김영은.fm

Similar documents
_김영은.fm

KISEP Clinical Article J Korean Neurosurg Soc , 2002 퇴행성요추질환환자에서척추유합술후발생한인접분절의퇴행성변화에대한수술적치료 * 김영수 구성욱 조용은 진병호 윤영설 진동규 Surgical Treatment of

Lumbar spine

스포츠과학 143호 내지.indd

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770>

09권오설_ok.hwp

Anatomy and function of the trunk

1장

03-송경진

06-04-이규열

Microsoft PowerPoint - Lumbar spine anatomy & function 한스.ppt

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

5. Listing and Radiologic Analysis.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

(

DBPIA-NURIMEDIA

( )Jksc057.hwp

???? 1

DBPIA-NURIMEDIA

12이문규

(JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN

인문사회과학기술융합학회

02-김석곤/

04_이근원_21~27.hwp


Journal of Korean Society of Spine Surgery Kyphotic Deformity after Spinal Fusion in a Patient with Diffuse Idiopathic Skeletal Hyperostosis - A Case

Thieme: Color Atlas of Acupuncture

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

교정치료시 알아야 할 X-ray 판독법

03-서연옥.hwp

DBPIA-NURIMEDIA

Æ÷Àå82š

歯1.PDF

untitled

01-김환정

80%, O'Sullivan (2003), (reposition sense)..(, 2001) Arokoski (2001) 1937 williams,,,,,,. (bridging exercise).,.(stevens, 2007). (lumbar stabilization

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

2 : (JEM) QTBT (Yong-Uk Yoon et al.: A Fast Decision Method of Quadtree plus Binary Tree (QTBT) Depth in JEM) (Special Paper) 22 5, (JBE Vol. 2

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

03-16-김용일.indd

Original Article pissn eissn J Korean Soc Spine Surg Jun;20(2): Restoratio

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

DBPIA-NURIMEDIA

012임수진

Journal of Korean Society of Spine Surgery Old and New Fashion: Minimally Invasive Spine Surgery for Adjacent Segmental Spinal Stenosis after Luque Su

KISEP Clinical Article J Korean Neurosurg Soc , 2002 퇴행성척추불안정환자에게시행된자가장골골편을이용한추체간유합술에서척추경나사못고정술의효과 * 김영백 박승원 황성남 최덕영 The Effect of Additiona

07-황창주

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

제5회 가톨릭대학교 의과대학 마취통증의학교실 심포지엄 Program 1 ANESTHESIA (Room 2층 대강당) >> Session 4 Updates on PNB Techniques PNB Techniques for shoulder surgery: continuou

975_983 특집-한규철, 정원호

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

Original Article pissn eissn J Korean Soc Spine Surg Dec;20(4): Proxima

04김호걸(39~50)ok

제13강: 척추와 갈비우리의 개요 2

Abstract Direct Vertebral Rotation (DVR): A New Technique of 3-D Deformity Correction with Segmental Pedicle Screw Fixation in Adolescent Idiopathic S

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

Kinematic analysis of success strategy of YANG Hak Seon technique Joo-Ho Song 1, Jong-Hoon Park 2, & Jin-Sun Kim 3 * 1 Korea Institute of Sport Scienc

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: A Study on the Opti

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

°í¼®ÁÖ Ãâ·Â

γ

歯기구학

14.531~539(08-037).fm


Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A Research Trend

, ( ) 1) *.. I. (batch). (production planning). (downstream stage) (stockout).... (endangered). (utilization). *

07-김진수

09È«¼®¿µ 5~152s

04조남훈

Kbcs002.hwp

대한물리의학회지제7권제3호 Ⅰ. 서 론 체간에서의근육들은척추에가해지는많은부하 들로부터척추를적절히보호하면서정상적인운동 이수행되도록하는역할을한다 (Cholewicki 와 McGill, 1996). 교각운동은요추에가해지는외력을흡수하 고, 사지의움직임동안주위근육들의협응작용과

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: : A basic research

08김현휘_ok.hwp

Back Pain in Children

02-유재원

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

À±½Â¿í Ãâ·Â

139~144 ¿À°ø¾àħ

09-이재철

05-김환정/

한국성인에서초기황반변성질환과 연관된위험요인연구

The Explanation of Postoperative Change of Vertebral Rotation and Rib Hump Using 3 Dimensional Finite Element Scoliosis Model Jeong-Hyun Ha, Jae-Hyup

슬라이드 1

12(4) 10.fm

Special Issue Pain Management and Therapeutic Exercise of Lumbar Disc Herniations Hee Sang Kim, M.D. Department of Physical Medicine and Rehabilitatio

Original Article pssn essn J Korean Soc Spine Surg. 20 Jun;20(2): Comparison of Short


Æ÷Àå½Ã¼³94š

Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타

core stability.hwp

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: (LiD) - - * Way to

DBPIA-NURIMEDIA

#Ȳ¿ë¼®

DBPIA-NURIMEDIA

Transcription:

한국정밀공학회지제 35 권제 7 호 pp. 721-727 July 2018 / 721 J. Korean Soc. Precis. Eng., Vol. 35, No. 7, pp. 721-727 https://doi.org/10.7736/kspe.2018.35.7.721 ISSN 1225-9071 (Print) / 2287-8769 (Online) 척추운동분절의유합에따른주변근육력의변화및인접분절추간판의추가적변성에대한해석 Analysis in the Change of Paraspinal Muscle Activities and Adjacent Disc Degeneration according to the Segmental Fusion 최혜원 1, 김영은 1,# Hae Won Choi 1 and Young Eun Kim 1,# 1 단국대학교기계공학과 (Department of Mechanical Engineering, Dankook University) # Corresponding Author / E-mail: yekim@dankook.ac.kr, TEL: +82-31-8005-3498 ORCID: 0000-0003-1440-6397 KEYWORDS: Spinal fusion ( 척추유합술 ), Adjacent segment degeneration ( 인접분절퇴화 ), Paraspinal muscle force ( 척추주변근육력 ), Lumbar spinal stability ( 요추부안정화 ) The incidence of adjacent segment degeneration (ASD) after lumbar spinal fusion have not been precisely verified. In the presence of mild degeneration in the proximal segment adjacent to the fused segment, selection of additional fusion is not agreed upon. Muscle activity change and ASD after fusion was analyzed with a developed three-dimensional finite element model of musculoskeletal system. The paraspinal muscle activities were calculated based on a hypothesis, the intervertebral disc was assumed to have a transducer function and the muscle is activated according to a sensor driven control mechanism to maintain the stability of the lumbar spine. Simulation was conducted for erect standing and 60 isometric forward flexed posture. Total muscle force produced in each deep muscle group was similar however activity of some muscle fascicles which inter-connected to the vertebrae above the fused segment showed increased value. In the presence of mild degeneration in the proximal adjacent segment, muscle activity across the degenerated segment was reduced. Despite changes in muscle activity, nucleus pressure at adjacent segment was increased in both cases. This change would eventually lead to the ASD. Manuscript received: October 31, 2017 / Accepted: January 4, 2018 1. 서론척추질환의대표적인치료방법인척추유합술 (Spinal Fusion) 은추간판의감압 (Decompression) 과척추안정성 (Stabilization) 에효과적인임상결과를보이는것으로알려져있다. 그러나척추유합술이후유합인접상위분절에서의추가적인퇴화 (Adjacent Segment Degeneration) 를야기시킨다는임상결과 1-3 가보고되고있으며, 척추유합술과인접분절의추가적변성의상관관계를규명하기위한다양한시도에도불구하고이에대한논란이여전히존재한다. 기존의 In-Vitro 실험또는유한요소모델을이용한해석적연구결과에의하면요추분절의유합으로인해인접분절의운동량증가와비정상적인추간판압력의증가등으로인해 인접분절의추간판퇴화를야기할것으로판단된다는주장과인접분절의퇴화는유합수술의영향보다는자연스럽게발생하는노화현상중하나라는주장이존재하고있다. 4-8 최근에는척추분절의유합과인접분절의퇴화의상관관계및척추의유합후추간판퇴화를유발하는위험인자에대하여임상적결과를바탕으로한연구 9,10 들이수행되는등이에대한지속적인연구가진행되고있다. 척추유합수술시유합의위치와길이를선정하기위해서는감압이필요한위치를판단하는것과인접분절의추가적인퇴화여부를예측하는것이매우중요한요인이된다. 특히유합시술시그상위인접분절의추간판에서경미한퇴화가존재하는경우이분절에대한추가적유합이필요한가에대한논의가지속되고있다. Copyright The Korean Society for Precision Engineering This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/ 3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

722 / July 2018 한국정밀공학회지제 35 권제 7 호 기존의해석방법에서는단순화된하중부과방법을적용하였기때문에해석결과와임상적관찰사이에많은차이가나는것으로여겨진다. 일부운동분절에서의유합은다른모든분절에서의기계적변화를야기하게되고이에따라척추의최적화된상태를유지하기위한주변근육의역할변화가예상된다. 그러나이와같이척추주변근의역할변화를고려한연구는아직까지시도된바가없다. 본연구자들은추간판에존재하는기계적수용기 (Mechanoreceptor) 로부터전달되는정보가척추의안정화를이루도록척추주변근육이조정될것이라는가정하에추간판에서발생하는응력의차이를최소화하도록척추주변근육의작용을조정하여특정추간판의응력증가로인한부상을방지하도록하는방법으로척추주변근육의역할을규명한바있다. 11 본연구에서는동일한해석기법을이용하여척추분절의유합시척추주변근육의변화를분석하고이에따른인접분절의퇴화가능성을분석하도록하였다. 또한유합상위분절의추간판에경미한퇴화가존재할경우추가적인고정이필요한지에대하여서도분석하도록하였다. 2. 모델링 2.1 근골격계모델링본연구에서는본연구진을통해개발되어연구에활용되었던상체근골격모델을해석 11-13 에이용하였다. 모델은강체로이루어진흉부 (Thoracic Part) 와천골 (Sacrum) 및골반 (Pelvis), 그리고여러하중조건에서의검증과정 14 을거친요추부 (Lumbar Spinal Column) 상세유한요소모델로이루어져있으며, 112개요소로이루어진척추주변근육 (Paraspinal Muscle) 모델과단순화된흉요근막 (Thoracolumbar Fascia) 을포함하고있다. 척추주변근육모델은척추기립근 (Erector Spinae) 인흉최장근 (Longissimus Thoracis) 과요장늑근 (Iliocostalis Lumborum) 에대해흉곽에서장골능 (Iliac Crest) 으로연결되는표면근 (Superficial Muscle) 과추골 (Vertebrae) 의횡돌기 (Transverse Process) 에서장골능으로연결되는심층근 (Deep Muscle) 으로나누어모델링되었으며, 상위추골의극돌기 (Spinous Process) 에서하위추골의유두돌기 (Mamillary Process) 로부착되는다열근 (Multifidus, MF) 은위치에따라 ML(Multifidus in Deep Layer), MS(Multifidus in Intermediate Layer), MT(Multifidus in Superficial Layer) 로층을나누어모델링하였다. 이외의대요근 (Psoas Major, PM) 과요방형근 (Quadratus Lumborum, QL), 복직근 (Rectus Abdominis, RA), 내복사근 (Internal Oblique, IO) 과외복사근 (External Oblique, EO) 도모델에포함되어있다. 근육요소는부착기시점 (Origin Point) 에서삽입점 (Insertion Point) 으로커넥터요소 (CONN3D2) 를연결한후요소내에국부좌표계 (Local Coordinate) 를설정하여두점사이로근육력이작용하도록하였다. 이때, 추골의측면에요추만곡 (Lumbar Curvature) 을따라추가적인가상절점을생성하고추골돌기에이를구속하여흉최장근과요장늑근의 Fig. 1 Representation of (a) the musculoskeletal model used in the analysis. The lumbar spinal column was modelled with detailed finite element model, and a trunk and pelvis were modelled with rigid body. (b) Detailed multifidus fascicles. ML: Multifidus in deep layer, MS: Multifidus in intermediate layer, MT: Multifidus in superficial layer Fig. 2 Simplified thoracolumbar fascia tensioning with which abdominal muscle activity and abdominal pressure on the stability of the spine can be incorporated 표면근이구속된점을지나도록근육요소를연결하여상체의자세변화로인해요추전만각이변화될때추골의회전을따라근육력의작용경로가변경되도록하였다. Fig. 1은본연구에사용된

한국정밀공학회지제 35 권제 7 호 July 2018 / 723 Fig. 3 Fused segment of lumbar spine model. The paraspinal muscles and thoracolumbar fascia were removed for a clear view 근골격모델을보여주고있다. 복부근육및복압이척추안정화에미치는영향을고려하기위해이들의역할을흉요근막인장력으로대체한모델 15 을이용하여척추주변근과동일하게설계변수로설정하였다. 흉요근막은추체돌기에연결된가상의빔요소 (B31) 에국부좌표계를 Fig. 2와같이교차연결하여인장력의작용선이교차되어상체굽힘각도에따라인장력의작용방향이변화되도록하였다. 2.2 유합및퇴화모델 유합모델 (Fused Model; DF) 은정상상태모델 (Intact Model) 의 L4와 L5 추골의후방요소에척추경나사못 (Pedicle Screw) 을삽입한후티타늄봉 (Ti-Rod) 을이용하여두추체를구속하고, L4-L5 추간판중심부에케이지 (Cage) 를삽입하여운동분절의움직임이고정되도록구성하였다. 또한 L4-L5 분절을유합한모델의상위인접분절에 (L3-L4) 추가적으로경미한추간판퇴화가있는경우의모델 (DD) 을위해 L3-L4의추간판물성을수정하였다. 수핵의체적탄성계수 (Bulk Modulus) 를정상상태의 50% 인 1100 MPa으로적용하였고, 섬유륜의초탄성계수 (Hyperelastic Coefficient) 를 C 01 = 0.56, C 10 =0.14에서 C 01 = 0.47, C 10 =0.12로감소시켰다. 이경우 400 N의압축하중에서정상상태보다 15% 의압축변위가증가하게된다. 유합분절모델의형상은 Fig. 3 과같다. 2.3 해석방법 해석은기립자세와 60 o 굽힘자세에대해각기이루어졌다. 60 o 굽힘자세에서의해석을위해기립자세모델의좌골과치골사이에위치하는폐쇄공 (Obturator Foramen) 의중점을기준으로 21.13 o 의각도로모델을회전하여골반회전각도와요추체의회전각도의비율이 1.84가되도록하였다. 16 해석을위한유한요소모델의구속조건으로천골및좌우골반을고정하고, 성인남성의상체무게에해당하는 400 N의하중을상체의무게중심에 320 N, 양팔의무게중심에 80 N으로나누어부과하였다. 근육 력과흉요근막인장력은설계변수로설정하여최적화해석과정을통해계산되는값을각각다음단계의유한요소해석의하중조건으로부과하였다. 추간판이물리적자극에대한수용체로써추간판에서발생되는응력의차이를최소화도록척추주변근육의작용을조정하여특정추간판에응력이집중됨으로발생하는부상을방지하도록한다는가정 11 하에기계적수용기가가장많이분포되어있는것으로알려진추간판섬유륜의최외층기저물 17 에서발생하는압력 (Hydrostatic Pressure) 을계산하여최적화해석에이용하였다. 주변근육력과흉요근막인장력의계산은제시된가정에따르면목적함수식 (1) 이사용될수있다. 목적함수의계산시유합분절에서의기계적응답은발생하지않는것으로가정하였다. f = 1 -- S n ( pi, S pave, ) i=1 n 2 Subject to LB F i UB U x 2 mm (erect standing posture) θ t 0.01 rad (flexed posture) where S p,i : Average pressure of the annulus ground matrix at the outermost layer in i-th disc S p,ave : Average pressure of the annulus ground matrix at the outermost layer in all discs n: Number of intact disc F i : i-th muscle force LB: Lower bound of muscle force UB: Upper bound of muscle force U x : Anterior-Posterior translation tolerance of the trunk mass center θ t : Trunk angle tolerance from desired posture 설계변수로설정된근육력의초기값은기존의실험연구 18 에서제시된표면근육력을적용하였으며, 실험측정범위내에값이존재하도록최소값과최대값의범위를설정하였다. 흉최장근과요장늑근, 다열근의심층부요소에대해서는표면근과동일한활성레벨의초기값을설정하였고, 대요근과요방형근등실험데이터가없는근육의경우에는최대근육력의 10% 에해당되는값을초기값으로설정하였다. 근육력의초기값을적용한유한요소해석의결과가최적화해석에입력되고최적화과정중새롭게계산된근육력이유한요소해석에재입력되었다. 척추주변근육력해석을위한유한요소해석은 ABAQUS (v6.10, Dassault System Simulia) 를이용하였으며, 최적화해석은 VisualDOC(v7.2, VR&D, Inc.) 와연동하여진행되었다. 최적화알고리즘은유용방향수정법 (Modified Method of Feasible Direction) 을사용하였다. (1)

724 / July 2018 한국정밀공학회지제 35 권제 7 호 Table 1 Calculated muscle activities. The muscle activities were normalized with respect to the maximum voluntary contraction (MVC). IT: Iliocostalis lumborum pars thoracis, LT: Longissimus thoracis pars thoracis, IL: Iliocostalis lumborum pars lumborum, LL: Longissimus thoracis pars lumborum, MF: Multifidus, PM: Psoas major, QL: Quadratus lumborum, RA: Rectus abdominis, EO: External oblique, IO: Internal oblique, DF: Fusion at L4-L5 segment, DD: Fusion at L4-L5 segment and additional disc degeneration of proximal adjacent segment (L3-L4) Model Erect standing posture (% of MVC) MVC Muscle Intact DF DD IT 328.2 15.2 18.4 18.5 LT 221.4 18.0 20.1 20.3 IL 379.8 7.5 7.4 7.5 LL 299.4 12.1 12.1 12.1 MF 693.4 15.1 15.1 15.1 PM 901.4 4.2 4.2 4.2 QL 178.0 5.7 5.7 5.7 RA 340.2 10.1 10.0 10.0 EO 402.6 6.0 6.0 6.0 IO 381.0 2.0 2.0 2.0 Model 60 o Flexed posture (% of MVC) MVC Muscle Intact DF DD IT 328.2 29.5 36.2 34.2 LT 221.4 30.7 34.5 29.6 IL 379.8 40.3 34.3 41.0 LL 299.4 33.8 30.8 32.5 MF 693.4 42.9 43.6 42.2 PM 901.4 11.9 13.2 10.3 QL 178.0 8.5 10.0 8.8 RA 340.2 6.0 6.0 6.0 EO 402.6 4.0 4.0 4.0 IO 381.0 2.0 2.0 2.0 3. 해석결과 요추분절의유합과상위인접분절의퇴화를적용한모델에대해서도척추주변근육력은정상상태에서의상체굽힘각도를유지하며추간판에서의부상을최소화하는방향으로 Table 1과같이계산되었다. 제시된결과는각근육에서발생가능한최대근육력에대한최적화해석을통해얻은근육력의비율을보여주고있다. 기립자세와 60 o 굽힘자세에서모두흉최장근 (Longissimus Thoracis Pars Thoracis, IT) 과요장늑근 (Iliocostalis Lumborum Fig. 4 Relative muscle activity changes of multifidus fascicles in the fused model with respect to intact model. ML: Multifidus in deep layer, MS: Multifidus in intermediate layer, MT: Multifidus in superficial layer Pars Thoracis, LT) 의표면근의활성도가증가하였다. 기립자세의경우요추분절의유합과인접분절의퇴화에도불구하고 IT 와 LT이외근육에서의변화는매우미미하였다. 반면 60 굽힘자세에서는표면근외에도심층근의작용이변화되는것을확인할수있었다. 추골에서장골능으로부착된심층근인흉최장근 (Longissimus Thoracis Pars Lumborum, LL) 과요장늑근 (Iliocostalis Lumborum Pars Lumborum, IL) 의평균근육활성도는 DF 모델에서각각 34.3% 와 30.8% 로감소하였으며 DD 모델에서는 41.0% 와 32.5% 로비슷한활성도를보였다. 다열근의경우전체평균활성도는정상상태와유합모델, 퇴화모델에서각각 42.9%, 43.6%, 42.2% 로 1% 이내의활성도변화를보였으나추골사이에부착된근육에서큰변화가발생하였다. 근육의위치에따른다열근의변화는 Fig. 4와같다. DF 모델에서는정상상태를기준으로 ML2, MS2, MT2가각각 58.09%, 31.86%, 12.48% 증가하였고, ML4, MS3, MS4가각각 6.44%, 10.75%, 28.74% 감소하였다. DD 모델의경우 MT2에서 15.46% 증가한반면 ML3, MS3, MS4에서각각 18.94%, 33.39%, 27.87% 감소하였다. 복근요소인 RA, EO와 IO는요추의유합과인접분절의퇴화에도불구하고근육의작용이변하지않았으나흉요근막인장력의크기는큰변화를보였다. 60 o 굽힘자세에서계산된흉요근막의횡방향으로의인장력합은정상상태에서 208.3 N으로계산되었으며 DF 모델과 DD 모델에서의작용은정상상태를기준으로각각 27.8%, 19.9% 감소한결과를보였다. 척추주변근육력과흉요근막인장력의변화로인하여추간판에서발생되는수핵내압력과운동분절의운동량이변화하였다. 기립자세의정상상태에서 L3-L4 추간판의압력은 646.6 kpa 로계산되었고, DF와 DD 모델에서각각 1.4% 와 1.7% 가증가하였다. 반면 L3-L4를제외한모든추간판의압력은감소하였다. 60 o 굽힘자세의경우유합분절이외의모든분절에서추간판압력이증가하였고, 특히 L3-L4 분절의추간판에서 DF와 DD 모델

한국정밀공학회지제 35 권제 7 호 July 2018 / 725 Table 2 Nucleus pressure in each disc (kpa). DF: Fusion at L4-L5 segment, DD: Fusion at L4-L5 segment and additional disc degeneration of proximal adjacent segment(l3-l4) Model Erect standing posture 60 flexed posture Disc level Intact DF DD Intact DF DD L1-L2 839.7 834.6 832.2 1566 1584 1572 L2-L3 697.7 679.7 675.6 1453 1464 1462 L3-L4 646.6 655.7 657.5 1395 1434 1441 L4-L5 609.9 - - 1343 - - L5-S1 685.4 659.3 659.9 1380 1437 1392 Table 3 Intersegmental rotation at the 60 flexed posture from the erect standing posture(degree). DF: Fusion at L4-L5 segment, DD: Fusion at L4-L5 segment and additional disc degeneration of proximal adjacent segment(l3-l4) Model Intact DF DD Disc level L1-L2 7.1 8.8 8.4 L2-L3 9.9 10.7 10.6 L3-L4 7.9 7.9 9.2 L4-L5 4.4 1.2 1.2 L5-S1 4.3 6.0 5.4 에서각각 2.8%, 3.3% 가증가하였다. Table 2는각위치에서발생된추간판수핵의압력을보여주고있다. Table 3은 60 o 굽힘자세에서각모델의운동분절에서발생된운동량을보여주고있다. L4-L5 분절의유합으로인해손실된운동량은유합이외의운동분절의운동량증가로인해보상되고있다. 특히 DD 모델의경우퇴화된 L3-L4 분절에서운동량의증가가크게발생하였다. 그러나 L1 추체의상단에서 S1의상단이이루는요추전만각 (Lordotic Angle) 은유지되는결과를보였다. 기립자세의정상상태의경우 53.9 o 로계산되었고, DF과 DD 모델의경우각각 54.7 o 와 54.9 o 로계산되었다. 굽힘자세의정상상태는 20.2 o, DF과 DD 모델에서각각 20.2 o 와 20.1 o 로계산되어요추분절의유합과인접분절에발생된경미한퇴화에도불구하고요추전만각의변화가매우미미하였다. 4. 토의 본연구에서제시된근골격계모델을이용한정상상태에서의해석결과는기존의 In-Vivo 상태에서측정된척추주변근육의작용과추간판중심부에서발생되는압력에대한측정한결과와매우일치되는경향을보여주고있다. Arjmand 등 18 이측정한기립자세에서표면근의 EMG 측정결과는흉최장근과요장늑근에대해각각 17±6% 와 14±7% 로나타났으며, 다열근은 15±5% 의 결과를보였다. 본연구에서계산된해석결과와비교하여보면기립자세의정상상태모델의표면근에대해흉최장근은 18.0%, 요장늑근은 15.2% 로측정되었으며, 다열근은 15.2% 의평균활성도로실험에서측정된결과의평균값과유사한결과를보였다. 상체굽힘자세에서측정된표면근의 EMG 결과는 40 o 굽힘자세까지증가하였으나그이상의굽힘각도에서는근육의활성도가유지되는결과를보였다. 본연구에서계산된해석결과는정상상태에서의흉최장근과요장늑근의표면근에서각각 30.7% 과 29.5% 의활성도를보였고, 다열근의경우 44.3% 의근육활성도를보였다. 이러한결과는실험측정결과를이용하여추정된 60 o 굽힘자세에서의 EMG 측정결과의범위내에부합되는결과이다. Wilke 등 19 이측정한 In-Vivo상태의 L4-L5추간판중심에서의압력은기립자세에서 0.5 MPa, 60 o 굽힘자세에서 1.1 MPa로보고되었다. 본연구의계산결과는두자세에서각각 0.6 MPa과 1.3 MPa로실험결과에가까운결과를보여주고있다. 지금까지요추분절유합의영향을규명하기위해사체시편을이용한 In-Vitro 실험과요추의유한요소모델일부를활용한연구들이다양하게시도되어왔다. 기존의연구자들에의해제안된결과는요추분절의유합으로인해척주의강성도가증가하게되고이로인해인접분절에서의과도한운동량변화가발생되며유합인접분절에서의응력이증가하게된다. 기존연구자들은이러한결과를바탕으로인접상위분절의추간판에야기되는추가적변성을설명하였다. 그러나기존의실험과해석모델을이용한분석은척추의안정화에기여하고있는척추주변근육사이의상호적인작용이고려되지않은상태에서종동력 (Follower Load) 과단순모멘트 (Pure Moment) 를이용한단순화된하중조건이이용되었다. 본연구의기립자세의경우 DF과 DD 모델에서모두흉최장근과요장늑근의표면근이증가하는결과를보였다. 반면, 두근육을제외한심층근과복근의경우에는그변화가매우미미하였다. 굽힘자세에서 DF 모델의경우흉최장근과요장늑근이각각 34.5% 와 36.2% 로정상상태에비해 3.8%, 6.7% 가증가하였고, DD 모델의경우흉최장근이 1.1% 감소한반면요장늑근은 4.7% 증가하였다. 기립자세와굽힘자세에서공통적으로척추기립근의표면근에서근육의활성도가증가하는것은요추분절의유합으로인해증가하는유합상위분절의운동량을잡아주기위해모멘트암이큰표면근의활성도가증가된것으로여겨진다. 굽힘자세에서 DF와 DD 모델모두근육의부착위치에따라다열근의작용이크게변화된다. DF 모델의경우 L2 추골에서 L4, L5 또는천골능으로연결되는다열근 (ML2, MS2, MT2) 의활성도는증가한반면유합된분절인 L4 추골에서천골능으로연결되는다열근 (ML4, MS4) 의활성도가크게감소하였다. DD 모델의경우 L4 추골에서천골능으로연결되는다열근 (ML4, MS4) 뿐만아니라 L3 추골에서 L5 또는천골능으로연결되는다열근 (ML3, MS3) 이크게감소하였다. 이는요추분절의유합후다열근의단면적이감소하는여러임상적추적관찰을통해얻은결과에부합되는결과이다. Motosuneya 등 20 이요추분절의유합

726 / July 2018 한국정밀공학회지제 35 권제 7 호 수술후 1년이상경과된환자의 MRI 측정을통해수술전후의근육의상태를측정한결과등근육 (Back Muscle) 에서 12% 이상위축이발생한것을확인하였으며, Fan 등 21 이관찰한요추부후방유합시술환자의경우에도다열근의단면적이감소하는것을확인하였다. 반면본연구의해석결과에서보이는유합상위분절에부착된다열근의활성도증가는표면근의증가와마찬가지로유합으로인해증가하는상위분절의운동량과추간판수핵의압력을균일화하여척추의안정화를유지하기위한작용으로판단된다. 기존의 In-Vitro 실험및해석연구결과 22,23 에서는유합후굴곡 (Flexion) 모멘트를부과하였을때유합상, 하위분절의운동량과추간판에서발생하는압력이크게증가하는결과를보였다. 그러나본연구의계산결과는 DF 모델의경우인접상위분절의운동량이정상상태에비해감소하였고, DD 모델에서의운동량은증가하는결과를보였다. 두모델의 L3-L4 추간판의압력은정상상태에비해모두증가하였으나두모델의압력차이는크지않음을알수있었다. 본연구에서제안된근골격계모델에서는흉곽에서골반으로연결된척추주변근육의표면근뿐만아니라추골사이를연결하는심층근과흉요근막인장력등을적용하여보다실제적인척추주변근육의작용을모사하였다. 이들근육의작용으로인해추골의움직임이조정되어각운동분절의운동량이조정되고, 추간판의압력이증가된것으로판단된다. 이러한결과로유합인접분절의퇴화여부와상관없이유합후척추주변근육의작용은인접분절의압력을증가시키고, 이로써추가적변성이야기될것으로보인다. 유합인접상위분절에경미한퇴화가존재할경우해당분절을유합한다면정상상태에있는상위추간판에도추가적변성의가능성이존재하게될것이다. 따라서유합인접분절에경미한퇴화가존재하더라도해당분절을유합하지않는것이보다나은임상적결과를도출할수있을것으로판단된다. 본연구에서제안된방법을통해각모델에서요추분절의유합과인접상위분절에경미한퇴화가발생한경우이로인해증가하는인접분절의운동량을조정하는근육력을계산할수있었다. 그러나요추분절의유합으로인해손실된운동량이커질경우인접분절의보상만으로는요구되는자세를형성할수없을것이다. 유합길이가증가할경우요추부의회전뿐만아니라골반의추가적인회전을통해상체의각도가형성될것으로예상되고있다. 유합길이에따른요추분절의운동량변화와골반회전에대한추가적인연구가수행된다면유합시술환자들의척추안정화를위한근육과척추요소의상호작용을명확히분석할수있을것으로판단된다. 5. 결론요추분절의유합과추가적으로인접상위분절에경미한퇴화가존재하는경우에대해기립자세와 60 o 굽힘자세에서척추 안정화를유지하기위한척추주변근육력과흉요근막인장력의변화를계산하였다. 유합분절에작용하는심층근의활성도가감소한반면인접분절에작용하는심층근의활성도는증가되었다. 인접분절에퇴화가존재하는경우에는퇴화된분절에작용하는심층근의활성도가감소하는결과를보였다. 또한유합과퇴화모델에서흉요근막인장력의작용이감소하였다. 이러한척추주변근육의적절한작용을통해요추분절이유합되거나추간판에추가적인퇴화가존재함에도불구하고상체의자세와요추전만각도를유지하는결과를얻을수있었다. 이와같은해석을활용하여척추유합위치및길이, 장치의종류에따른변화등다양한조건에서의척추안정성해석을수행할수있을것으로기대된다. ACKNOWLEDGEMENT 본연구는 2017년도정부 ( 미래창조과학부 ) 의재원으로한국연구재단의지원을받아수행된기초연구사업임 (No. 2015R1A2A2A 01008329). REFERENCES 1. Lee, C. K., Accelerated Degeneration of the Segment Adjacent to a Lumbar Fusion, Spine, Vol. 13, No. 3, pp. 375-377, 1988. 2. Ghiselli, G., Wang, J. C., Bhatia, N. N., Hsu, W. K., and Dawson, E. G., Adjacent Segment Degeneration in the Lumbar Spine, The Journal of Bone and Joint Surgery, Vol. 86, No. 7, pp. 1497-1503, 2004. 3. Park, J. Y., Chin, D. K., and Cho, Y. E., Accelerated L5-S1 Segment Degeneration after Spinal Fusion on and above L4-5: Minimum 4-Year Follow-Up Results, Journal of Korean Neurosurgical Society, Vol. 45, No. 2, p. 81, 2009. 4. Bastian, L., Lange, U., Knop, C., Tusch, G., and Blauth, M., Evaluation of the Mobility of Adjacent Segments after Posterior Thoracolumbar Fixation: A Biomechanical Study, European Spine Journal, Vol. 10, No. 4, pp. 295-300, 2001. 5. Dekutoski, M. B., Schendel, M. J., Ogilvie, J. W., Olsewski, J. M., Wallace, L. J., et al., Comparison of In Vivo and In Vitro Adjacent Segment Motion after Lumbar Fusion, Spine- Hagerstown, Vol. 19, No. 15, pp. 1745-1751, 1994. 6. Park, P., Garton, H. J., Gala, V. C., Hoff, J. T., and McGillicuddy, J. E., Adjacent Segment Disease after Lumbar or Lumbosacral Fusion: Review of the Literature, Spine, Vol. 29, No. 17, pp. 1938-1944, 2004. 7. Shono, Y., Kaneda, K., Abumi, K., McAfee, P. C., and Cunningham, B. W., Stability of Posterior Spinal Instrumentation and Its Effects on Adjacent Motion Segments in the Lumbosacral Spine, Spine, Vol. 23, No. 14, pp. 1550-1558, 1998.

한국정밀공학회지제 35 권제 7 호 July 2018 / 727 8. Battié, M. C., Videman, T., and Parent, E., Lumbar Disc Degeneration: Epidemiology and Genetic Influences, Spine, Vol. 29, No. 23, pp. 2679-2690, 2004. 9. Lee, J. C. and Choi, S.-W., Adjacent Segment Pathology after Lumbar Spinal Fusion, Asian Spine Journal, Vol. 9, No. 5, pp. 807-817, 2015. 10. Lee, C. S., Hwang, C. J., Lee, S.-W., Ahn, Y.-J., Kim, Y.-T., et al., Risk Factors for Adjacent Segment Disease after Lumbar Fusion, European Spine Journal, Vol. 18, No. 11, pp. 1637-1643, 2009. 11. Kim, Y. E. and Choi, H. W., Paraspinal Muscle Activation in Accordance with Mechanoreceptors in the Intervertebral Discs, Proc. of the Institution of Mechanical Engineers, Vol. 227, No. 2, pp. 138-147, 2013. Muscle Changes and Clinical Effects of One-Level Posterior Lumbar Interbody Fusion: Minimally Invasive Procedure Versus Conventional Open Approach, European Spine Journal, Vol. 19, No. 2, pp. 316-324, 2010. 22. Jin, Y. J., Kim, Y. E., Seo, J. H., Choi, H. W., and Jahng, T.-A., Effects of Rod Stiffness and Fusion Mass on the Adjacent Segments after Floating Mono-Segmental Fusion: A Study Using Finite Element Analysis, European Spine Journal, Vol. 22, No. 5, pp. 1066-1077, 2013. 23. Akamaru, T., Kawahara, N., Yoon, S. T., Minamide, A., Kim, K. S., et al., Adjacent Segment Motion after a Simulated Lumbar Fusion in Different Sagittal Alignments: A Biomechanical Analysis, Spine, Vol. 28, No. 14, pp. 1560-1566, 2003. 12. Kim, Y. E. and Choi, H. W., Effect of Disc Degeneration on the Muscle Recruitment Pattern in Upright Posture: A Computational Analysis, Computer Methods in Biomechanics and Biomedical Engineering, Vol. 18, No. 15, pp. 1622-1631, 2015. 13. Kim, Y. E. and Choi, H. W., Does Stabilization of the Degenerative Lumbar Spine Itself Produce Multifidus Atrophy? Medical Engineering and Physics, Vol. 49, pp. 63-70, 2017. 14. Choi, H. W., Kim, Y. E., and Chae, S.-W., Effects of the Level of Mono-Segmental Dynamic Stabilization on the Whole Lumbar Spine, International Journal of Precision Engineering and Manufacturing, Vol. 17, No. 5, pp. 603-611, 2016. 15. Choi, H. W. and Kim, Y. E., Analysis of the Role of Thoracolumbar Fascia for Lumbar Spinal Stability, Journal of the Korean Society for Precision Engineering, Vol. 34, No. 11, pp. 1-6, 2017. 16. Granata, K. P. and Sanford, A. H., Lumbar Pelvic Coordination is Influenced by Lifting Task Parameters, Spine, Vol. 25, No. 11, pp. 1413-1418, 2000. 17. Roberts, S., Eisenstein, S. M., Menage, J., Evans, E. H., and Ashton, I. K., Mechanoreceptors in Intervertebral Discs. Morphology, Distribution, and Neuropeptides, Spine, Vol. 20, No. 24, pp. 2645-2651, 1995. 18. Arjmand, N. and Shirazi-Adl, A., Model and In Vivo Studies on Human Trunk Load Partitioning and Stability in Isometric Forward Flexions, Journal of Biomechanics, Vol. 39, No. 3, pp. 510-521, 2006. 19. Wilke, H.-J., Neef, P., Hinz, B., Seidel, H., and Claes, L., Intradiscal Pressure Together with Anthropometric Data A Data Set for the Validation of Models, Clinical Biomechanics, Vol. 16, pp. S111-S126, 2001. 20. Motosuneya, T., Asazuma, T., Tsuji, T., Watanabe, H., Nakayama, Y., et al., Postoperative Change of the Cross- Sectional Area of Back Musculature after 5 Surgical Procedures as Assessed by Magnetic Resonance Imaging, Clinical Spine Surgery, Vol. 19, No. 5, pp. 318-322, 2006. 21. Fan, S., Hu, Z., Zhao, F., Zhao, X., Huang, Y., et al., Multifidus