(JBE Vol. 23, No. 1, January 2018) (Regular Paper) 23 1, (JBE Vol. 23, No. 1, January 2018) ISSN 2287

Similar documents
(JBE Vol. 22, No. 5, September 2017) (Regular Paper) 22 5, (JBE Vol. 22, No. 5, September 2017) ISSN

°í¼®ÁÖ Ãâ·Â

1 : UHD (Heekwang Kim et al.: Segment Scheduling Scheme for Efficient Bandwidth Utilization of UHD Contents Streaming in Wireless Environment) (Specia

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

DBPIA-NURIMEDIA

09권오설_ok.hwp

08김현휘_ok.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

2 : (JEM) QTBT (Yong-Uk Yoon et al.: A Fast Decision Method of Quadtree plus Binary Tree (QTBT) Depth in JEM) (Special Paper) 22 5, (JBE Vol. 2

(JBE Vol. 22, No. 5, September 2017) (Special Paper) 22 5, (JBE Vol. 22, No. 5, September 2017) ISSN

2 : 3 (Myeongah Cho et al.: Three-Dimensional Rotation Angle Preprocessing and Weighted Blending for Fast Panoramic Image Method) (Special Paper) 23 2

DBPIA-NURIMEDIA

02손예진_ok.hwp

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

인문사회과학기술융합학회

(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, (JBE Vol. 22, No. 2, March 2017) ISSN

(JBE Vol. 23, No. 6, November 2018) (Special Paper) 23 6, (JBE Vol. 23, No. 6, November 2018) ISSN 2

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

4 : WebRTC P2P DASH (Ju Ho Seo et al.: A transport-history-based peer selection algorithm for P2P-assisted DASH systems based on WebRTC) (Special Pape

À±½Â¿í Ãâ·Â

1 : MPEG-DASH MMT (MinKyu Park et al.: MMT-based Broadcasting Services Combined with MPEG-DASH) (Regular Paper) 20 2, (JBE Vol. 20, No. 2, Marc

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

1 : (Sunmin Lee et al.: Design and Implementation of Indoor Location Recognition System based on Fingerprint and Random Forest)., [1][2]. GPS(Global P

학습영역의 Taxonomy에 기초한 CD-ROM Title의 효과분석

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

DBPIA-NURIMEDIA

(JBE Vol. 23, No. 1, January 2018) (Special Paper) 23 1, (JBE Vol. 23, No. 1, January 2018) ISSN 2287-

03 장태헌.hwp

(JBE Vol. 24, No. 1, January 2019) (Regular Paper) 24 1, (JBE Vol. 24, No. 1, January 2019) ISSN 2287

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

(JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN

(JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN

DBPIA-NURIMEDIA

1. 3DTV Fig. 1. Tentative terrestrial 3DTV broadcasting system. 3D 3DTV. 3DTV ATSC (Advanced Television Sys- tems Committee), 18Mbps [1]. 2D TV (High

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

05( ) CPLV12-04.hwp

(JBE Vol. 22, No. 6, November 2017) (Special Paper) 22 6, (JBE Vol. 22, No. 6, November 2017) ISSN 2

14.531~539(08-037).fm

À¯Çõ Ãâ·Â

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

<313920C0CCB1E2BFF82E687770>

04-다시_고속철도61~80p

03-서연옥.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

1217 WebTrafMon II

2 : (Jaeyoung Kim et al.: A Statistical Approach for Improving the Embedding Capacity of Block Matching based Image Steganography) (Regular Paper) 22

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

06_ÀÌÀçÈÆ¿Ü0926

3 : (Won Jang et al.: Musical Instrument Conversion based Music Ensemble Application Development for Smartphone) (Special Paper) 22 2, (JBE Vol

19_9_767.hwp

04_이근원_21~27.hwp

07변성우_ok.hwp

ÀÌÀç¿ë Ãâ·Â

V28.

(JBE Vol. 21, No. 3, May 2016) HE-AAC v2. DAB+ 120ms..,. DRM+(Digital Radio Mondiale plus) [3] xhe-aac (extended HE-AAC). DRM+ DAB HE-AAC v2 xhe-aac..

0125_ 워크샵 발표자료_완성.key

(JBE Vol. 23, No. 1, January 2018). (VR),. IT (Facebook) (Oculus) VR Gear IT [1].,.,,,,..,,.. ( ) 3,,..,,. [2].,,,.,,. HMD,. HMD,,. TV.....,,,,, 3 3,,

<333820B1E8C8AFBFEB2D5A B8A620C0CCBFEBC7D120BDC7BFDC20C0A7C4A1C3DFC1A42E687770>

6.24-9년 6월

디지털포렌식학회 논문양식

03이승호_ok.hwp

[ReadyToCameral]RUF¹öÆÛ(CSTA02-29).hwp

DBPIA-NURIMEDIA

04 최진규.hwp

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: * Suggestions of Ways

1 : HEVC Rough Mode Decision (Ji Hun Jang et al.: Down Sampling for Fast Rough Mode Decision for a Hardware-based HEVC Intra-frame encoder) (Special P

<31362DB1E8C7FDBFF82DC0FABFB9BBEA20B5B6B8B3BFB5C8ADC0C720B1B8C0FC20B8B6C4C9C6C32E687770>

#Ȳ¿ë¼®

SchoolNet튜토리얼.PDF

45-51 ¹Ú¼ø¸¸

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 26(12),

歯3이화진

<B8F1C2F72E687770>

정보기술응용학회 발표

FMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2

???? 1

<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770>

I

강의지침서 작성 양식

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A528B1E8C1BEB9E8292E687770>

½Éº´È¿ Ãâ·Â

±è¼ºÃ¶ Ãâ·Â-1

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

20(53?)_???_O2O(Online to Offline)??? ???? ??.hwp

09È«¼®¿µ 5~152s

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

3 : ATSC 3.0 (Jeongchang Kim et al.: Study on Synchronization Using Bootstrap Signals for ATSC 3.0 Systems) (Special Paper) 21 6, (JBE Vol. 21

2 : (Juhyeok Mun et al.: Visual Object Tracking by Using Multiple Random Walkers) (Special Paper) 21 6, (JBE Vol. 21, No. 6, November 2016) ht

11이정민

Æ÷Àå½Ã¼³94š

1 : 360 VR (Da-yoon Nam et al.: Color and Illumination Compensation Algorithm for 360 VR Panorama Image) (Special Paper) 24 1, (JBE Vol. 24, No

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

Transcription:

(Regular Paper) 23 1, 2018 1 (JBE Vol. 23, No. 1, January 2018) https://doi.org/10.5909/jbe.2018.23.1.104 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) DASH ANFIS a), a), a) A Video-Quality Control Scheme using ANFIS Architecture in a DASH Environment Ye-Seul Son a), Hyun-Jun Kim a), and Joon-Tae Kim a) HTTP HTTP (HTTP-based Adaptive Streaming : HAS) DASH(Dynamic Adaptive Streaming over HTTP). DASH QoE(Quality of Experience). ANFIS(Adaptive Network based Fuzzy Inference System). ANFIS, VBR(Variable Bit-Rate).. NS-3 QoE. Abstract Recently, as HTTP-based video streaming traffic continues to increase, Dynamic Adaptive Streaming over HTTP(DASH), which is one of the HTTP-based adaptive streaming(has) technologies, is receiving attention. Accordingly, many video quality control techniques have been proposed to provide a high quality of experience(qoe) to clients in a DASH environment. In this paper, we propose a new quality control method using ANFIS(Adaptive Network based Fuzzy Inference System) which is one of the neuro-fuzzy system structure. By using ANFIS, the proposed scheme can find fuzzy parameters that selects the appropriate segment bitrate for clients. Also, considering the characteristic of VBR video, the next segment download time can be more accurately predicted using the actual size of the segment. And, by using this, it adjusts video quality appropriately in the time-varying network. In the simulation using NS-3, we show that the proposed scheme shows higher average segment bitrate and lower number of bitrate-switching than the existing methods and provides improved QoE to the clients. Keyword : MPEG-DASH, Adaptive bitrate streaming, Video-Quality Control, Neuro-Fuzzy System, ANFIS a) (Department of Electronic Engineering, Konkuk University) Corresponding Author : (Joon-Tae Kim) E-mail: jtkim@konkuk.ac.kr Tel: +82-2-450-4269 ORCID: http://orcid.org/0000-0001-6953-5482 Manuscript received October 16, 2017; Revised December 29, 2017; Accepted December 29, 2017. Copyright 2017 Korean Institute of Broadcast and Media Engineers. All rights reserved. This is an Open-Access article distributed under the terms of the Creative Commons BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited and not altered.

2: DASH ANFIS (Ye-Seul Son et al.: A Video-Quality Control Scheme using ANFIS Architecture in a DASH Environment). HTTP [1]. HTTP HAS. HAS. HTTP. HAS MPEG DASH [2][3] DASH [4]-[6]. DASH [7]-[9].,.. VBR. [8] MPD(Media Presentation Description),. SARA. SARA.., [9] FDASH. FDASH (Fuzzy Logic Controller : FLC), f. FDASH NS-3. QoE [10]. FDASH,. DASH. [11]. ANFIS [12]., VBR, SARA.. NS-3 QoE.. ANFIS, ANFIS... ANFIS FLC,

1. ANFIS Fig. 1. The ANFIS architecture,, [11]. [12] [13] ANFIS. 1 ANFIS 5. 1 ANFIS,.,.. (1), (2). exp (1) (2).. 1 (3). (4)... (5).,., (5), (5) 0. (6).

2: DASH ANFIS (Ye-Seul Son et al.: A Video-Quality Control Scheme using ANFIS Architecture in a DASH Environment) ANFIS., [12]. 1. 1. Table 1. The hybrid learning process Type Premise Parameters Consequent Parameters Reference Signal Forward path Fixed Least Squares Estimate Node Outputs Backward path Gradient Descent Fixed Error, ANFIS., ANFIS.. 2 ANFIS DASH QoE. 1 FDASH FLC,.,., FDASH FLC..... 2. ANFIS Fig. 2. The ANFIS structure of the proposed quality control scheme

1. ANFIS 2, 2.,. (7). [9][14][15]. (9). 2. ANFIS Table 2. The ANFIS properties of the proposed scheme Number of Inputs Number of Outputs Number of input membership functions per input Number of fuzzy rules Type of input membership function Type of output membership function 2 1 3 9 Gaussian membership function constant. FDASH,. (10).,,. (8).. (8). SARA.,,,.,, 2.. ANFIS.. 2. ANFIS

2: DASH ANFIS (Ye-Seul Son et al.: A Video-Quality Control Scheme using ANFIS Architecture in a DASH Environment) 3. (a) (b) Fig. 3. The training data extraction environment (a) Long-term change point-to-point link network (b) Periodic Short-term change point-to-point link network. 3 ANFIS,,., ANFIS., ANFIS. 3.. QoE [10].. [8].. NS-3. FDASH SARA,., QoE,, QoE [10][16]. 4 DASH 45, 89, 129, 177, 218, 256, 323, 378, 509, 578, 783, 1000, 1200, 1500, 2100 2400, 2900, 3300, 3600, 3900Kbps. 35 30. FDASH 20 SARA 8, 20, 30. DASH, DASH 5 TCP Wi-Fi,

. 1. ANFIS 4, 5. 4. 5 ANFIS., ANFIS.,. 2. 4. Fig. 4. The trained fuzzy membership functions 5. Fig. 5. The comparison of training data and trained data 5 Wi-Fi. 5 6. 6 SARA, FDASH, (a), (b). 6 FDASH..,,, FDASH 50. FDASH 40 60. SARA. SARA,.

2: DASH ANFIS (Ye-Seul Son et al.: A Video-Quality Control Scheme using ANFIS Architecture in a DASH Environment) 6. Wi-Fi (a) (b) Fig. 6. The simulation results in Wi-Fi environment (a) segment bitrate (b) client buffer level

,. SARA 125, 145, 230, 300 250, 200. QoE [10].., SARA.. QoE., 3. 3 5 2.529Mbps, 13.6, 0. FDASH 2.13164Mbps, 16.6. FDASH. FDASH 90 1. SARA 2.5048 Mbps 46.8, 0.,, SARA. QoE [10]. SARA SARA 3. Table 3. The Quantitative Simulation Results Algorithm SARA FDASH Proposed Scheme Average Segment Bitrate (Mbps) Number of Segment Bitrate Switching Number of Interruption 1 2.6795 46 0 2 2.3568 56 0 3 2.4624 50 0 4 2.6563 34 0 5 2.3690 48 0 1 1.9197 19 0 2 2.1179 22 1 3 2.2979 14 0 4 2.5314 15 0 5 1.7914 13 0 1 2.4968 12 0 2 2.3380 16 0 3 2.1129 10 0 4 3.1251 14 0 5 2.5722 16 0

2: DASH ANFIS (Ye-Seul Son et al.: A Video-Quality Control Scheme using ANFIS Architecture in a DASH Environment) QoE.. ANFIS DASH. FDASH, ANFIS. VBR,,.. QoE,, NS-3. QoE. (References) [1] SANDVINE, IU, 2016 Global Internet Phenomena Report. North America and Latin America, 2016. [2] ISO/IEC 23009-1:2014 (Second edition), Information technology Dynamic adaptive streaming over HTTP (DASH) Part 1: Media presentation description and segment formats, 2014. [3] T. Stockhammer, "Dynamic adaptive streaming over HTTP--: standards and design principles," Proceedings of the second annual ACM conference on Multimedia systems, San Jose, CA, USA, pp.133-144, 2011. [4] M. Park and Y. Kim, "MMT-based Broadcasting Services Combined with MPEG-DASH," Journal of Broadcast Engineering, Vol.20, No.2, pp.283-299, March 2015. [5] K. Yun, W. Cheong, J. Lee, and K. Kim, "Design and Implementation of Hybrid Network Associated 3D Video Broadcasting System," Journal of Broadcast Engineering, Vol.19, No.5, pp.687-698, September 2014. [6] Y. Kim, and M. Park, "MPEG-DASH Services for 3D Contents Based on DMB AF," Journal of Broadcast Engineering, Vol.18, No.1, January 2013. [7] H. Kim, Y. Son, and J. Kim, "A Modification of The Fuzzy Logic Based DASH Adaptation Algorithm for Performance Improvement," Journal of Broadcast Engineering, Vol. 22, No. 5, September 2017. [8] P. Juluri, V. Tamarapalli, and D. Medhi, "SARA : Segment aware rate adaptation algorithm for dynamic adaptive streaming over HTTP," Proceedings of Communication Workshop (ICCW), 2015 IEEE International Conference on, London, UK, pp.1765-1770, 2015. [9] DJ. Vergados, A. Michalas, and A. Sgora, "FDASH: A Fuzzy-Based MPEG/DASH Adaptation Algorithm," IEEE System Journal, Vol.10, No.2, pp.859-868, 2016. [10] L. Yitong, S. Yun, M. Yinian, L. Jing, L. Qi, and Y. Dacheng, A study on quality of experience for adaptive streaming service, Proceedings of Communications Workshops (ICC), 2013 IEEE International Conference on, Budapest, Hungary, pp.682-686, 2013. [11] CT. Lin, and CSG. Lee, "Neural-network-based fuzzy logic control and decision system," IEEE Transactions on computers, Vol.40, No.12, pp.1320-1336, December 1991. [12] JSR. Jang, "ANFIS: adaptive-network-based fuzzy inference system," IEEE transactions on systems, man, and cybernetics, Vol.23, No.3, pp.665-685, May/June 1993. [13] T. Takagi, and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," IEEE transactions on systems, man, and cybernetics, Vol.SMC-15, No.1, pp.116-132, January- February 1985. [14] Q. He, C. Dovrolis, and M. Ammar. "On the predictability of large transfer TCP throughput," ACM SIGCOMM Computer Communication Review. Vol. 35, No. 4, pp.145-156, August, 2005. [15] J. Jiang, V. Sekar, and H. Zhang, Improving fairness, efficiency, and stability in http-based adaptive video streaming with festive, Proceedings of the 8th international conference on Emerging networking experiments and technologies, Nice, France, pp.97-108, 2012. [16] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hobfeld, and P. Tran-Gia, "A Survey on Quality of Experience of HTTP Adaptive Streaming," IEEE Communications Surveys & Tutorials, Vol.17, No.1, March 2015.

- 2017 : - 2017 ~ : - ORCID : http://orcid.org/0000-0001-8048-9966 - :, - 2017 : - 2017 ~ : - ORCID : http://orcid.org/0000-0001-5457-8957 - :,, - 1990 : - 1993 : - 1998 : - 1998 ~ 2003 : LG DTV - 2003 ~ : - ORCID : http://orcid.org/0000-0001-6953-5482 - : & TV,