- Hot 16 04505-06914 -084765-00960 0877 Free 086-01001 07-047859 -00944 086 zxi )] 1/ () () ε mod ε mod S = S * K ε max ()

ε mod ε = K S * σ ε max max mod ε max (4) = K e K (5) S * S (Stress indicators) K K ( P + Q + F) eff = (6) ( P + Q) eff Ds mod S Fig10 Composite Stress-Strain Curve Fig10 - - S rh - (Isochronous stress-strain curve) (, 6) S rh [4] Table 100Cm 5Cm ε t ε = Kν ε mod + K ε (7) t (7) K ν S * s s / S rh O / O c K 10+ f ( K 10) (8) ν = ν f (Triaxiality Factor, TF) ASME Code Case N-01-4 FIG Y-140- TF 1 = (9) 1 From Isochronous Curve with Zero Time [( σ σ ) + ( σ σ ) + ( σ σ ) ] 1/ 1 e / De max KDe max De mod e σ + σ + σ 1

K ν ASME Code Case N-01-4 FIG Y-140- K ek ε max E / S m K ek ε max E / S m 10 K ν=1 (8) K ν=1 (7) ε c (Test No B-1) 15σ c ε c -, 15σ c, (P) (n) x P) Table 1, 4, 6, 7 47 o C Table 4 OBE ASME 10 6 Table Calculated Parameters for Modified Equivalent Strain Range(Normal Operation) Node No ε max x 10 - S rh S * S K K e 458 0549 1517 45 44 1010 10 976 048 1517 15 1010 10 481 0600 141 06 8 10 10 99 04 141 179 1811 10 10 797 0040 07 84 98 1185 10 19 001 07 67 77 1185 10 1 01 1517 1718 176 1040 10 144 0187 1517 186 188 1040 10 111 001 07 0 0 1000 10 474 00 07 4 4 1000 10 50 0081 1517 1651 168 14 10 506 09 1517 00 119 14 10 510 0584 1517 48 498 1016 10 748 0480 1517 11 1016 10 509 000 141 189 190 10 10 747 0095 141 19 197 10 10 79 09 07 770 78 10 10 077 065 07 718 70 10 10 16 0877 07 1448 148 101 10 086 086 07 144 146 101 10

Table Calculated Parameters for Total Strain Range (Normal Operation) K Node No TF f ek ε max E / S m K ν K ν ε mod x10 - ε c x10-458 054 015 078 10 10 0558 0000 976 048 01 044 10 10 0490 0000 481 00 008 04 10 10 061 0400 99 040 011 0191 10 10 06 0400 797 059 017 007 10 10 0054 000 19 051 014 009 10 10 004 000 1 006 001 006 10 10 011 0000 144 070 00 0096 10 10 001 0000 111 05 014 0018 10 10 001 0017 474 016 007 008 10 10 00 0017 50 09 011 0048 10 10 01 0000 506 008 001 0174 10 10 048 0000 510 018 008 09 10 10 0599 0000 748 058 017 041 10 10 049 0000 509 085 0 0017 10 10 001 000 747 057 016 0051 10 10 0099 000 79 06 018 051 10 10 000 0010 077 09 009 08 10 10 07 0010 16 067 019 0761 10 10 0910 0800 086 014 005 0717 10 10 0861 0800 Node No Table 4 Calculated Fatigue Damages for Normal Operation ν ε mod K x10 - Thermal Load (0 Cycles) K ε x10 - c Total Stain Range ε x10 - t Seismic OBE (50 Cycles) ε x10 - t Fatigue Damage P n = j= N 1 d Lower 458 0558 0000 0556 0119 0000 SB/SP 976 0490 0000 0489 010 0000 Upper 481 061 041 100 08 0000 SB/SP 99 06 041 0765 0 0000 SB/BP 797 0054 0004 0051 005 0000 19 004 0004 0041 005 0000 SP/SB 1 011 0000 017 0169 0000 144 001 0000 0194 0161 0000 BP/SB 111 001 0017 008 0160 0000 474 00 0017 0050 0150 0000 SP/RVL 50 01 0000 0115 0046 0000 506 048 0000 0401 0074 0000 RVL/SP 510 0599 0000 0594 08 0000 748 049 0000 0489 00 0000 RVL-Cold 509 001 000 004 000 0000 Free 747 0099 000 010 000 0000 RVL at BP 79 000 0010 010 000 0000 Elevation 077 07 0010 08 000 0000 RVL- Hot 16 0910 084 174 0000 000 Free 086 0861 085 1686 0000 000 j

4 - (1) ASME Code Case N-01-4 t H = 6800 hours(0 ) T HT Fig 7 0 t = t / n = 6800/0 = 8760 hours ASME Code Case N-01-4 - (S) k - Table 4 T HT S j S j t S r j H j S r = S 8G ( S S ) (10) j 0 j r S j j S t (10) G [ σ [ σ 1 1 05( σ 0( σ + σ )] + σ )] σ 1, σ, σ σ 1 σ σ (10) G 10 G=10 Fig 11 r (11) Stress, s S j ASME Code Case N-01-4 15σ c S r S LB S LB 15 s c, - 15σ c Constant Temperature = T HT Time t Fig11 Stress-Relaxation Limits for Creep Damage j Table 5 S LB S j ( 16 086) S j

Fig1 16 ASME Code Case N-01-4 - - S j ( t ) k, 8760 hours Node Nos Table 5 Calculated Parameters for Creep Damages (Normal Operation) t H, hrs T HT, o C t j, hrs Relaxed stress level at time t S j S r G S r S LB 481 6800 40 8760 176 158 100 161 1605 Upper SB/SP 99 6800 40 8760 11 116 100 119 1605 SB/BP 797 6800 50 8760 99 98 100 98 888 19 6800 50 8760 79 78 100 78 888 BP/SB 111 6800 50 8760 7 7 100 7 91 474 6800 50 8760 97 96 100 96 91 RVL-Cold 509 6800 40 8760 55 54 095 54 888 Free 747 6800 40 8760 164 160 100 161 888 RVL at BP 79 6800 50 8760 599 55 100 548 05 Elevation 077 6800 50 8760 544 498 100 507 05 RVL- Hot 16 6800 50 8760 158 77 100 85 150 Free 086 6800 50 8760 140 70 100 844 150 150 140 S j 10 Adjusted Uniaxial Relaxation 15s c Stress, MPa 10 110 100 S r 90 80 70 Constant Temperature = 50 o C 0 000 4000 6000 8000 t j 10000 Time, hours Fig 1 Stress-Relaxation Limits for Creep Damages at Node 16 (T d ) k ASME Code Case N-01-4 - (S) k K / =09 Table 6

0876 Table 4 Fig9 - - Node Nos Table 6 Calculated Creep Damage for Normal Operation (T) k, o C (S) k, MPa ( t ) k, hrs (S) k /K /, MPa q (T d ) k, hrs Creep Damage q t = k = T 1 d Upper 481 40 176 8760 1418 0 10x10 7 006 SB/SP 99 40 11 8760 168 0 10x10 7 006 SB/BP 797 50 99 8760 110 0 10x10 8 000 19 50 79 8760 88 0 10x10 8 000 BP/SB 111 50 7 8760 81 0 10x10 8 000 474 50 97 8760 108 0 10x10 8 000 RVL-Cold 509 40 55 8760 61 0 Over 10 8 0000 Free 747 40 164 8760 18 0 Over 10 8 0000 RVL at BP 79 50 599 8760 666 0 0x10 6 0088 Elevation 077 50 544 8760 604 0 0x10 6 0088 RVL- Hot 16 50 15 8760 148 0 0x10 5 0876 Free 086 50 15 8760 148 0 0x10 5 0876 k 5 KALIMER 0 ASME Code Case N-01-4 - KALIMER - -

,, [1] Gyeong-Hoi, Koo, Design Description of KALIMER Reactor Internal Structures, KALIMER/MS40-DD-01/1998, RevA, KAERI, 1999 [],,, KALIMER,, 1999 [] Cases of ASME Boiler and Pressure Vessel Code N-01-4, ASME, 1994 [4] Gyeong-Hoi, Koo, Evaluation of Structural Integrity of KALIMER Reactor Internal Structures for Elevated Temperature, KALIMER/MS40-AR-04/000, RevA, KAERI, 000 [5] ASME B&P Code Section III Subsection NG, ASME, 199 [6] LK Severud, Creep-Fatigue Assessment Methods Using Elastic Analysis Results and Adjustments, Transactions of the ASME, Vol11, pp4-40, 1991