Effects of Animal Waste Addition on Food Waste Compost under Co-composting 저자 (Authors) 출처 (Source) 발행처 (Publisher) URL APA Style 이용정보 (Accessed) Chang Hoon Lee, Seok-Cheol Kim, Seong-Jin Park, Myeong-Sook Kim, Taek-Keun Oh 한국토양비료학회지 50(6), 2017.12, 623-633 (11 pages) KOREAN JOURNAL OF SOIL SCIENCE AND FERTILIZER 50(6), 2017.12, 623-633 (11 pages) 한국토양비료학회 Korean Society Of Soil Sciences And Fertilizer http://www.dbpia.co.kr/article/node07298475 Chang Hoon Lee, Seok-Cheol Kim, Seong-Jin Park, Myeong-Sook Kim, Taek-Keun Oh (2017). Effects of Animal Waste Addition on Food Waste Compost under Co-composting. 한국토양비료학회지, 50(6), 623-633. Library of Congress( 미의회도서관 ) 140.147.***.195 2018/05/10 05:34 (KST) 저작권안내 DBpia에서제공되는모든저작물의저작권은원저작자에게있으며, 누리미디어는각저작물의내용을보증하거나책임을지지않습니다. 그리고 DBpia에서제공되는저작물은 DBpia와구독계약을체결한기관소속이용자혹은해당저작물의개별구매자가비영리적으로만이용할수있습니다. 그러므로이에위반하여 DBpia에서제공되는저작물을복제, 전송등의방법으로무단이용하는경우관련법령에따라민, 형사상의책임을질수있습니다. Copyright Information Copyright of all literary works provided by DBpia belongs to the copyright holder(s)and Nurimedia does not guarantee contents of the literary work or assume responsibility for the same. In addition, the literary works provided by DBpia may only be used by the users affiliated to the institutions which executed a subscription agreement with DBpia or the individual purchasers of the literary work(s)for non-commercial purposes. Therefore, any person who illegally uses the literary works provided by DBpia by means of reproduction or transmission shall assume civil and criminal responsibility according to applicable laws and regulations.
Korean J. Soil Sci. Fert. Vol.50, No.6, pp.623-633, 2017 Korean Journal of Soil Science and Fertilizer Article https://doi.org/10.7745/kjssf.2017.50.6.623 pissn : 0367-6315 eissn : 2288-2162 Effects of Animal Waste Addition on Food Waste Compost under Co-composting Chang Hoon Lee, Seok-Cheol Kim, Seong-Jin Park, Myeong-Sook Kim, and Taek-Keun Oh 1 * Soil & Fertilizer division, National Academy of Agricultural Science, Wanju 55365, Korea 1 Department of biological chemistry, Chungnam national university, Daejeon 34134, Korea *Corresponding author: ok5832@cnu.ac.kr A B S T R A C T Received: November 15, 2017 Revised: November 16, 2017 Accepted: November 16, 2017 Food waste has been recognized as a organic sources for composting and many research was conducted to efficiently utilize or treat. This study was to evaluate a feasibility for producing food waste compost under co-composting with mixture of food and animal waste. The mixing ratio of food and animal waste was 35% as main material, which additionally mixed 30% of sawdust for co-composting. Total days of composting experiment were 84 days and each sub samples were collected at every 7 days from starting of composting. Results showed that inner temperature in composting was rapidly increased to 70 ± 4 C within 3~5 days depending on mixing animal waste of cattle, pig, and chicken base compared to sole food waste base. Expecially, the CN ratio in the mixture of food and pig water was the highest (16.2) among compost. After finishing composting experiment, maturity was evaluated with solvita and germination test. Maturity index (MI) of the mixture of food and animal waste was ranged between 6~7, but was 3 in sole food waste. Calculated germination index (GI) was at the range of about 100 irrespectively of mixing of food and animal waste. However, NaCl content and heavy metal as Cr, Cu, Ni, Pb, and Zn contents was increased in the mixture of food and animal waste. which was the highest in compost mixed the food and pig waste. Both MI and GI showed that manufactured fertilizer was suitable for fertilizer criteria while sole food waste was not adequate for composting due to composting periods. Overall, mixing the food and animal waste can be utilized for improving compost maturity, but more research should be conducted to make high quality of food waste compost with animal waste in agricultural fields. Keywords: Composting, Food waste, Animal waste, Compost quality 80 FW FW+Cattle FW+Pig FW+Chicken Air-temperature Temperature(oC) 60 40 20 0 0 20 40 60 80 Composting periods(day) Changes of temperature in compost piles during co-composting with food and animal waste. C The Korean Society of Soil Science and Fertilizer. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non- Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
624 Korean Journal of Soil Science and Fertilizer Vol. 50, No. 6, 2017 Introduction 퇴비화는유기물이미생물에의하여분해되어안정화되는과정이며, 저장하기에충분한부식토상태의물질로변화시키는생화학적공정또는고체폐기물의유기성분을인위적으로만든조건하에서연속적으로생물학적처리를하는것으로그최종물질은환경에영향을주지않아야하고, 토양에시용될수있어야한다 (Kim and Jung, 2006). 이러한퇴비화과정을거치면서병원성미생물및잡초종자가사멸되고, 악취가감소되며, 그리고 30~50% 의부피가감소되는것으로알려져있다 (Sweeten, 1988; Dao, 1999). 퇴비화의정의에는농업적이용을위한퇴비뿐만아니라폐기물처리차원의퇴비화도포함하고있다. 특히, 농업부문에서는유기물과양분에의한토양의물리성과화학성개량및농작물에양분을공급, 그리고장기간연용에따른농작물에대한위해성이낮아야한다 (Sikora and Sullivan, 2000; Sullivan et al., 1998; Touart, 1999). 그러나음식물류폐기물퇴비에포함된이물질및높은염분 (NaCl) 함량등으로농경지에음식물류폐기물시용에대한우려는지속적으로제기되고있으나 (Kwon et al., 2009ab; Lee et al., 2000), Lee et al. (2016) 은논 밭토양에음식물류폐기물퇴비를각각 10과 30 Mg ha -1 시용할경우, 벼와고추의최대수량을보인반면에토양중치환성 Na 함량은증가된다고보고하였다. 따라서농업적이용에는음식물류폐기물퇴비의염분이중요한요소가될수있다. 음식물류폐기물의자원화공정에있어서염분함량기준을맞추면서퇴비를생산하기위한가수및탈수공정을두고있는데, 음식물류폐기물원료의염분함량이최대 1% 일때물기를짜내면염분함량이 0.5~0.8% 로감소되고, 이를물로한번헹구면염분함량은초기농도의 1/3로감소된다 (Phae et al., 2002). 음식물류폐기물처리시설에서퇴비화할때는수분및통기성개량을위해톱밥을 50% 가량섞으면최종생산된퇴비에는염분이 0.4% 정도포함된다 (Phae et al., 2002). 또한염분함량이낮은가축분뇨와함께섞어서퇴비화하거나다른퇴비를섞어서사용하면염분의농도를줄일수있다 (Lee et al., 2016; Phae et al., 2002). 퇴비를제조할때퇴비화속도및안정화는원료특성, 수분조절재및이들원료의혼합비율등에따라매우가변적이다. 지금까지알려진가장이상적인퇴비화조건은탄질비가 30 내외그리고수분함량이 60-70% 로알려져있다 (Rynk et al., 1992; Lee et al., 2001). 음식물류폐기물에톱밥을 30~40% 를혼합하여퇴비를제조할경우에온도상승, 적정 ph 및수분함량유지, 부숙은잘이루어지나 (Lee et al., 2017), 퇴비화기간및퇴비의염분함량이문제점으로지적되고있다 (Lee et al., 2015). 본연구는퇴비원료의혼합을통한퇴비화촉진및염분제어에대한개선방안을모색하고자음식물류폐기물과가축분과혼합하여퇴비화과정중퇴비특성변화를조사하였다. Materials and Methods 퇴비원료음식물쓰레기퇴비화를위해음식물쓰레기처리시설에서반입, 파쇄, 선별및탈수과정을거친중간처리물 ( 탈수케이크 ) 을채취하여퇴비화시험에이용하였다. 탈수케이크는수분이 71.6%, 탄질비가 10.2, 염분함량은 1.78% 이었다. 가축분은전북김제시일대축사에서가축분 ( 우분, 돈분, 계분 ) 을채취하였다. 이때, 우분, 돈분, 계분의탄질비는각각 17.3, 11.0, 7.9이었고, 염분함량은각각 0.36, 1.02, 1.68% 를나타내었다 (Table 1).
Effects of Animal Waste Addition on Food Waste Compost under Co-composting 625 Table 1. Characteristics of materials used compositing. Materials Moisture TC TN P 2 O 5 K 2 O CaO MgO NaCl ---------------------------------------------------------------- (%) ---------------------------------------------------------------- Food 71.6 39.6 3.9 0.67 0.49 4.66 0.10 1.78 Cattle 67.9 34.5 2.0 1.15 0.51 5.37 1.15 0.36 Pig 43.5 34.2 3.1 2.09 1.77 5.41 1.92 1.02 Chicken 5.0 24.6 3.1 1.50 2.23 8.42 1.91 1.68 Sawdust 7.0 48.2 0.19 0.35 0.08 0.22 0.05 0.01 퇴비화본연구에이용된퇴비화반응기는약 61 L의아이스박스 (W36 L61 H30cm) 를이용하였다. 반응기내부바닥에는공기주입기 (MA-200, wave point, USA) 에연결된튜브를고정하여퇴비시료에 1.67 L min -1 의공기가지속적으로공급되도록하였고, 온도센서 (EM50, Decagon devices, USA) 를퇴비더미의하단에설치하여 0.5시간간격으로온도를측정하였다. 퇴비화를위한최적수분함량인 50~60% 를고려하여퇴비원료를혼합하였다. 대조구인음식물쓰레기퇴비는탈수케이크와톱밥을 70:30 (w/w) 으로, 가축분혼합퇴비는가축분 : 음식물쓰레기 : 톱밥을 35:35:30 (w/w) 으로혼합하였다 (Table 2). 퇴비화시험은 2016년 6월부터 8월까지약 84일간진행되었으며퇴비화기간동안에 7일간격으로뒤집기를실시하였다. 퇴비시료 500g을플라스틱샘플백에넣은후건조기에서 60 C로건조및분쇄하였고, 2 mm체를통과한시료를분석에이용하였다. Table 2. Mixture ratio of base materials for co-composting. Treatments Mixture of base materials (wt wt -1 ) Food waste Animal wate Sawdust FW 70 0 30 FW + Cattle 35 35 30 FW + Pig 35 35 30 FW + Chicken 35 35 30 부숙도평가퇴비부숙도평가는비료의품질검사방법및시료채취기준에명시되어있는기계적부숙도측정법 (Solvita) 과종자발아시험을통해실시하였다. Solvita 측정법은제조사에서제공한시험방법을바탕으로측정용기에표시된부분까지퇴비를약 50 g 채우고이산화탄소와암모니아반응패드를꽃아 25 C에서 4시간방치후색깔변화를표준차트와비교하여분석하였다 (Kim et al., 2016). 종자발아시험은시료 2 g에증류수 40 ml 가하여 80 C에서 2시간열수침탕하였다. 추출된용액은여과한후무종자 (Raphanus sativus L.) 30립을 90 mm 페트리디시 (petri dish) 에가하여상온에서 5일간배양한후발아율과뿌리길이를조사하였다. 대조구는추출용액대신증류수를이용하여동일하게배양한무종자의발아를이용하였다. 종자발아지수 (Germination Index, GI) 는발아율 (Germination rate, GR) 과뿌리길이 (Root extension, RE) 을이용하여지수화한것으로다음의식을이용하였다 (Lee et al., 2015). GI = (GR RE) GR = ( 발아율 / 대조구발아율 ) 100 RE = ( 뿌리길이 / 대조구뿌리길이 ) 100
626 Korean Journal of Soil Science and Fertilizer Vol. 50, No. 6, 2017 퇴비분석퇴비분석은농촌진흥청에서고시한비료의품질검사방법및시료채취기준에준하여분석하였다 (NAS, 2017). 수분함량은 105 C에서 5시간건조하여감량을측정하였고 ph와전기전도도 (EC) 는시료와증류수를각각 1 : 10 (w/v) 으로혼합하여 1시간교반후 ph meter (Orion 5 star, Thermo Scientific, Singapore) 와 EC meter (Orion star A222, Thermo Scientific, Indonesia) 로측정하였다. 유기물측정은회화법을이용하였으며 600 C에서약 4시간가열한후강열함량을계산하였다. 퇴비의총탄소와질소는자동원소분석기 (Vario Max CNS, Elementar, Germany) 을이용해분석하였다. 또한퇴비의중금속함량을조사하기위해 1 g의시료를삼각플라스크에취하여진한질산 20 ml을가하고하루간정치한후가열하여건조시켰다. 또한냉각후질산, 황산, 과염소산을각각 10 : 1 : 4 의비율로혼합한 Ternary solution 20 ml 가하여분해한후 ICP-AES (Icap 7000, Thermo fisher scientific, USA) 로분석하였다 (NAS, 2010). 통계처리모본연구는각처리구에서 3반복으로시료를채취하여진행하였으며결과값은평균과표준편차를구하여 one-way analysis of variance (ANOVA) 와최소유의차검정 (Least Significant Difference, LSD) 의통계분석법을통해처리구간의유의적인차이 (p < 0.05) 가있는지확인하였다. 통계적분석은 Duncan test를이용하였으며 SAS 9.2 소프트웨어로분석하였다. Results and Discussion 퇴비더미온도변화호기성퇴비화에서온도변화는미생물의대사활동의지표로서이용되며최적온도는 45~55 C이다 (de Bertoldi et al., 1983). 퇴비화과정중음식물류폐기물과가축분혼합에따른온도변화를 Fig. 1에나타내었다. 음식물류폐기물단용 (FW: 탈수케이크와톱밥 ) 에서는퇴비화 1일차부터온도가완만하게상승하였으며, 약 10일차에최고점에도달하였다. 그후서서히온도가하강하여퇴비화 35일차이후로퇴비온도는 25~34 C의대기온도와유사하게나타나면서일정하게유지되었다. 음식물류폐기물에우분, 돈분, 계분혼합은퇴비더미의온도를급격히상승시켰고, 퇴비화 3~7일차에최고온도인 68~72 C에도달하였다. 우분및계분혼합한퇴비는퇴비화 30일차전 후로퇴비온도는안정화되었고, 음식물류폐기물과돈분을혼합의경우에는퇴비화 30일차에퇴비온도가급격히감소되어다시상승, 그리고퇴비화약 45일이후에퇴비온도가안정화되었다. 이와같이퇴비더미의온도변화는원료의특성과부자재와의혼합비, 수분함량, 공기공급조건에의해크게달라질수있다 (Bueno et al., 2008; Yu and Chang, 1998). 음식물류폐기물의퇴비화에대한선행연구결과를참조한결과, 대부분퇴비화 5~7일째에최고온도가약 50~70 C까지상승하였으며, 퇴비화 20~30일이후로온도변화가크게나타나지않았다 (Lee et al., 2017). Fig. 1에서와같이, 음식물쓰레기탈수케이크와가축분혼합은퇴비화시작 1~5일째에퇴비온도가약 70 C 까지상승되었고, 이는전체퇴비화기간을단축시키는효과가있었다. 음식물류폐기물의퇴비화는혼합원료의질소첨가에따라차이가더욱크게나타나기때문에, 질소를 3.0% 함유한돈분및계분의혼합이초기퇴비온도등퇴비화에영향을끼친것으로판단된다 (Chang et al., 2008; Sohn et al., 1996; Lee et al., 2001; Park, 2003).
Effects of Animal Waste Addition on Food Waste Compost under Co-composting 627 80 FW FW+Cattle FW+Pig FW+Chicken Air-temperature Temperature(oC) 60 40 20 0 0 20 40 60 80 Composting periods(day) Fig. 1. Changes in temperature of compost piles during co-composting with the mixture of food and animal waste. ph 및 EC 변화퇴비화에서 ph는퇴비부숙의간접적지표로이용될수있으며, 퇴비화과정중미생물활성의최적범위는 6.0~9.0 정도이다 (Miller, 1992). 음식물류폐기물은퇴비화초기에산성 ph를나타내는경우가많은데이는퇴비화과정에서발생하는유기산의영향때문이라는선행연구결과가있다 (Lee et al., 2004; Chang et al., 1995). 이러한낮은 ph에서는퇴비화에관여하는세균, 방선균등의미생물활성이저해될수있다. 그러나 Fig. 2와같이, 음식물류폐기물의탈수케이크와톱밥을혼합한퇴비 (FW) 는퇴비화초기의 ph는 6.95 이었고, 가축분혼합한퇴비는 ph 6.94~7.02로모두중성부근을나타내었다. 퇴비화과정에서 FW는퇴비화 21일차부터 ph가급격히상승하여 ph 7.45~7.63을유지한반면, 초기퇴비화속도가빠른우분 (FW + Cattle) 과계분혼합퇴비 (FW + Chicken) 의 ph는퇴비화초기 ph 7.0에서 14일 ph 7.8로상승한이후에서서히감소하는경향을, 돈분혼합퇴비 (FW + Pig) 의 ph는음식물류폐기물퇴비와유사한경향을나타내었다. 퇴비의 ph 상승은에어펌프와교반으로인한산소공급으로호기적조건이유지되면서퇴비화과정중유기산의분해와단백질로부터암모니아의생성에영향을받는다 (Said-pullicino et al., 2007). 우분과계분을혼합한최종퇴비의 ph 감소는암모니아휘산및질산화가활발하여퇴비화기간이늘어남에따라퇴비 ph의감소를초래한것으로판단된다. 그러나음식물류폐기물의탈수케이크와가축분혼합한퇴비는 ph는 7.0~8.0 범위에서안정화되었다 (Joo et al., 2007). 퇴비화에서전기전도도 (EC) 의변화는미생물에의해유기물이분해되며생성되는이온들과관련이있으며 (Yun et al., 2012) 토양에시용하였을때식물독성을나타낼수있는가능성을평가할수있다 (Petric et al., 2012). 음식물류폐기물퇴비의 EC는 44.4~53.0 ds m -1 로나타났고, 가축분혼합퇴비는가축분종류에따라 EC 변화의경향은차이를보였다 (Fig. 3). 우분혼합퇴비의 EC는 25~35 ds m -1 로퇴비중가장낮은반면에, 돈분과계분을혼합한퇴비의 EC 범위는 58~70 ds m -1 로음식물류폐기물단용퇴비보다더높았다. Chang et al., (2003) 은일반적인퇴비의 EC 범위는 25~50 ds m -1 로보고하였는데, 음식물류폐기물과돈분및계분혼합은퇴비의 EC를높이는것으로평가되었다.
628 Korean Journal of Soil Science and Fertilizer Vol. 50, No. 6, 2017 10 9 FW FW+Cattle FW+Pig FW+Chicken ph(1:10) 8 7 6 5 10 20 30 40 50 60 70 80 Composting periods(day) Fig. 2. Changes in ph of compost piles during co-composting with the mixture of food and animal waste. Electric conductivity(ds m -1 ) 140 FW FW+Cattle FW+Pig 120 FW+Chicken 100 80 60 40 20 0 10 20 30 40 50 60 70 80 Composting periods(day) Fig. 3. Changes in EC of compost piles during co-composting with the mixture of food and animal waste. 총탄소및질소함량퇴비화에서탄소는미생물의유기물분해를위한에너지원으로이용되며미생물의생장에필요한단백질합성을위해질소가이용된다 (Lee et al., 2004). 따라서퇴비화과정동안미생물에의한분해과정에서이산화탄소발생에의하여탄소함량이감소하는경향을보이게된다 (Chang et al., 1995). 음식물류폐기물퇴비의전탄소함량은퇴비화기간동안 3.3%, 우분혼합은 2.5%, 돈분혼합은 6.7%, 계분혼합은 0.3% 감소되었고, 최종퇴비의전탄소함량은 35.8~44.1% 사이에있었다 (Fig. 4 & 5). 전질소함량은음식물류폐기물퇴비에서 44.4% 감소를, 우분및돈분혼합은각각 25.8과 13.9% 의증가를, 계분혼합은질소함량변화가없었다 (Fig. 5). 특히, 퇴비의질소함량변화는 ph 변화에의존한무기화된암모니아의휘산에따른결과로판단된다. 최종퇴비의탄질비는음식물류폐기물및우분혼합퇴비가각각 29.6과 31.3이었고, 돈분및계분혼합퇴비는각각 16.2와 23.7로써퇴비화촉진되는것으로평가되었다.
Effects of Animal Waste Addition on Food Waste Compost under Co-composting 629 60 50 FW FW+Cattle FW+Pig FW+Chicken Total carbon(%) 40 30 20 10 20 30 40 50 60 70 80 Composting periods(day) Fig. 4. Changes in total C of compost piles during co-composting with the mixture of food and animal waste. 4 3 FW FW+Cattle FW+Pig FW+Chicken Total nitrogen(%) 2 1 0 10 20 30 40 50 60 70 80 Composting periods(day) Fig. 5. Changes in total N of compost piles during co-composting with the mixture of food and animal waste. 퇴비부숙도부숙된퇴비는미생물의활동이안정화되고식물독성을나타내는물질이없는퇴비로미숙퇴비에서는작물의생장을억제하게된다 (Zucconi et al., 1985). 본연구에서는퇴비화기간동안에비료의품질검사방법및시료채취기준에준하여기계적부숙도측정방법인 solvita와종자발아시험을이용하여퇴비부숙도변화를조사하였다 (Table 3과 4). Solvita 부숙도측정법은퇴비의암모니아와이산화탄소방출량을조사하여미생물에의한반응이안정되었는지확인함으로써부숙도를측정하는방법이다. 부숙지수 (Maturity Index) 에서 4~6은부숙후기, 7~8은부숙완료단계로 4 이상일때부숙된것으로판정한다. Solvita를이용한분석결과, 음식물류폐기물퇴비는퇴비화 84 일차에도퇴비의부숙이미완료되었으나, 우분혼합퇴비는 56일차에, 돈분및계분혼합퇴비는 84일차에각각부숙완료로판정되었다 (Table 3). 또한무종자 (Raphanus sativus L.) 를이용한발아시험결과, 발아율과뿌리길이를통해
630 Korean Journal of Soil Science and Fertilizer Vol. 50, No. 6, 2017 산출한발아지수 (GI) 70 이상을만족한퇴비화기간은음식물류폐기물퇴비는 28일, 우분혼합은 14일, 돈분혼합은 35일, 계분혼합은 21일차에발아지수기준을만족하였다 (Table 4). 특히우분혼합퇴비의 EC가발아지수에영향을미친것으로해석되며, 돈분및계분혼합퇴비의 EC는각각 65.5와 71.75 ds m -1 로일반퇴비의 EC 25~50 ds m -1 보다높았고 (Fig. 3), 이는음식물류폐기물단용퇴비보다낮은발아지수를초래한것으로해석된다. 음식물류폐기물과돈분및계분의혼합퇴비의높은 EC를나타내기때문에작물근권발달의저해가능성이높은것으로평가된다. Table 3. Evaluation of compost maturity by Solvita index after co-composting for 84 days. Compost Compost period (day) 7 14 21 28 35 42 56 84 FW 4 1 1 2 2 2 3 3 FW + Cattle 3 5 2 2 2 3 5 7 FW + Pig 2 3 1 2 2 2 3 6 FW + Chicken 2 2 2 3 1 2 2 7 Table 4. Evaluation of compost maturity by gemination index after co-composting for 84 days. Compost Compost period (day) 7 14 21 28 35 42 56 84 FW 37 69 68 78 74 109 107 100 FW + Cattle 50 85 87 75 115 111 108 102 FW + Pig 65 69 82 56 77 73 89 100 FW + Chicken 47 47 75 99 99 95 115 99 LSD 0.05 ns ns ns ns ns 37.7 24.1 ns Note) ns means not significant. 퇴비품질비료공정규격에의하면유기물은퇴비의주성분필수함량으로서최소 30% 이상이며유기물 / 질소비가 45이하이어야한다 (RDA, 2013). 본연구에서최종퇴비품질중일반성분특성은 Table 5에나타내었다. 유기물함량은 61.8~74.5% 로우분, 돈분, 계분에음식물류폐기물의혼합은유기물함량을감소시켰다. 대조구의유기물 / 질소비는 50.9이었고, 우분, 돈분, 계분을혼합한퇴비의유기물 / 질소비는각각 53.6, 27.9, 40.7로질소함량이 2.46% 로가장높았던돈분혼합퇴비의유기물 / 질소비가가장낮은결과를보였다. 선행연구에서는퇴비화과정동안퇴비의유기물함량과유기물 / 질소비는감소하는경향을나타내는데 (Yun et al., 2012), 돈분과계분혼합퇴비의유기물 / 질소비가낮은것은퇴비화가촉진된결과로사료된다. 최종우분, 돈분, 계분혼합퇴비의염분함량은각각 0.46, 1.71, 0.97% 이었고, 음식물류폐기물과돈분을혼합할경우타처리구에비해염분함량가장높았다. 퇴비에포함된염분함량은작물의수분흡수를저해할수있기때문에 (Hayward and Wadleigh,1949; Shannon, 1997). 음식물류폐기물과돈분및계분을혼합한퇴비는작물재배시적정시용이필요할것으로판단된다. 중금속은이동성이적어퇴비시용에의해토양에축적되어작물에위해성을나타낼수있다. 비료공정규격에서는퇴비와그원료에대해 As, Cd, Hg, Pb, Cr, Cu, Ni, Zn의중금속함량기준을명시하고있으며각각의함량기준은 As
Effects of Animal Waste Addition on Food Waste Compost under Co-composting 631 45 mg kg -1, Cr 200 mg kg -1, Cd 5 mg kg -1, Cu 360 mg kg -1, Ni 45 mg kg -1, Pb 130 mg kg -1, Zn 900 mg kg -1, Hg 2 mg kg -1 이하이다 (RDA, 2013). 퇴비화종료후최종퇴비에서중금속함량을조사한결과 (Table 5), As 0.66~1.15 mg kg -1, Cd 0.13~0.38 mg kg -1, Cr 4.31~11.51 mg kg -1, Cu 10.5~121.2 mg kg -1, Ni 1.76~5.56 mg kg -1, Pb 3.20~7.64 mg kg -1, Zn 45.3~337.9 mg kg -1 (Hg 검출한계이하 ) 으로모든처리구에서중금속함량은기준미만으로나타났다 (Table 6). 돈분과음식물류폐기물을혼합함에따라 Cr, Cu, Ni, Pb, Zn 함량이높아졌고, 계분의혼합은 Cr, Cu, Zn 함량또한증가되었다. 퇴비품질항목중유해성분으로분류되는중금속함량은음식물류폐기물과돈분및계분혼합으로높아지는것으로평가되었다. Table 5. Characteristics of compost after co-composting for 84 days. Compost Moisture OM TN P 2 O 5 K 2 O CaO MgO NaCl ------------------------------------------------------------- (%) ------------------------------------------------------------- FW 66.7 74.5 1.46 0.28 0.45 2.64 0.16 0.80 FW + Cattle 63.8 76.1 1.42 0.26 0.38 2.19 0.31 0.46 FW + Pig 61.1 68.6 2.46 0.86 1.88 5.89 1.77 1.71 FW + Chicken 62.7 61.8 1.52 0.52 1.12 4.16 1.34 0.97 LSD 0.05 2.42 6.21 0.17 0.11 0.18 0.65 0.14 0.31 Table 6. Heavy metal contents of compost after co-composting for 84 days. Compost As Cd Cr Cu Ni Pb Zn ---------------------------------------------------------- (mg kg -1 ) ---------------------------------------------------------- FW 0.66 0.37 6.61 13.9 2.04 4.99 45.3 FW + Cattle 0.55 0.21 4.31 10.5 1.76 3.37 52.7 FW + Pig 1.11 0.38 11.51 121.2 5.56 7.64 337.9 FW + Chicken 1.15 0.13 5.07 38.9 2.74 3.20 309.3 LSD 0.05 0.42 0.09 2.67 5.04 0.62 2.22 52.9 Note) Hg: non-detected. Conclusions 본연구에서는음식물류폐기물과가축분을혼합하여 84일간의퇴비화과정중퇴비의특성변화를평가하였다. 음식물류폐기물과가축분혼합퇴비는퇴비의부숙기간을단축시켰다. ph는퇴비화초기 7.0 부근에서상승하여최종퇴비에서는 7.5 부근으로조사되어안정된퇴비의 ph를나타내었고, 전탄소함량은초기 37~45% 에서최종퇴비에서는 35~40.0% 로소폭감소하였다. 음식물류폐기물과돈분및계분을혼합한퇴비에서는질소함량증가로탄질비가각각 16.2와 23.7를나타내었고이것은퇴비화를촉진시키는것으로평가되었다. 음식물류폐기물과가축분의혼합함에따라염분함량과중금속함량은증가되지만, 비료공정규격의기준에는적합하였다. 본연구결과, 음식물류폐기물과가축분혼합은퇴비의부숙을촉진시키는것을확인하였다. 그러나돈분및계분의혼합은 EC의상승을초래하기때문에퇴비시용에따른작물및토양특성평가에대한추가적인연구가필요할것으로판단된다.
632 Korean Journal of Soil Science and Fertilizer Vol. 50, No. 6, 2017 Acknowledgment This study was supported by research project of National Institute of Agricultural Science (PJ010925012017), Rural Development Administration, Republic of Korea. References Bueno, P., R. Tapias, F. López, and M.J. Díaz. 2008. Optimizing composting parameters for nitrogen conservation in composting. Bioresour. Technol. 99(11):5069-5077. Chang, K.W. and Y.S. Yu. 2003. Composting of small scale static pile by addition of microorganism. J. Kor. Org. Resour. Recyc. Assoc. 11(1):149-153. Chang, K.W., I.B. Lee, and J.S. Lim. 1995. Changes of physicochemical properties during the composting of Korean food waste. J. Kor. Org. Resour. Recyc. Assoc. 3(1):3-11. Chang, K.W., J.H. Hong, J.J. Lee, K.P. Han, and N.C. Kim. 2008. Evaluation of compost maturity by physicochemical properties and germination index of livestock manure compost. Korean J. Soil Sci. Fert. 41(2):137-142. De Bertoldi, M.D., G.E. Vallini, and A. Pera. 1983. The biology of composting: a review. Waste Manag. Research. 1(2):157-176. Dao, T.H. 1999. Coamendments to modify phosphorus extractability and nitrogen/phosphorus ratio in feedlot manure and composted manure. J. Environ. Qual. 28:1114-1121. Hayward, H.E. and C.H. Wadleigh. 1949. Plant growth on saline and alkali soils. Adv. Agron. 1:1-38. Joo, J.H., D.H. Kim, J.H. Yoo, and Y.S. Ok. 2007. The effect of some amendments to reduce ammonia during pig manure composting. Korean J. Soil Sci. Fert. 40(4):269-273. Kim, N.C. and B.M. Jung. 2006. The experiment of process efficiency and salt elimination in food waste compost using triple salt. J. Korean Org. Resour. Recycl. Assoc. 14(2):83-90. Kwon, S.I., K.H. So, S.G. Hong, G.Y. Kim, J.T. Lee, K.S. Seong, K.R. Kim, D.B. Lee, and K.Y. Jung. 2009a. The effect of continuous application of the food waste composts on the paddy field environment. J. Kor. Org. Resour. Recyc. Assoc. 17(3):55-70. Kwon, S.I., K.H. So, S.G. Hong, G.Y. Kim, J.T. Lee, K.S. Seong, K.R. Kim, D.B. Lee, and K.Y. Jung. 2009b. The continuous application effect of the food waste composts on the cultivated upland soils and plants. J. Kor. Org. Resour. Recyc. Assoc. 17(3):71-81. Lee, C.H., S.J. Park, M.S. Kim, S.G. Yun, B.G. Ko, D.B. Lee, S.C. Kim, and T.K. Oh. 2015. Characteristics of compost produced in food waste processing facility. CNU J. Agri. Sci. 42(3):177-181. Lee, C.H., B.G. Ko, M.S. Kim, S.J. Park, S.G. Yun, and T.K. Oh. 2016 Effect of food waste compost on crop productivity and soil chemical properties under rice and pepper cultivation. Korean J. Soil Sci. Fert. 49(6):682-688. Lee, C.H., K.K. Ko, S.C. Kim, S.C. Kim, J.S. Sung, Y. Shinogi, and T.K. Oh. 2017. Characteristics of food waste composting with various particle sizes of sawdust. J. Fac. Agr. Kyushu Univ. 62(1):123-129. Lee, D.S., J.B. Lee, M.Y. Lee, R.N. Joo, K.S. Lee, S.W. Min, B.D. Hong, and D.Y. Chung. 2016. Chemical properties of liquid swine manure for fermentation step in public livestock recycling center. Korean J. Agricultural Science 43:424-431. Lee, J.T., Y.G. Nam, and J.I. Lee. 2001. Changes of physico-chemical properties and microflora of pig manure due to composting with some bulking agents. Korean J. Soil Sci. Fert. 34:134-144. Lee, I.B., C.K. Park, and P.J. Kim. 2001. Study on the lowering of NaCl content by co-composting food wastes. Korean J. Soil Sci. Fert. 34(1):17-25.
Effects of Animal Waste Addition on Food Waste Compost under Co-composting 633 Lee, S.E., H.J. Ahn, S.K. Youn, S.M. Kim, and K.Y. Jung. 2000. Application effect of food waste compost abundant in NaCl on the growth and cationic balance of rice plant on paddy soil. Korean J. Soil Sci. & Fert. 33(2):100-108. Lee, Y.S., H.K. Choi, J.K. Kim, Y.H. Lee, K.T. Chung, J.S. Roh, and M.G. Suh. 2004. Optimum mixing ratio of sewage sludge during composting of food wastes. J. Kor. Envir. Health. 30(5):366-373. Miller, F.C. and F.B. Metting Jr. 1992. Composting as a process based on the control of ecologically selective factors. Soil. Microb. Ecol. Applic. Agr. Envir. Manag. 515-544. Park, S.H. 2003. Comparison of effects of chaff and sawdust on aerobic composting of food wastes. J. Kor. Envir. Health. 29(3):28-34. Phae, C.G., Y.S. Chu, and J. S. Park. 2002. Investigation of affect on composting process and plant growth of salt concentration in food waste. J. Kor. Org. Resour. Recyc. Assoc. 10(4):103-111. Petric, I., A. Helić, and E.A. Avdić. 2012. Evolution of process parameters and determination of kinetics for cocomposting of organic fraction of municipal solid waste with poultry manure Bioresour. Technol. 117:107-116. Rural Development Administration (RDA). 2013. Sampling and analysis methods for fertilizer. Rynk, R., M. van de Kamp, G.B. Willson, M.E. Singley, T.L. Richard, J.J. Kolega, F.R. Gouin, L. Jr. Lucien, D. Kay, D.W. Murphy, H.A.J. Hoitink, and W.F. Brinton. 1992. On-farm composting handbook. National resource, agriculture and engineering service. Ithaca, New York, USA. p.16. Said-Pullicino, D., F.G. Erriquens, and G. Gigliotti. 2007. Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity. Bioresour. Technol. 98(9):1822-1831. Shannon, M.C. 1997. Adaption of plants to salinity. Adv. Agron. 60:75-120. Sikora, L.J. and D. M. Sullivan. 2000. Case studies of municipal and on-farm composting in the United States. p. 605-623. In J. Power and W. Dick (ed.) Land application of agricultural, industrial, and municipal by-products. SSSA Book Ser. No. 6. SSSA, Madison, WI. Sohn, B.K., J.H. Hong, and K.J. Park. 1996. Comparative studies on static windrow and aerated static pile composting of the mixtures of cattle manure and rice hulls : I. Variation of Physico-chemical Parameters. Korean J. Soil Sci. Fert. 29(4):403-410. Sweeten, J.M. 1988. Composting manure sludge. In National poultry waste management symp., Columbus, OH. Dep. of Poultry Sci. Ohio State Univ., Columbus. p. 38-44. Sullivan, D.M,, S.C. Fransen, A.I, Bary, and C.G. Cogger. 1998. Slow-release nitrogen from composts: The bulking agent is more than just fluff. p. 319-325. In Brown et al. (ed.) Beneficial co-utilization of agricultural, municipal and industrial by-products. Kluwer Academic Publishers, Dordrecht, the Netherlands. Touart, A.P. 1999. Investing upfront in a compost factory. Biocycle. 40:31-33. Yu, Y.S. and K.W. Chang. 1998. Changes of physicochemical properties of paper mill sludge and sewage sludge mixed with various ratios of a bulking agent during composting. J. Kor. Org. Resour. Recyc. Assoc. 6(2):45-57. Yun, H.B., Y.J. Lee, M.S. Kim, S.M. Lee, Y.U. Lee, and Y.B. Lee. 2012. Composting of pig manure affected by mixed ratio of sawdust and rice hull. Korean J. Soil Sci. Fert. 45(6):1032-1036. Zucconi, F., A. Monaco, M. Forte, and M.D. Bertoldi. 1985. Phytotoxins during the stabilization of organic matter. Composting of agricultural and other wastes. Elsevier Applied Science Publishers, London, England.