1) Á¦Ãâ¹®, Á¦1,2Àå.hwp



Similar documents
Development of culture technic for practical cultivation under structure in Gastrodia elate Blume

PJTROHMPCJPS.hwp


저작자표시 - 동일조건변경허락 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 이저작물을영리목적으로이용할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원

1


10(1)-08.fm

<C3D6C1BEBAB8B0EDBCAD28BCD5BBF3B8F1292E687770>

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

Electropure EDI OEM Presentation

(2) : :, α. α (3)., (3). α α (4) (4). (3). (1) (2) Antoine. (5) (6) 80, α =181.08kPa, =47.38kPa.. Figure 1.

X-VA-MT3809G-MT3810G-kor

보고서(겉표지).PDF

특허청구의 범위 청구항 1 도로, 주차장, 고가교량, 빌딩, 하폐수처리장의 배수부를 통해 유입되는 오염수를 수질정화시스템에 공급하는 오염수유입부와; 상기 오염수유입부에 연결되어 공급된 오염수 중에 함유된 비중 큰 토사류 및 고형물류와 입 자가 큰 협잡물, 각종 쓰레기

(specifications) 3 ~ 10 (introduction) 11 (storage bin) 11 (legs) 11 (important operating requirements) 11 (location selection) 12 (storage bin) 12 (i

DBPIA-NURIMEDIA

?????????????????2009-????????

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

(Table of Contents) 2 (Specifications) 3 ~ 10 (Introduction) 11 (Storage Bins) 11 (Legs) 11 (Important Operating Requirements) 11 (Location Selection)

<BACEBDBAC5CD20BAEAB7CEBCC52D A2DC3D6C1BE2D312D E6169>

?

Elix 3 Elix 5 Elix 10 RiOs 3 RiOs 5 RiOs 8 RiOs 16!.. MILLIPORE

02 Reihe bis 750 bar GB-9.03

intro

ISO17025.PDF


< C6AFC1FD28B1C7C7F5C1DF292E687770>

untitled

2015 경제ㆍ재정수첩

PD-659_SM(new)

CD-6208_SM(new)

x4- Manualb61¹³»¿ëš

유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

歯RCM

Microsoft Word be5c80390b52.docx


......

한약재품질표준화연구사업단 단삼 ( 丹參 ) Salviae Miltiorrhizae Radix 생약연구과

포도.PDF

b77¹¼úÁ¤º¸š

UDP Flooding Attack 공격과 방어

歯49손욱.PDF

09È«¼®¿µ 5~152s

PowerPoint 프레젠테이션

BSC Discussion 1

82-01.fm

04조남훈

1.HWP

Subject : 귀사의 일익번창하심을 진심으로 기원합니다.

Microsoft Word - USB복사기.doc

DBPIA-NURIMEDIA

012임수진

<C7D1BDC4BFAC20B1E8B5BFBCF6B9DABBE7B4D4676C75636F20C3D6C1BE5B315D2E687770>

16_이주용_155~163.hwp

15<C624><D22C><C911><B4F1><ACFC><D559><2460>-2_<AD50><C0AC><C6A9><D2B9><BCC4><BD80><B85D>.pdf


슬라이드 제목 없음

DBPIA-NURIMEDIA

( )실험계획법-머리말 ok

DBPIA-NURIMEDIA

전용]

제 1 장 정수처리 개요

(3) () () LOSS LOSS LOSS LOSS (4) = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100

환경중잔류의약물질대사체분석방법확립에 관한연구 (Ⅱ) - 테트라사이클린계항생제 - 환경건강연구부화학물질연구과,,,,,, Ⅱ 2010

Statistical Data of Dementia.

歯국문-Heatran소개자료1111.PDF

γ

- 2 -

책임연구기관

열린마루-7월.indd

푸른21탄소중립행사내지확정

한약재품질표준화연구사업단 작약 ( 芍藥 ) Paeoniae Radix 생약연구과

(....).hwp

ETC Electrolytic Technologies Corporation Electrolytic Technologies Corporation (ETC) (High Strength Sodium Hypochlorite). ETC.,. ETC,,. - (Cl2) (NaOH

저작자표시 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 이저작물을영리목적으로이용할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니

93-09.fm

10 (10.1) (10.2),,

10(3)-10.fm

Prologue 01 마그네슘 합금의 장점 및 적용 분야 02 다이캐스팅 이란? 1. About 장원테크 01 Company Overview 02 사업영역 핵심기술력 04 국내 사업장 05 베트남 법인 06 업계 Top Tier 고객사 확보 2. Cash-Cow 모바일

(......).hwp

Microsoft Word - SRA-Series Manual.doc

슬라이드 제목 없음


01_피부과Part-01

PDF

년AQM보고서_Capss2Smoke-자체.hwp


DBPIA-NURIMEDIA

e hwp

05Çѱ۳»Áö11

10(3)-12.fm

(132~173)4단원-ok

歯140김광락.PDF

KAERIAR hwp


, ( ) 1) *.. I. (batch). (production planning). (downstream stage) (stockout).... (endangered). (utilization). *

<C3D6C1BEBAB8B0EDBCAD2E687770>

<C8ADB7C220C5E4C3EBC0E52E687770>

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

ETL_project_best_practice1.ppt

Transcription:

CONTENTS SUMMARY (Korea)-----------------------------------------------------ⅰ SUMMARY (English)---------------------------------------------------ⅴⅱ Contents (English)--------------------------------------------------ⅹⅲ Contents (Korea)----------------------------------------------------ⅹⅴ List of Tables------------------------------------------------------ⅹⅴⅲ List of Figures-----------------------------------------------------ⅹⅹ Chapter 1. Introduction--------------------------------------------1 Section 1. Objectives and Contents------------------------------1 1. Objectives--------------------------------------------------1 2. Contents Scope----------------------------------------------4 Section 2. Annual objectives and contents-----------------------7 Chapter 2. International technical development trends---------------8 Section 1. Two-stage hybrid ASBF system--------------------------8 Section 2. Isolation and mass production of ammonia-resistant anaerobic microorganism-----------------------------------11 Section 3. Removal of nutrients and utilization of biomass as a biofertilizer--------------------------------------------12 Chapter 3. Development of two-stage hybrid ASBF system--------------17 Section 1. Experimental set-up and method------------------------17 1. Characteristics of swine wastewaters------------------------17 2. Optimization of lab-scale anaerobic bioreactors-------------17 3. Full-scale two-stage hybrid ASBF system---------------------26 Section 2. Results and discussion--------------------------------27 1. Characteristics of swine wastewaters------------------------27 2. Optimization of lab-scale anaerobic bioreactors-------------29 3. Full-scale two-stage hybrid ASBF system---------------------53

Section 3. Conclusions-------------------------------------------75 Chapter 4. Isolation and mass production of ammonia-resistant anaerobic microorganism------------------------------------78 Section 1. Isolation of ammonia-resistant anaerobic microorganism------------------------------------------79 Section 2. Characterization and determination of growth conditions for ammonia-resistant anaerobic microorganisms-----------------------------------------84 Section 3. Influence of ammonia on anaerobic microorganism-------86 Section 4. Mass production of ammonia-resistant anaerobic microorganism------------------------------------------87 Section 5. Conclusions-------------------------------------------88 Chapter 5. Removal of nutrients and utilization of biomass as a biofertilizer----------------------------------------------89 Section 1. Introduction------------------------------------------89 Section 2. Experimental set-up and methods-----------------------90 Section 3. Results and discussions-------------------------------94 Section 4. Conclusions-------------------------------------------110 Chapter 6. Technical achievements and contributions ----------------111 Chapter 7. Field application plans of the results ------------------115 Chapter 8. Technical information obtained during R&D ---------------117 Chapter 9. References-----------------------------------------------127

목 차 요약문--------------------------------------------------------------ⅰ SUMMARY-----------------------------------------------------------ⅴⅱ 영문목차----------------------------------------------------------ⅹⅲ 국문목차-----------------------------------------------------------ⅹⅴ 표 목차-------------------------------------------------------------ⅹⅴⅲ 그림 목차-----------------------------------------------------------ⅹⅹ 제 1 장 연구개발 과제의 개요----------------------------------------1 제 1 절 연구개발의 목표 및 내용-----------------------------------1 1. 연구개발의 목표-----------------------------------------------1 2. 연구개발 내용 및 범위-----------------------------------------4 제 2 절 연차별 연구개발 내용 및 범위------------------------------7 제 2 장 국내 외 기술개발 현황-------------------------------------8 제 1 절 이단 혼합형 ASBF system에 대한 기술-----------------------8 제 2 절 암모니아 내성 혐기성 미생물의 분리 및 대량배양------------11 제 3 절 생물학적 N,P 제거 및 균체 이용방안------------------------12 제 3 장 이단 혼합형 혐기성 소화공정의 개발--------------------------17 제 1 절 실험장치 및 방법------------------------------------------17 1. 축산폐수의 발생량과 특성--------------------------------------17 2. Lab-scale 혐기성 소화공정의 구성과 최적화 연구----------------17 가. 미디어 종류 및 깊이 그리고 이단화에 따른 소화공정의 최적화-----------------------------------------------------17 나. 이단 혼합형 혐기성 소화공정의 최적화-----------------------21 3. Full-scale 이단 혼합형 ASBF system에 대한 연구----------------26 제 2 절 결과 및 고찰----------------------------------------------27 1. 축산폐수의 발생량과 특성--------------------------------------27 2. Lab-scale 혐기성 소화공정의 구성과 최적화 연구----------------29 가. 이단화와 filter media에 대한 영향--------------------------29 나. Lab-scale 이단 혼합형 ASBF 생물반응기 공정의 최적화--------32 1) 인공폐수에 의한 고유기물 부하에서 이단 혼합형 ASBF

생물반응기의 성능-----------------------------------------32 가) 혐기성 미생물의 환경조건-------------------------------32 나) 유기물질 제거 효율-------------------------------------33 다) 혐기성 미생물에 대한 영양염류--------------------------37 라) Biogas production--------------------------------------40 마) 생물 반응기내 Biomass의 보유능력-----------------------40 2) Lab-scale 이단 혼합형 ASBF 생물반응기의 축산폐수에 응용------------------------------------------------------43 가) 혐기성 미생물의 환경조건-------------------------------43 나) 축산폐수의 유기물질 제거 효율--------------------------44 다) 혐기성 미생물에 대한 영양염류--------------------------48 라) Biogas production--------------------------------------49 마) 생물반응기내 Biomass 보유능력--------------------------51 바) 이단 혼합형 ASBF 생물반응기의 유입수에 대한 성능비교-----------------------------------------------51 3. Full-scale 이단 혼합형 ASBF system----------------------------53 가. 암모니아 제거와 막분리 공정--------------------------------54 나. Full-scale(실증용) 이단 혼합형 ASBF system-----------------56 1) 이단 혼합형 ASBF system의 설계----------------------------56 2) System의 제작 및 시운전-----------------------------------69 제 3 절 결론------------------------------------------------------75 제 4 장 암모니아 내성 혐기성미생물의 분리 및 대량배양--------------78 제 1 절 암모니아 내성 혐기성 미생물의 분리------------------------79 1. 실험장치 및 방법----------------------------------------------79 2. 분석방법------------------------------------------------------81 3. 혐기성 미생물의 MCR 반응기에서의 적응-------------------------81 제 2 절 혐기성 미생물의 생리적 특성 및 생육조건 확립--------------84 1. 정상상태에서 암모니아 농도에 따른 영향------------------------84 2. 혐기성 미생물의 생육조건--------------------------------------85 제 3 절 암모니아 내성 혐기성 미생물에 대한 독성/저해 영향 분석---------------------------------------------------86 제 4 절 암모니아 내성 혐기성 미생물의 대량 배양-------------------87 제 5 절 결론------------------------------------------------------88

제 5 장 생물학적 N,P 제거 및 균체 이용방안--------------------------89 제 1 절 서론------------------------------------------------------89 제 2 절 실험 장치 및 방법-----------------------------------------90 제 3 절 결과 및 고찰----------------------------------------------94 제 4 절 결론------------------------------------------------------110 제 6 장 목표달성 및 관련 분야 기여도--------------------------------111 제 7 장 연구개발 결과의 활용 계획-----------------------------------115 제 8 장 연구개발 과정에서 수집한 해외과학 기술정보------------------117 제 9 장 참고문헌----------------------------------------------------127

표 목차 (List of Table) Table 1-1. General characteristics of different types of wastewaters(ww)----------------------------------------------1 Table 1-2. Characteristics of swine wastewaters collected form 27 pig farms----------------------------------------------------2 Table 1-3. Discharge limitations for public swine wastewater treatment plants---------------------------------------------3 Table 3-1. Characteristics of filter media used in filter bioreactors------------------------------------------------18 Table 3-2. Operational strategies for anaerobic bioreactors---------20 Table 3-3. Characteristics of swine wastewater used as an influent of filter bioreactors--------------------------------------21 Table 3-4. Composition of nutrient/mineral/buffer(n/m/b) medium-----24 Table 3-5. Characteristics of swine wastewaters used as an influent of lab-scale two-stage ASBF bioreactors collected from A-San city's public swine wastewater treatment plant-------24 Table 3-6. Influent characteristics of two-stage ASBF-C bioreactor--25 Table 3-7. Influent characteristics of two-stage ASBF-SW bioreactor-25 Table 3-8. General characteristics of swine wastewaters sampled from 27 pig farmers during July 2000 - May 2001------------28 Table 3-9. Performance comparison of anaerobic bioreactors at the steady-state conditions-------------------------------37 Table 3-10. Perfomance comparison of anaerobic bioreactors at the steady-state conditions-----------------------------------46 Table 3-11. Performance comparison of anaerobic bioreactors at the steady-state condition---------------------------------52 Table 3-12. Monitoring 10 m 3 /d full-scale two stage hybrid ASBF system during the 2 months of start-up operation-----------74 Table 4-1. Composition of Nutrient/Mineral/Buffer (N/M/B) medium----80 Table 4-2. Comparison of operational parameters of MCR-1 and -2 after addition of ammonia to reactors before and after adaptation on ammonia----------------------------------------85

Table 4-3. Performance comparison of MCR-1 and -2 after addition of ammonia to reactors before and after adaptation on ammonia---86 Table 5-1. Effect of carbon source on nitrogenase activity of Nostoc HN601 isolated from rice field----------------------98 Table 5-2. Effect of carbon source on nitrogenase activity of Anabaena HA701 isolated from rice field--------------------98 Table 5-3. Effect of nitrogen source on nitrogenase activity of Nostoc HN601 isolated from rice field----------------------99 Table 5-4. Effect of nitrogen source on nitrogenase activity of Anabaena HA701 isolated from rice field--------------------99 Table 5-5. Comparison of total nitrogen and phosphorus content in cyanobacteria isolated from paddy soil---------------------100 Table 5-6. 논 토양에서 분리한 Anabaena sp. 와 Nostoc sp.의 Chlorophyll 함량의 경시적 변화-----------------------------101 Table 5-7. 국내 논 토양에서 분리한 Anabaena와 Nostoc의 생육 배지의 인산농도 변화----------------------------------------------102 Table 5-8. 국내 논 토양에서 분리한 Anabaena와 Nostoc의 생육 배지의 질산농도 변화----------------------------------------------103 Table 5-9. Nostoc HN601의 생육에 미치는 ph의 영향-------------------104 Table 5-10. Nostoc HN601의 배지 인산제거에 미치는 ph의 영향---------104 Table 5-11. Nostoc HN601의 질소 제거에 미치는 ph의 영향-------------104 Table 5-12. 미생물 처리에 따른 상추의 지상부 무게(g)와 상추의 잎 100cm2 당 무게 (g)-------------------------------------------109 Table 6-1. 세부과제별 목표 달성 내용 달성도-------------------------112

그림 목차 (List of Figures) Figure 1-1. Conceptual schematics of biological advanced treatment system and recovery system of treatment by-products-------3 Figure 3-1. Schematics of lab-scale anaerobic bioreactros-----------19 Figure 3-2. Schematics of lab-scale two-stage ASBF bioreactors------22 Figure 3-3. COD removal efficiency of lab-scale anaerobic bioreactor------------------------------------------------30 Figure 3-4. Effluent ph and alkalinity of lab-scale anaerobic bioreactors-----------------------------------------------30 Figure 3-5. Effluent T-N of lab-scale anaerobic bioreactors---------31 Figure 3-6. Effluent T-P of lab-scale anaerobic bioreactors---------31 Figure 3-7. Effluent ph and alkalinity since the start-up operation-33 Figure 3-8. Effluent COD concentration since the start-up operation-34 Figure 3-9. Effluent COD removal efficiency since the start-up operation-------------------------------------------------34 Figure 3-10. Effluent VFAs concentration since the start-up operation-------------------------------------------------36 Figure 3-11. Steady-state COD removal efficiency at different OLRs--36 Figure 3-12. Effluent TKN concentration since the start-up operation---------------------------------------------------38 Figure 3-13. Effluent T-Pconcentration since the start-up operation-------------------------------------------------38 Figure 3-14. Cumulative gas production & CH 4 composition since the start-up operation------------------------------------39 Figure 3-15. Effluent TSS & VSS concentration since the start-up operation-------------------------------------------------42 Figure 3-16. Steady-state COD profile throughout bioreactor height at different OLRs-----------------------------------------42 Figure 3-17. Effluent ph and Alkalinity since the start-up operation-------------------------------------------------43 Figure 3-18. Effluent COD concentration since the start-up operation-------------------------------------------------45

Figure 3-19. Effluent COD removal efficiency since the start-up operation-------------------------------------------------45 Figure 3-20. Effluent VFAs concentration since the start-up operation-------------------------------------------------47 Figure 3-21. Steady-state COD removal efficiency at different OLRs--47 Figure 3-22. Effluent TKN concentration since the start-up operation-------------------------------------------------48 Figure 3-23. Effluent T-P concentration since the start-up operation-------------------------------------------------49 Figure 3-24. Cumulative gas production & CH4 composition since the start-up operation----------------------------------------50 Figure 3-25. Effluent TSS/VSS concentration since the start-up operation-------------------------------------------------51 Figure 3-26. TCF-10 ultrafiltration system to fractionate organic matter in swine wastewaters based on size(molecular weight cut-off)-------------------------------------------55 Figure 3-27. Size distributions based on molecular weight cut-off of organic matter in swine wastewaters of two-stage ASBF bioreactors-----------------------------------------------55 Figure 3-28. Conceptual schematics of two-stage ASBF system with ammonia removal pretreatment and membrane process for effluent polishing ---------------------------------------56 Figure 3-29. Flow sheet of two-stage ASBF system--------------------57 Figure 3-30. PID of two-stage ASBF system---------------------------58 Figure 3-31. Electrical diagram of two-stage ASBF system------------59 Figure 3-32. Design of V-notch of two-stage ASBF system-------------60 Figure 3-33. Design of flocculation tank of two-stage ASBF system---61 Figure 3-34. Design of precipitation tank of two-stage ASBF system--62 Figure 3-35. Design of heat exchanger of two-stage ASBF system------63 Figure 3-36. Design of 1st anaerobic bioreactor of two-stage ASBF system----------------------------------------------------64 Figure 3-37. Design of 2nd anaerobic bioreactor of two-stage ASBF system----------------------------------------------------65 Figure 3-38. Design of holding tank for MF of two-stage ASBF system----------------------------------------------------66

Figure 3-39. Design of holding tank for NF of two-stage ASBF system----------------------------------------------------67 Figure 3-40. Design of nanofiltration of full scale two-stage ASBF system----------------------------------------------------68 Figure 3-41. View of pig farm and two-stage ASBF system in containment-70 Figure 3-42. Front part of two-stage ASBF system (From right, reaction tank with 2 chemical tanks with pumps, sedimentation tank, heater exchanger)---------------------70 Figure 3-43. Detailed pictures of front part of two-stage ASBF system (From bottom to top : reaction tank with two chemical tanks with pump, sedimentation tank, and pre heater tank)----------------------------------------------71 Figure 3-44. Two-stage ASBF bioreactors with two mono pumps and control system--------------------------------------------72 Figure 3-45. NF membrane system with control panel------------------73 Figure 4-1. Configuration of master culture reactor(mcr)--------------80 Figure 4-2. Patterns of COD removal and gas production during adaptation on batch operation of MCR-1---------------------82 Figure 4-3. Patterns of COD removal and gas production during adaptation on batch operation of MCR-2---------------------83 Figure 4-4. Patterns of COD removal and gas production after addition of ammonia to MCR at steady-state operations------84 Figure 4-5. Mixed Bioreactor(1 m 3 ) made from FRP--------------------87 Figure 5-1. 공기 주입량이 Nostoc HN601 생육시 폐액의 질소 제거에 미치는 영향 (2L 배양, 1차 여과 원액)-----------------------105 Figure 5-2. 공기 주입량이 Nostoc HN601 생육시 폐액의 질소 제거에 미치는 영향 (9L 배양, 1차 여과 원액)-----------------------106 Figure 5-3. 공기 주입량이 Nostoc HN601 생육시 희석 폐액(2배)의 질소 제거에 미치는 영향 (1.5L 배양, 1차 여과 2배 희석액)--------107 Figure 5-4. 공기 주입량이 Nostoc HN601 생육시 희석 폐액(2배)의 질소 제거에 미치는 영향 (7L 배양, 1차 여과 2배 희석액)----------108

W a ter S e al CH 4 WGM Pall Ring Pall Ring E fflu en t Swine W astew ater Tubing Pum p 균 체 이 단 혼 합 형 혐 기 성 소 화 생 물 학 적 N, P 제 거

제 3 절 생물학적 N,P 제거 및 균체 이용방안

UASB Reactor AF Reactor Two-Stage AF Two-Stage SP Two-Stage MO Biogas Biogas 35 C Chamber Wet Gas Meter Wet Gas Meter Biogas Biogas Biogas GSS Effluent Effluent 35 C Chamber Wet Gas Meter Wet Gas Meter Wet Gas Meter # 8 # 8 # 7 # 7 Effluent Effluent Effluent # 6 # 6 # 5 # 5 #4 #8 #4 #8 #4 #8 Pall Ring Pall Ring Sponge Sponge Module Module # 4 # 4 #3 #7 #3 #7 #3 #7 # 3 # 3 #2 #6 #2 #6 #2 #6 # 2 # 2 Influent #1 #5 Sampling Influent #1 #5 Sampling Influent #1 #5 Sampling Port Port Port Influent # 1 Sampling Port Influent # 1 Sampling Port Pump Pump Pump Pump Pump

Wet Gas Meter 유출 Pall Ring Pall Ring 60cm 유입 Tubing Pump 16cm D 19cm 1단소화조 2단소화조

100 Effluent COD Removal Efficiency(%) 80 60 40 20 0 AF Hy brid-sp Hy brid-pr 0 50 100 150 200 250 Time since Operation(days) AF Alkal. Hybrid-SP Alkal. Hybrid-PR Alkal. AF ph Hybrid-SP ph Hybrid-PR ph 14000 12 Effluent Alkalinity (mg/l as CaCO 3) 12000 10000 8000 6000 4000 11 10 9 8 7 Effluent ph 2000 6 0 0 50 100 150 200 250 Time since Operation(days) 5

4000 3000 Influent Hybrid-SP AF Hybrid-PR Effluent TKN(mg/L) 2000 1000 0 0 50 100 150 200 250 Time since Operation(days) 2000 1500 Influent Hybrid-SP AF Hybrid-PR Effluent TP (mg/l) 1000 500 0 0 50 100 150 200 250 Time since Operation(days)

ASBF-C1 alka ASBF-C2alka ASBF-C1pH ASBF-C2pH Alkalinity(mg/L as CaCO 3) 5000 4000 3000 2000 1000 0 Phase I II III IV Phase V 10 9 8 7 6 5 4 3 2 1 0 0 50 100 150 200 250 300 350 400 Time since operation(days) ph

12000 10000 Influent COD ASBF-C2 Phase I II III IV Phase V COD concentration(mg/l) 8000 6000 4000 2000 0 0 50 100 150 200 250 300 350 Time Since Operation(days) 100% Phase I II III IV Phase V 90% 80% COD Removal(%) 70% 60% 50% 40% 30% 20% 10% 0% 0 50 100 150 200 250 300 350 Time Since Operation(days)

6000 ASBF-C1 ASBF-C2 5000 VFA conc.(mg/l as acetic acid) 4000 3000 2000 1000 0 0 50 100 150 200 250 300 350 time since operation(days) COD Removal Efficiency(%) 100 90 80 70 60 50 40 2 4 5 6 10 Organic Loading Rate(kgCOD/m 3 -d) after recover

2 4 6 10 5 OLRs (Phase I) (Phase II) (Phase III) (Phase IV) (Phase V) (kgcod/ m 3 d) COD Val(%) Gas Produ-ction Remo- Gas Production COD Remo- Val(%) Gas Production COD Remo- Val(%) Gas Produ- Ction COD Remo- Val(%) COD Remo- Val(%) Gas Produ-ction ASBF-C 94.4 0.483 0.442 0.431 0.559 91.4 87.5 49.7 90.8 (-) (0.232) (0.203) (0.185) 0.492 (0.195) *( )은 CH4 yield(m3/kg COD removed) * biogas production(m3/kg COD removed)

TKN(mg/L) 2000 1800 Phase I II III IV Phase V 1600 1400 1200 1000 800 600 400 200 0 0 50 100 150 200 250 300 350 Time since operation(days) Effluent TP concentration(mg/l) 500 450 Phase I II III IV Phase V 400 350 300 250 200 150 100 50 0 0 50 100 150 200 250 300 350 Time since operation(days)

16000 Phase I II III IV Phase V Cumulative gas production(l) 14000 12000 10000 8000 6000 4000 2000 0 0 50 100 150 200 250 300 350 Time since operation(days) 60 Phase I II III IV Phase V 50 CH 4 함유율(%) 40 30 20 10 0 0 50 100 150 200 250 300 350 400 time since operation(days)

ASBF-C2 TSS ASBF-C2 VSS TSS/VSS(mg/L) 5000 4500 Phase I II III IV Phase V 4000 3500 3000 2500 2000 1500 1000 500 0 0 50 100 150 200 250 300 350 400 Time since operation(days) 35,000 2kgCOD/ m3.d 4kgCOD/ m3.d VSS concentration(mg/l) 30,000 25,000 20,000 15,000 10,000 5,000 0 E1-10 E1-20 E1-30 E1-40 E2-10 E2-20 E2-30 E2-40 Bioreactor height(cm)

Alkalinity(mg/L as CaCO 3) 6000 5000 4000 3000 2000 1000 0 ASBF-SWl Alkali ASBF-SW2 Alkali ASBF-SW1 ph ASBF-SW2 ph 10 9 8 7 6 5 4 3 2 1 0 0 50 100 150 200 250 300 350 Time since operation(days) ph

12000 Influent COD ASBF-C2 10000 COD concentration(mg/l) 8000 6000 4000 2000 0 0 50 100 150 200 250 300 350 Time Since Operation(days)

120% 100% COD Removal(%) 80% 60% 40% 20% 0% 0 50 100 150 200 250 300 350 Time Since Operation(days)

OLRs (kgcod/ m 3 d) 2 (Phase I) COD Remo- Val(%) ASBF-SW 96.6 Gas Production 0.411 (-) 4 (Phase II) COD Remo- Val(%) 0 Gas Production 0 (0) 6 (Phase III) COD Remo- Val(%) 68.1 Gas Produ- Ction 0.366 (0.251) COD Remo- Val(%) 10 (Phase IV) Gas Produ-ction COD Remo- Val(%) 5 (Phase V) Gas Produ-ction *( )은 CH 4 yield(m 3 /kg COD removed) * biogas production(m 3 /kg COD removed) 73.8 0.173 (0.158) 73.3 0.257 (0.213)

6000 ASBF-SW1 ASBF-SW2 VFAs conc.(mg/l as acetic acid) 5000 4000 3000 2000 1000 0 0 50 100 150 200 250 300 350 Time since operation(days) 100 after adaptation COD Removal Efficiency(%) 80 60 40 20 0 2 2.5 3 3.3 Organic Loading Rate(kgCOD/m 3 -d)

2000 Effluent TKN concentration (mg/l) 1800 1600 1400 1200 1000 800 600 400 200 0 0 50 100 150 200 250 300 350 Time since operation(day s)

Effluent TP concentration (mg/l) 500 450 400 350 300 250 200 150 100 50 0 0 50 100 150 200 250 300 350 Time since operation(days)

7000.0 cumulative gas production(l) 6000.0 5000.0 4000.0 3000.0 2000.0 1000.0 0.0 0 50 100 150 200 250 300 350 Time since operation(days) 100.0 80.0 CH 4 함유율(%) 60.0 40.0 20.0 0.0 0 50 100 150 200 250 300 350 400 Time since poperation(days)

Effluent TSS & VSS concentration(mg/l) 5000 4500 4000 3500 3000 2500 2000 1500 1000 500 ASBF-SW2 TSS ASBF-SW2 VSS 0 0 50 100 150 200 250 300 350 Time since operation(days)

Pressure(N2 Gas) Sample Reservoir Retentate Membrane Filter Permeate Internal Recirculation Pump Holding Pad TOC(%) 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 22.1 11.3 2.6 3.6 5.2 6.2 49.0 48.8 7.0 7.0 10.5 7.0 10.5 9.2 >XM300 YM100-XM300 XM50-YM100 YM10-XM50 YM3-YM10 YM1-YM3 <YM1 Influent TOC : 523ppm Effluent TOC : 91ppm Feed Effluent Two-Stage ASBF

MgCl 2 H 3 PO 4 PH Control Heater Biogas Influent MF NF Effluent From MF Concentrate To Preheater To Composter MAP PPT Pre-Treatment Pre-Heater Two Stage ASBF Membrane Post-Treatment

motor WGM Peristaltic pump 38 Waterbath

1st batch, steady-state (after 6 batches) COD(mg/L), ----- Gas production(l) COD concentration (mg/l) 1200 1000 800 600 400 200 MCR-1 8 7 6 5 4 3 2 1 cumulative gas production(l) 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 Incubation Time(days)

1st batch, after 3 batches, after 6 batches; COD(mg/L), ----- Gas production(l) COD concentration (mg/l) 1200 1000 800 600 400 200 MCR-2 8 7 6 5 4 3 2 1 cumulative gas production(l) 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 Incubation Time(day s )

Control, 1,500 mg/l, 2,500 mg/l COD(mg/L), ---- Gas production(l) COD concentration (mg/l) 1200 1000 800 600 400 200 MCR-1 8 7 6 5 4 3 2 1 0 0 0 1 2 3 4 5 6 7 Incubation Time(days) cumulative gas production(l) COD concentration(mg/l) 1200 1000 800 600 400 200 0 MCR-2 1 2 3 4 5 6 7 8 Incubation Time (days) 8 7 6 5 4 3 2 1 0 cumulative gas production(l)

DAT Glucose Sucrose 0.12% 0.48% 0.12% 0.48% -------------------------- % -------------------------- 0 100 100 100 100 1 106 114 102 102 2 104 99 151 96 4 112 216 80 78 DAT Glucose Sucrose 0.12% 0.48% 0.12% 0.48% ---------------------------- % -------------------------- 0 100 100 100 100 1 156 184 98 143 2 107 400 79 112 4 212 376 193 301

(NH 4 ) 2 SO 4 NaNO 3 DAT 1mM-N 4mM-N 1mM-N 4mM-N ------------------------------ % ----------------------- 0 100 100 100 100 1 0 0 44 26 2 29 24 25 24 4 46 44 54 54 (NH 4) 2SO 4 NaNO 3 DAT 1mM-N 4mM-N 1mM-N 4mM-N ---------------------------- % -------------------------- 0 100 100 100 100 1 0 0 33 21 2 61 58 50 64 4 209 115 238 210

Isolate Nitrogen Phosphorus g-n/gdw mg-p/gdw Nostoc HN 601 0.079 24.3 Anabaena HA 701 0.077 4.9 Anabaena HA 205 0.048 5.4 Anabaena HA 301 0.043 3.8 Nostoc HN 101 0.057 7 Anabaena HA 401 0.063 6.1 Cylindrosprum 0.059 10.8 Sytonema 0.058 12.3 Calothrix HC 101 0.076 10.9 Calothrix HC 301 0.072 9.9 Calothrix HC CH3 0.066 10.3 Anabaena HA 702 0.052 4.3 Calothrix HC 201 0.074 10.1 Calothrix HC 605 0.07 10.2 Nostoc HN 701 0.062 6 RF-7 0.088 9.1 Hepalosiphon 0.061 9.5

Isolate Days after Growth 0 7 14 21 ---------- Chlorophyll a (mg/l) --------- Anabaena HA101 0.9 3.1 3.5 4.3 HA201 0.9 1.4 1.0 0.2 HA301 0.9 0.4 0.4 0.1 HA401 0.9 2.3 2.3 3.9 HA701 0.9 3.0 3.0 3.1 Nostoc HN101 0.5 0.9 1.2 0.5 HN206 0.5 0.5 0.4 2.5 HN301 0.5 1.8 0.7 0.5 HN601 0.9 1.6 3.9 HN701 0.9 2.9 4.2 4.7

Isolate Days after Growth 0 7 14 21 ---------- Phosphate (mg P/L) --------- Anabaena HA101 4.5 3.7 2.2 0.7 HA201 5.6 5.0 5.0 3.5 HA301 4.2 3.9 3.2 2.5 HA401 4.5 3.8 2.7 1.9 HA701 4.5 2.9 1.5 0.2 Nostoc HN101 4.8 3.3 3.0 2.7 HN206 4.8 4.6 2.2 1.0 HN301 4.5 3.4 2.9 0.8 HN601 4.2 2.9 1.4 HN701 4.5 2.2 0.2 0.2

Isolate Days after Growth 0 7 14 21 ----------- Nitrate (mg N/L) ---------- Anabaena HA101 195 180 172 162 HA201 195 201 209 209 HA301 195 184 177 159 HA401 195 175 165 132 HA701 195 180 171 150 Nostoc HN101 197 185 171 154 HN206 195 190 183 170 HN301 187 180 160 151 HN601 180 170 134 HN701 191 169 132 90.0

D A T ph 0 6 14 18 ---------- % of ph8.0 ---------- 7.5 100 102 105 114 8.0 100 100 100 100 8.5 100 83 91 114 D A T ph 0 6 14 18 ---------- % of ph8.0 ---------- 7.5 100 93 86 100 8.0 100 100 100 100 8.5 100 106 100 92 D A T ph 0 6 14 18 ---------- % of ph8.0 ---------- 7.5 100 110 108 109 8.0 100 100 100 100 8.5 100 90 83 80

2500.0 2000.0 2L(폐수)(0.5L/min) 2L(폐수)(0.3L/min) NH4-N(mg / L) 1500.0 1000.0 500.0 0.0 0 6 18 35 Days

2500.0 2000.0 9L(폐수)(5.0L/min) 9L(폐수)(2.5L/min) NH4-N(mg / L) 1500.0 1000.0 500.0 0.0 0 6 18 35 Days

1400.0 1200.0 1.5L(폐수)(0.5L/min) 1.5L(폐수)(0.3L/min) 1000.0 NH4-N(mg / L) 800.0 600.0 400.0 200.0 0.0 0 4 8 12 16 22 29 36 Days

1400.0 1200.0 7L(폐수)(5.0L/min) 7L(폐수)(2.5L/min) 1000.0 NH4-N(mg / L) 800.0 600.0 400.0 200.0 0.0 0 4 8 12 16 22 29 36 Days