DBPIA-NURIMEDIA



Similar documents
0특-04문정언(f5.16)(189~207)

09권오설_ok.hwp

09È«¼®¿µ 5~152s

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

05서찬양(521~529)ok

#Ȳ¿ë¼®

02¿ÀÇö¹Ì(5~493s

02À±¼ø¿Á

인문사회과학기술융합학회

08원재호( )

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

한국성인에서초기황반변성질환과 연관된위험요인연구

49-9분동안 표지 3.3

Æ÷Àå½Ã¼³94š

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

광덕산 레이더 자료를 이용한 강원중북부 내륙지방의 강수특성 연구

Can032.hwp

45-51 ¹Ú¼ø¸¸

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

03이경미(237~248)ok

02이용배(239~253)ok

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 30(3),

04-다시_고속철도61~80p

<31325FB1E8B0E6BCBA2E687770>

±è¼ºÃ¶ Ãâ·Â-1

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

<B1B3B9DFBFF83330B1C7C1A631C8A35FC6EDC1FDBABB5FC7D5BABB362E687770>

< B3E2BFF8BAB828C8AFB0E629312E687770>

02Á¶ÇýÁø

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

DBPIA-NURIMEDIA

(5차 편집).hwp

유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

14.531~539(08-037).fm

09구자용(489~500)

대한한의학원전학회지24권6호-전체최종.hwp

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

04_이근원_21~27.hwp

10(3)-10.fm


00내지1번2번

레이아웃 1

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

433대지05박창용

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

<312DBACFC7D1BBE7C0CCB9F6C0FCB7C22DC0D3C1BEC0CEBFDC2E687770>

Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp DOI: 3 * Effects of 9th

., (, 2000;, 1993;,,, 1994), () 65, 4 51, (,, ). 33, 4 30, 23 3 (, ) () () 25, (),,,, (,,, 2015b). 1 5,

Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography Vol. 33, No. 1, 23-30,

<28C3D6C1BE29312DC0CCBDC2BEC62E687770>

15(4장1절 P).PDF

PJTROHMPCJPS.hwp

기관고유연구사업결과보고

<C0C7B7CAC0C720BBE7C8B8C0FB20B1E2B4C9B0FA20BAAFC8AD5FC0CCC7F6BCDB2E687770>

DBPIA-NURIMEDIA

전용]

06장소영(f2.4)(115~122)ok

레이아웃 1

°í¼®ÁÖ Ãâ·Â

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할


10(3)-12.fm


인니 내지-00-5

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

<31325F FB1E8B9CCC1A42CBFF8C0B1B0E62CB1E8B9CCC7F62E687770>

135 Jeong Ji-yeon 심향사 극락전 협저 아미타불의 제작기법에 관한 연구 머리말 협저불상( 夾 紵 佛 像 )이라는 것은 불상을 제작하는 기법의 하나로써 삼베( 麻 ), 모시( 苧 ), 갈포( 葛 ) 등의 인피섬유( 靭 皮 纖 維 )와 칠( 漆 )을 주된 재료

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a


82-01.fm

untitled

10(3)-09.fm


12(4) 10.fm

27 2, * ** 3, 3,. B ,.,,,. 3,.,,,,..,. :,, : 2009/09/03 : 2009/09/21 : 2009/09/30 * ICAD (Institute for Children Ability



05( ) CPLV12-04.hwp

04김호걸(39~50)ok

11¹ÚÇý·É

µµÅ¥¸àÆ®1

¹ýÁ¶ 12¿ù ¼öÁ¤.PDF

ISO17025.PDF

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

20, 41..,..,.,.,....,.,, (relevant).,.,..??.,

<B7CEC4C3B8AEC6BCC0CEB9AEC7D B3E23130BFF9292E687770>

44-6대지.07전종한-5

<30345F D F FC0CCB5BFC8F15FB5B5B7CEC5CDB3CEC0C720B0BBB1B8BACE20B0E6B0FCBCB3B0E8B0A120C5CDB3CE20B3BBBACEC1B6B8ED2E687770>

07_Àü¼ºÅÂ_0922

DBPIA-NURIMEDIA

현대패션의 로맨틱 이미지에 관한 연구

News Letter(6월).hwp

DBPIA-NURIMEDIA

<C3D6C1BE2DBDC4C7B0C0AFC5EBC7D0C8B8C1F D32C8A3292E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 28, no. 4, Apr (planar resonator) (radiator) [2] [4].., (cond


Transcription:

Korean Journal of Remote Sensing, Vol.23, No.4, 2007, pp.311~321 Development K d (l) and Visibility Algorithm for Ocean Color Sensor Around the Central Coasts of the Yellow Sea Jee-Eun Min*, **, Joo-Hyung Ryu*, Yu-Hwan Ahn*, and Kyu-Sung Lee** *Ocean Satellite Research Group, Korean Ocean Research & Development Institute (KORDI) **Department of Geoinformatic Engineering, Inha University Abstract : The diffuse attenuation coefficient for down-welling irradiance (K d (l)), which is the propagation of down-welling irradiance at wavelength l from surface to a depth (z) in the ocean, and underwater visibility are important optical parameters for ocean studies. There have been several studies on K d (l) and underwater visibility around the world, but only a few studies have focused on these properties in the Korean sea. Therefore, in the present study, we studied K d (l) and underwater visibility around the coastal area of the Yellow Sea, and developed K d (l) and underwater visibility algorithms for ocean color satellite sensor. For this research we conducted a field campaign around the Yellow Sea from 19 ~ 22 September, 2006 and there we obtained a set of ocean optical and environmental data. From these datasets the K d (l) and underwater visibility algorithms were empirically derived and compared with the existing NASA SeaWiFS K d (l) algorithm and NRL (Naval Research Laboratory) underwater visibility algorithm. Such comparisons over a turbid area showed small difference in the K d (l) algorithm and constants of our result for underwater visibility algorithm showed slightly higher values. Key Words : Diffuse attenuation coefficient for down-welling irradiance (K d (l)), Underwater visibility, Yellow Sea, Case-II water. K d l K d l K d l K d l K d l jhryu@kordi.re.kr 311

Korean Journal of Remote Sensing, Vol.23, No.4, 2007 K d l K d l K d l K d l K d l K d l K d l K d l K d l K d l K d l K d l K d l K d l K d l 312

Development K d (l) and Visibility Algorithm for Ocean Color Sensor Around the Central Coasts of the Yellow Sea K d l K d K d Fig. 1. Map of the Saemangeum coastal area showing sampling points/stations during 19~22 September, 2006. 313

Korean Journal of Remote Sensing, Vol.23, No.4, 2007 Table 1. Summary of measurements. Measurements A, C, D line sampling (<chl>, SS) optic (ASD) B line sampling (<chl>, SS) optic (ASD, TriOS, visibility) * <chl>: Chlorophyll concentration SS: Suspended sediment concentration ASD: Field spectroradiometer measurement for surface TriOS: UV/VIS spectrometer measurement for water profile visibility: vertical and horizontal visibility using secchi disk obtained by diver L u E u E d E d E u L u L wt Fig. 2. Diver view of a secchi disk for horizontal visibility at a depth of 1m. E d L sky ml ml ml 314

Development K d (l) and Visibility Algorithm for Ocean Color Sensor Around the Central Coasts of the Yellow Sea <chl> (mg/m 3 ) = C v (1) V C = 11.85E _ 664 1.54E _ 647 0.08E 630 V ml ml E d (z) = E d (0 _ )e _ z2 z1 dzk d (z) (2) z K d l E d K d = ln[ ] _ 1 E d (z 2 ) (3) (z _ 2 z 1 ) E d (z 1 ) E d K d l K d l L w K d l K d l L w R rs K d l L w R rs K d l K d K d l K d l K d K d L w (l 1 ) K d (490) = K w (490) + A( )B L w (l 2 ) l l K w K d L K d (490) = K w (490) + 0.15645( w (490) )_ 1.5401 (5) L w (550) K w R rs E d L w E K d (490) = 0.016 + 0.15645( d (490) R rs (490) )_ 1.5401 (6) E d (550) R rs (550) K d E d E d K d (490) = 0.016 + 0.15645 ( )_ 1.03 R rs (490) 1.5401 (7) R rs (550) R rs K d l K d l e K d (l) = K w (l) + (l)chl e(l) (8) R rs a b b K d l K d l K d l (4) 315

Korean Journal of Remote Sensing, Vol.23, No.4, 2007 a b b K d l K d l R rs a b b K d = m 0 a + m 1 (1 _ m 2 e _ m a 3 ) b b (9) m 0 q a q a m m m R rs R rs L w K d l dl = _ (a + b)l + L * dr (10) L _ T L B C o = (11) L r a b L * C o L T L B C r = C o e [_ (c + Kcosq)r] (12) C r r r _ ln( Cr ) C r = o (13) c + Kcosq 4.0 r vertical = (14) c + K 4.8 r horizontal = (15) c c K d l l L B K d l 316

Development Kd (l) and Visibility Algorithm for Ocean Color Sensor Around the Central Coasts of the Yellow Sea Fig. 3. Spectral diffuse attenuation coefficient (Kd) for each stations. 각 정점별로 수심 0 m와 20 m의 Ed 관측 값을 수식 (2) 에 적용하여 Kd(l)값을 유추하였다. 각 정점별로 비슷한 형태의 스펙트럼 값을 나타내는 것을 알 수 있었다. 전 체적인 형태는 575 nm를 중심으로 파장이 짧아질수록 Fig. 5. Comparison between in-situ Kd(490) and SeaWiFS Kd(490). 값이 증가하였고, 또한 파장이 길어질수록 증가하는 패 턴을 나타내었다. 575 nm 이후 파장대에서의 증가 패 SeaWiFS Kd(490)값을 비교한 그래프이다. 현장 관측 턴은 순수한 해수의 Kd(l)스펙트럼의 일반적인 성격으 값에 비해 SeaWiFS Kd(490)이 조금 높은 값을 보였지 로 설명될 수 있다(Smith and Baker, 1981). 575 nm 만 전체적으로 상관관계가 0.7로서 비교적 높은 상관관 이전의 파장대 부분의 파장이 짧아질수록 증가하는 패 계를 보이는 것을 알 수 있었다. 턴은 우리나라 서해 연안의 클로로필과 부유물질 및 용 현장에서 얻어진 Kd(l)와 LwN값을 이용하여 Kd(l) 알 존유기물질 등의 높은 농도로 인한 흡광 특성이라고 볼 고리즘을 개발하였다. 아래의 수식 (16)은 본 연구를 통 해 개발된 Kd(490) 알고리즘을 나타낸다. 이 결과를 수 있다. 이렇게 얻어진 Kd(l)값을 SeaWiFS의 Kd(490) 자료 와 비교하여 보았다. Fig. 4는 2006년 9월 21일에 획득 NASA의 SeaWiFS Kd(490) 알고리즘과 비교하여 보았 다(Fig. 6). 된 SeaWiFS로부터 얻어진 Kd(490) 영상이다. 이 자료 에서 각각의 정점에 해당하는 값을 추출하여 현장관측 값과 비교하여 보았다. Fig. 5는 현장관측 Kd (490)값과 Fig. 4. SeaWiFS Kd(490) Product obtained at 21 September 2006. Fig. 6. Comparison of Kd(490) versus the ratio of normalized water-leaving radiances (LwN) at 490 and 555 nm (solid line represent Kd(490) algorithm for this study and dot line represent the SeaWiFS Kd(490) algorithm developed by NASA). 317

Korean Journal of Remote Sensing, Vol.23, No.4, 2007 L K d (490) = 0.016 + 0.2206 ( wn (490) )_ 2.791 (R 2 = 0.67)(16) L wn (555) L wn L wn K d L wn L wn L wn L wn L wn L wn K d K d K d Fig. 7. In-water horizontal visibility (1 m depth from surface) and in-water (Vertical (0-)) & out-water (Vertical (0+)) vertical visibility at surface along the transect (B line). K d l c 6.9 r vertical = (17) c + K d 5.8 r horizontal = (18) c K d l r vertical = _ 29.46 K d (490) + 14.534(R 2 = 0.71) (19) r horizontal = _ 27.50 K d (490) + 13.175(R 2 = 0.75)(20) 318

Development K d (l) and Visibility Algorithm for Ocean Color Sensor Around the Central Coasts of the Yellow Sea Fig. 8. Relationship graph for horizontal & vertical visibility with K d (490). K d l K d l K d l K d l K d l K d l 319

Korean Journal of Remote Sensing, Vol.23, No.4, 2007 Austin, R. W. and T. J Petzold, 1981. The determination of the diffuse attenuation coefficient of sea water using the coastal zone color scanner, Oceanography From Space, Springer, New York. Austin, R. W. and T. J. Petzold, 1986. Spectral dependence of the diffuse attenuation coefficient of light in ocean waters, Optical Engineering, 25: 473-479. Chang, G. C. and T. D. Dickey, 2004. Coastal ocean optical influences on solar transmission and radiant heating rate, Journal of Geophysical Research, 109: C01020, doi:10.1029/2003jc001821. Jeffrey, S. W. and Humphrey, G. F., 1975. New spectrophotometric equations for determining chlorophylls a, b and c in higher plants, algea and natural phytoplankton, Biochemie Physiologie Pflanzen, 167: 374-384. Kirk, J. T. O., 1986. Light and Photosynthesis in Aquatic Ecosystems, Cambridge Univ. Press, New York. Lee, Z. P., K. L. Carder, and R. Armone, 2002. Deriving inherent optical properties from water color: A multi-band quasi-anayltical algorithmfor optically deep waters, Applied Optics, 41: 5,755-5772. Lee, Z. P., M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, 2005. Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods, Journal of Geophysical Research, 110: C02017, doi:10.1029/2004jc002573. Lewis, M. R., M. Carr, G. Feldman, W. Esaias, and C. McMclain, 1990. Influence of penetrating solar radiation on the heat budget of the equatorial pacific ocean, Nature, 347: 543-545. Marra, J., C. Langdon, and C. A. Knudson, 1995. Primary production, water column changes, and the demise of a Phaeocystis bloom at the Marine Light-Mixed Layers site (59_N, 21_W) in the northeast Atlantic Ocean, Journal of Geophysical Research, 100: 6,633-6,644. McClain, C. R., K. Arrigo, K.-S. Tai, and D. Turk, 1996. Observations and simulations of physical and biological processes at ocean weather station P, 1951-1980, Journal of Geophysical Research, 101: 3,697-3,713. 320

Development K d (l) and Visibility Algorithm for Ocean Color Sensor Around the Central Coasts of the Yellow Sea Mishra, D. R., S. Narumalani, and M. Lawson, 2005. Characterizing the vertical diffuse attenuation coefficient for downwelling irradiance in coastal waters: Implications for water penetration by high resolution satellite data, ISPRS Journal of Photogrammetry & Remote Sensing, 60: 48-64. Morel, A. and Prieur, L., 1977. Analysis of variations in ocean colour, Limnology and Oceanography, 22: 709-722. Morel, A., 1988. Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters), Journal of Geophysical Research, 93: 10,749-10,768. Morel, A. and D. Antoine, 1994. Heating rate within the upper ocean in relation to its bio-optical state, Journal of Physical Oceanography, 24: 1,652-1,665. Morel, A. and S. Maritorena, 2001. Bio-optical properties of oceanic waters: A reappraisal, Journal of Geophysical Research, 106: 7,163-7,180. Mueller, J. L., 2000. SeaWiFS algorithm for the diffuse attenuation coefficient, K(490), using water-leaving radiances at 490 and 555 nm, SeaWiFS Postlaunch Calibration and Validation Analyses, part 3: 24-27. Mueller, J. L. and C. C. Trees, 1997. Revised SeaWiFS prelaunch algorithm for diffuse attenuation coefficient K (490), NASA Tech. Memo., TM-104566, 41: 18-21. Museler, E. A., 2003. A comparison of in-situ measurements and satellite remote sensing of underwater visibility, Master s thesis, Naval Postgrauate School, Monterey, CA, 93943-5000. Platt, T., S. Sathyendranath, C. M. Caverhill, and M. Lewis, 1988. Ocean primary production and available light: Further algorithms for remote sensing, Deep Sea Research, 35: 855-879. Preisendorfer, R. W., 1976. Hydrologic optics, U.S. Department of Commerce, 1: 218. Rasmus, K. E., W. Graneli, and S. -A. Wangberg, 2004. Optical studies in the Southern Ocean, Deep-Sea Research Part II, 51: 2,583-2,597. Sathyendranath, S., T. Platt, C. M. Caverhill, R. E. Warnock, and M. R. Lewis, 1989. Remote sensing of oceanic primary production: Computations using a spectral model, Deep Sea Research, 36: 431-453. Smith, R. C. and K. S. Baker, 1981. Optical properties of the clearest natural waters, Applied Optics, 20: 177-184. Zaneveld, J. R. V., J. C. Kitchen, and H. Pak, 1981. The influence of optical water type on the heating rate of a constant depth mixed layer, Journal of Geophysical Research, 86: 6,426-6,428. http://www.saemangeum.re.kr/ 321