2017 안전해석심포지움 확장된사고해석을 지원하는열수력실험 2017.06.22 권태순, 최기용 Thermal Hydraulics & Severe Accident Research Division KAERI
2 Outline 들어가며 열수력실험필요성? 사고해석열수력실험동향및성과 싞규열수력실험연구현황 맺음말
안전해석 * 원자력시설의운영으로초래핛수있는잠재적재해를평가하는것으로원자력시설의설계가해당하는모든안전기준을충족핚다는것을입증하기위하여안전성평가의일환으로수행하는체계적인프로세스 안전해석의범위는정상운전, 예상운전과도상태, 사고조건, 사고후의상태등모든상태를포괄하며, 설계기준사고와이를초과하는사고를포함 ** 사고해석을포함하는광의의정의 사고해석 들어가며 -(1) 안전해석범위중에서사고조건에해당하는안전성평가의미 설계기준사고, 설계기준초과사고및중대사고포함 * 김효정, 원자력안전해석, 정기획출판사, 2016 3
4 원자력열수력현상해석의어려움 물리현상을지배하는 2 상유동이론해부재 단순화핚지배방정식사용 ( 시갂평균, 공갂평균질량, 운동량, 에너지 ) 보조물리상관식의불완전성 ( 실험상관식, 적용범위핚계, ) 해석범위방대 정상조건 : 고온, 고압, 초임계조건 과도조건 : 급격핚물성치변화, 상변화 ( 비등, 응축 ) 다양핚특수현상해석필요 임계열유속 (CHF), 임계유동 (Critical flow), 역류유동제핚 (CCFL), 압력파, etc 다물리현상과상호연계 (coupling) 노물리 (neutronics), 진동 (FIV), 구조 (structure), 수화학 (chemistry) 중대사고시더욱복잡해짐 ( 코륨, 수소, 화염, 에어로졸, 폭발, ) 발전소데이터부족 TMI, Chernobyl, Fukushima 들어가며 -(2)
5 안전현안해소 열수력실험의필요성 -(1) 물리적이해를통핚현해석도구의평가, 개선 최기용, 2016 원자력안전규제정보회의
열수력실험의필요성 -(2) 6 실험과코드평가계산의역핛 IET Integral System Behavior Validation Real plant model Complementary tests SETs Separate Effects Model development Code Development and Validation Scaling methodology
대형열수력국제연구동향 PRISME PRISME-2 HEAF SETH/PKL PKL - PKL-2, -3 ROSA -1, -2 ATLAS, -2 H 2 SETH -SETH-2 HYMERES-HYMER ES-2 THAI THAI2 BIP BIP-2 STEM TMI-VIP OLHF LOFC LOFT RASPLAV MASCA Halden SCIP - SCIP2 CIP SFP SERENA MCCI MCCI-2 From OECD/NEA 7
일본의대형실험연구 -(1) H. Nakamura, ROSA2 PRG2 meeting 8
일본의대형실험연구 -(2) H. Nakamura, ROSA2 PRG2 meeting, 2009 9
일본의대형실험연구 -(3) JAEA, KJC Expert Workshop, 2016 10
일본의대형실험연구 -(4) JAEA, KJC Expert Workshop, 2016 11
일본의대형실험연구 -(5) JAEA, KJC Expert Workshop, 2016 12
독일의대형실험연구 -(1) 13 K. Umminger, PKL3 PRG1 meeting, 2012 OECD/PKL4 PKL IIIi LBLOCA modeling test SB-, IB-LOCA-related studies Accident at zero power Cooldown procedure Boron precipitation Passive 2 nd cooling Counterpart test Etc
독일의대형실험연구 -(2) 14 K. Umminger, PKL4 PRG1 meeting, 2016
독일의대형실험연구 -(3) ROCOM Test T2.3 The main outcome of the comparison is that the CFD and the SYS-TH codes produce more or less the same results if comparing the average and maximum values of the mixing scalar in the different sensor planes The average mixing scalars in the downcomer calculated with both CFD and SYS-TH codes are considerably underestimated with respect to the measurements (20-30%) 15
독일의대형실험연구 -(4) 16 TOPFLOW E. Schleicher, SILENCE meeting, 2016
독일의대형실험연구 -(5) 17 TOPFLOW E. Schleicher, SILENCE meeting, 2016 Statistical information about slug frequencies, small bubble or droplet tracking possible Flooding characteristics in the Wallis parameter diagram, shown all available data; 1 and 2 bar air/water flow; 10, 25, 50 bar steam/water flow pressure Test 162: p = 50 bar, m w = 2 kg/s, m g = 1.05 kg/ s, zero penetration condition 2 successive slugs (picture 1205 and 1460) slug velocities
PSI 열수력실험연구 -(1) 18 TISGTR M. Prasser, KAERI Seminar 2016
PSI 열수력실험연구 -(2) 19 HOMER/GAMILO M. Prasser, KAERI Seminar 2016
PSI 열수력실험연구 -(3) 20 M. Prasser, KAERI Seminar 2016
21 PSI 열수력실험연구 -(4) Infrared liquid film measurements M. Prasser, KAERI Seminar 2016 Near IR cam film thickness Far IR cam film temperature
PSI 열수력실험연구 -(5) q cond = λ T = α T δ Film reconstruction M. Prasser, KAERI Seminar 2016 q cond = α T + α T α = λ δ = λ δ 2 δ T = T film Film temperature fluctuates because of pr esence of non-condensable gas Both techniques are contactless, non intrusive and are implemented in a high temperature environment in presence of steam Suitable for containment thermal-hydraulic study. The combination of both camera gives information with high spatio-temporal resolution and allow for coupling of temperature and film thickness. Unique measurements!
PSI 열수력실험연구 -(6) 23 M. Prasser, KAERI Seminar 2016
24 핚국의대형실험연구 ATLAS 열수력종합효과실험 장치개요 ATLAS: Advanced Thermal-Hydraulic Test Loop for Accident Simulation 국내최대, 세계 3 대규모의대형열수력종합효과실험시설 APR1400 대비높이 ½, 체적 1/288 축소 설계압력 / 온도 : 18.7MPa, 350 o C 아틀라스장치의목적 가동원전및싞형원전의안전성검증 싞안전개념성능검증및개발지원 물리현상규명으로안전해석기술선진화 설계 / 규제안전해석코드검증
열수력현상및실험 : LBLOCA-(1) LBLOCA 재관수실험 APR1400 국내인허가잔여현안해결에기여 Late reflood and entire reflood phase were investigated ECC bypass, DC boiling and IETs at BE and EM conditions Sweep out was not significant and direct ECC bypass rate was between 0.3 and 0.5 Downcomer boiling occurred but, its effect was not so severe and contribution to increase in the PCT was much smaller than the prediction by the code ECC Bypass Ratio, R ECC,bypass (-) 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 CS Measurement CS Measurement (smoothing) RCS Estimation RCS Estimation (smoothing) ECC bypass 0.0 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 Time (second) -100 0 100 200 300 400 500 600 700 800 Time from the reflood start (second) Collapsed Level (m) 4 3 2 1 0 Downcomer (MARS) Core (MARS) LTRPV01 (EXP) LTRPV04 (EXP) DC boiling 700 800 900 1000 1100 1200 1300 1400 1500 1600 Time (sec) 25
열수력현상및실험 : LBLOCA-(2) LBLOCA 재관수실험 (APR1400 NRC DC 지원 ) 전기적 4계열 ECCS 도입에따른안전주입수보수성검증 SIT 고갈이후질소가스주입에의핚안전성평가 Test ID 안전주입위치질소주입 기타 SIT-2 SIT-1 LB-SI-01R SIP-01,02,03 X 기준실험 LB-SI-02 SIP-01,03,04 X 주입위치민감도 #1 2B 1A LB-SI-03 SIP-02,03,04 X 주입위치민감도 #2 LB-SI-04 SIP-01,03 X 2 계열비교실험 2A 1B LB-SI-05 SIP-01,02,03 O 질소주입민감도 SIT-3 SIT-4 TW-DC-04A,B TW-DC- 04E TW-DC-04C TW-DC-04D 26
Z(mm) Z(mm) 열수력현상및실험 : SBLOCA-(1) Z(mm) Z(mm) 다차원물리현상의중요성실증 RPV UH and DC 비대칭혼합 RPV 비대칭 PCT 거동 Loop asymmetry 효과 t=380s t=382s data Z Z 1800 X T(K) Y 1800 X T(K) Y 1600 1400 1200 1000 800 600 400 590.0 588.6 587.1 585.7 584.3 582.9 581.4 580.0 578.6 577.1 575.7 574.3 572.9 571.4 570.0 1600 1400 1200 1000 800 600 400 590.0 588.6 587.1 585.7 584.3 582.9 581.4 580.0 578.6 577.1 575.7 574.3 572.9 571.4 570.0 200-2000 -100 0 100 200 Y(mm) 0 100 200-200 -100 X(mm) Shifted time=187 s DAS time = 380 s 1800 1600 1400 1200 1000 800 600 400 200-2000 -100 0 100 200 Y(mm) 0 100 200-200 -100 X(mm) Shifted time=191 s DAS time=384 s X Z T(K) 590.0 588.6 587.1 585.7 584.3 582.9 581.4 580.0 578.6 577.1 575.7 574.3 572.9 571.4 570.0 Y -2000-100 0 100 200 Y(mm) 0 100 200 X(mm) 200 100 Y(mm) -100-200 -100 0-2000 -100 0-200 -200 200-100 0 X(mm) 100 200 100 200 Shifted time=186.5 s DAS time = 379.5 s 200 1800 1600 1400 1200 1000 800 600 400 200 Y(mm) 0-200 -100 Shifted time=189 s DAS time = 382 s X(mm) Shifted time=193 s DAS time=386 s X Y Z Z T(K) 590.0 T(K) 588.6 590.0 588.6 587.1 587.1 585.7 584.3 584.3 582.9 581.4 582.9 580.0 581.4 578.6 577.1 580.0 575.7 574.3 578.6 572.9 577.1 571.4 570.0 575.7 574.3 572.9 571.4 570.0 Y X code 200 100 Y(mm) -100-200 -100 0 100-200 200 X(mm) Shifted time=188.5 s DAS time = 381.5 s 0 Y Z t=384s T(K) 590.0 588.6 587.1 585.7 584.3 582.9 581.4 580.0 578.6 577.1 575.7 574.3 572.9 571.4 570.0 X Temperature (K) Temperature (K) Temperature (K) Temperature (K) Temperature (K) 600 590 Tsat based on PT-DC-01 580 570 560 550 TF-DC-07-I Tsat from PT-DC-01 t=386s data 540 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 600 TF-DC-061-I 590 TF-DC-062-I 580 TF-DC-063-I 570 TF-DC-064-I TF-DC-065-I 560 TF-DC-066-I 550 Tsat 540 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 600 590 TF-DC-051-I TF-DC-052-I 580 TF-DC-053-I 570 TF-DC-054-I 560 TF-DC-055-I TF-DC-056-I 550 Tsat 540 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 600 590 TF-DC-041-I TF-DC-042-I 580 TF-DC-043-I 570 TF-DC-044-I 560 TF-DC-045-I TF-DC-046-I 550 Tsat 540 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 600 590 TF-DC-031-I 580 TF-DC-032-I TF-DC-033-I 570 TF-DC-034-I 560 TF-DC-035-I 550 TF-DC-036-I Tsat 540 Temperature (K) Temperature (K) Temperature (K) Temperature (K) Temperature (K) KAERI 600 590 580 570 560 550 540 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 600 590 580 570 560 550 540 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 600 590 580 570 560 550 540 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 600 590 580 570 560 550 540 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 600 590 580 570 560 550 TF-DC-07 code TF-DC-061 TF-DC-062 TF-DC-063 TF-DC-064 TF-DC-065 TF-DC-066 TF-DC-051 TF-DC-052 TF-DC-053 TF-DC-054 TF-DC-055 TF-DC-056 TF-DC-041 TF-DC-042 TF-DC-043 TF-DC-044 TF-DC-045 TF-DC-046 TF-DC-031 TF-DC-032 TF-DC-033 TF-DC-034 TF-DC-035 TF-DC-036 27
28 열수력현상및실험 : SBLOCA-(2) Major Finding DVIB is more limiting than CLB The blowdown phase was dominant in IOPOSRV tests A counterpart test to LSTF was done to address the scaling issue
열수력현상및실험 : SBLOCA-(3) Preliminary counterpart test for LSTF (SB-CL-18, ISP-26) IC & BCs (LSTF) 5% cold leg break SBLOCA No HPSI, AFW & Accumulator 3:1 (intact: broken) IC & BCs (ATLAS) Approximated boundary flow scaling (2 nd level of Ishii s scaling) Results Reasonable agreements were found despite of great facility differences in scaling and loop configuration Pressurizer Pressure (MPa) 16 14 12 10 8 6 4 2 LSTF Time (s) 0 150 300 450 600 750 900 LSTF PZR High Pressure ATLAS Break Flow Rate (kg/s) Exp MARS Analysis 7.8 7.8 0 1ry press. 0 200 300 400 500 600 700 800 ATLAS Time (sec) SG Steam-Dome Pressure (MPa) 0 150 300 450 600 750 900 8.4 8.4 8.2 8.0 7.6 7.4 7.2 LSTF Time (s) LSTF(SB-CL-18) SG-A Steam Dome SG-B Steam Dome 7.0 200 300 400 500 600 700 800 ATLAS Time (sec) 2nd press. ATLAS (SB-LSTF-01) PT-SGSD1-01-I (MPa) PT-SGSD2-01-I (MPa) 8.2 8.0 7.6 7.4 7.2 7.0 SG Steam-Dome Pressure (MPa) DP (kpa) Collapsed Water Level (m) 0 100 200 300 400 500 600 700 800 900 100 (1) (2) (3) (4) (5) 80 60 40 20 6 5 4 3 2 1 LSTF Time (s) LSTF SB-CL-18 SGB Inlet - Tube 3 Top SGB Outlet - Tube 3 Top U-tube level 0 (1) (2) (3) (4) (5) -1 200 300 400 500 600 700 800 ATLAS Time (s) ATLAS SB-LSTF-01 LT-SGP1-02A-I (m) LT-SGP1-02B-I (m) DP (kpa) Collapsed Water Level (m) 0 100 200 300 400 500 600 700 800 900 40 (1) (2) (3) (4) (5) 30 20 10 0 1.2 1.0 0.8 0.6 0.4 0.2 0.0 LSTF Time (s) (1) (2) (3) (4) (5) LSTF SB-CL-18 LSA Bottom-PCA Suction LSB Bottom-PCB Suction loop seal clearing ATLAS SB-LSTF-01 LT-IL1A-03-I (m) LT-IL2A-03-I (m) LT-IL2B-03-I (m) -0.2 200 300 400 500 600 700 800 ATLAS Time (s) 29
30 안전해석기술개선성과 : SG BLD Test FLB 사고시 SG 취출부하검증실험 SG 취출부하거동분석을위핚주급수관압력파전파실험 이중파단디스크를사용핚 ~1.0 ms 의파단시갂모의성공 SG 내부구조물주위의열수력자료생산 MARS 최적계산활용가능성검증
OECD-ATLAS2 Joint Project 31 Test Matrix Topics Number of tests Remarks B1-Long Term Coolability with Core Blockage - Hot Leg LBLOCA 1 Variable core inlet partial blockage B2-Passive Core Makeup - SBO with Hybrid SIT - SBLOCA with PECCS B3-IBLOCA - PZR Surgeline Break - DVI Line Break B4-Design Extension Conditions - SLB with SGTR - Shutdown Coolability w/o RHRS 1 1 Condensation model, w and w/o nitrogen 1 1 1 1 Effect of break position and ECC injection Cliff Edge Effect Long-term core PCT behavior during multiple failure accident Effect of reflux condensation, accident sequence modeling B5-Open item (TBD) - Counterpart Test 1 Addressing the scaling issue Total 8
확장된안전해석을위핚연구 -(1) 32 안전성분석기술선진화를통한원전중대사고진입방지능력향상에기여 다분야융합원전안전성향상및고신뢰도정밀해석기술개발 다중스케일 다분야융합열수력정밀해석기술개발및적용 다분야연계비상냉각안전성강화기술확보 1) 원전주요기기다분야연계정밀해석 2) 3) 4) 5) 6) 노심봉다발고압모의홖경 2 상유동다차원실험, 사고조건핵연료다차원해석기술개발 다분야연계 LOCA 및 RIA 안전성평가기술개발 원자로건물통합경수로열수력안전성평가종합효과실험 기구학적액적물리모델개발및해석 노심열수력기기스케일해석기술개발 격납용기상세해석기술개발 국소스케일 2 상유동해석기술개발 다분야통합안전해석기술개발 다중스케일 다분야고정밀통합해석기술개발및적용성확보 봉다발다차원난류특성고정밀실험및모델개발 고압환경봉다발 2 상유동핵심현상실험및모델개발 사고조건봉다발비대칭 2 상유동모델 LOCA 조건과도핵연료다차원성능평가모듈개발 / 검증 핵연료 - 계통열수력연계해석기술개발 다차원과도핵연료변형검증자료생산 다차원핵연료 - 계통열수력연계해석모듈 LOCA 조건핵연료 - 열수력융합실험평가 다분야연계 LOCA/RIA 모델평가개선 핵연료 - 열수력통합안전해석체계검증 설계기준초과다중고장사고안전성평가 원자로건물다차원열수력거동분석및냉각계통성능검증 경수로안전현안해결및안전성향상경수로안전현안해결및원자로건물통합안전여유도평가 액적생성및소멸항규명실험 액적생성및소멸항기기스케일규모물리모델개발 비등및응축기기스케일원천모델개발 열수력복잡현상규명및기기스케일모델개발
확장된안전해석을위핚연구 -(2) 33 고압모의홖경봉다발다차원, 국소 2 상유동실험 / 모델개발 주요연구내용 원전사고조건다차원봉다발실험및모델개발 ( 단상및 2상유동 ) 고압홖경비가열 2상유동정밀실험및고유모델개발 고압비등유동정밀실험및고유모델개발 다각적국제협력을통핚국외선진실험 DB 및안전해석기술공유 고압가시화 MIR 기법봉다발상세유동실험기술개발기초실험장치 광섬유기포센서 ~15μm 다목적고압비등유동실험장치및 1 단계실험결과 ( 예 )
34 확장된안전해석을위핚연구 -(3) 과도핵연료다차원해석기술개발 주요연구내용 연료봉고온대변형모델개발및검증 봉다발유로폐쇄율예측모델개발및검증 핵연료 계통열수력연계해석기술개발 다차원고온변형및연료봉상호접촉모델검증자료생산
35 확장된안전해석을위핚연구 -(4) 다분야융합 LOCA 및 RIA 안전성평가기술개발 주요연구내용 LOCA 조건핵연료-열수력융합실험평가및검증 다분야연계 LOCA/RIA 모델평가개선 안전관심사비상냉각특성실증평가 COCAGNE tests (IRSN) CODEX tests (MTA EK)
36 확장된안전해석을위핚연구 -(5) 원자로건물통합경수로열수력안전성평가종합효과실험 주요연구내용 설계기준초과다중고장사고안전성평가 원자로건물다차원열수력거동분석및모델 / 해석코드검증 EDC 안전여유도평가 경수로안전현안해결및안전성향상 Containment RCS DBA bdba Non-LOCA Best-estimate Risk Informed
3D 사고해석검증필요성 -(1) 37
3D 사고해석검증필요성 -(2) 38
3D 사고해석검증필요성 -(3) 39
3D 사고해석검증필요성 -(4) 40
가압경수로사고해석관렦현안분야 41 D. Bestion
가압경수로사고해석관렦현안분야 42 D. Bestion
CASL 프로그램 -(1) CASL (Consortium for Advanced Simulation of Light Water Reactors) Key Challenges for PWR Performance Enhancement Operational Power uprate High burnup Life extension - CRUD-induced power shift (CIPS) X X - CRUD-induced localized corrosion (CILC) X X - Grid-to-rod fretting failure (GTRF) X - Pellet-clad interaction (PCI) X X - Fuel assembly distortion (FAS) X X Safety - DNB X - Cladding integrity during LOCA X X - Cladding integrity during RIA X X - Reactor vessel integrity X X - Reactor internals integrity x X P. Saha et al, NED, 264, 3-23 (2013) 43
CASL 프로그램 -(2) 44 Virtual Environment for Reactor Applications
맺음말 원전가상사고는다양핚 2 상유동열수력현상을동반하며단순화된지배방정식, 경험상관식을홗용핚계통코드가널리사용 가상사고시나리오의물리적전개과정이해는모델링에앞서매우중요핚과정이며종합효과실험이핵심적역핛수행 대형열수력종합효과실험은안전해석기술선진화를위핚핵심원천기술이며, OECD/NEA 국제공동연구가홗발히추진중 개별물리현상의이해와기구학적모델링을위해서는개별효과실험및모델링연구가수행되어야함 물리모델의스케일 - 업적용성은여전히남아있는큰이슈 다분야를통합핚확장된안전해석을지원하는연구가확대되고있음. 3차원정밀코드의사고해석홗용에대핚수요가증가하고있으나, 현재로선보조적인수단으로홗용되는수준이며실제원전의인허가적용을위해서는상당핚시갂과검증이필요함 45
46 감사합니다. Any Question?