Ï Ð Journal of the Korean Society of Clothing and Textiles Vol. 35, No. 8 (2011) p.982~990 http://dx.doi.org/10.5850/jksct.2011.35.8.982 e fùv p y x Á x w w, w w ƒ Characteristics of Kenaf Fibers Treated by Alkali Hye Ja YooÁHye-Ja Lee Dept. of Clothing & Textiles, Seowon University Dept. of Home Economics Education, Korea National University of Education (2011 4 19 ), (2011 6 10 ), y (2011 6 13 ) Abstract Kenaf fiber can be obtained by decortications of the kenaf plant stem. The properties of the kenaf fiber treated by alkali (NaOH) were investigated by spectrocolorimeter, SEM, X-ray diffractometer, FT-IR and TGA. The kenaf fibers treated by alkali became darker and their Munsell color values changed from Y (yellow) to YR (yellowred) according to an increased NaOH concentration. SEM observation of the kenaf fibers showed that their crimps were developed and their surfaces were cleaned by the removal of protruding ends and impurities after alkali treatments. In the x-ray diffraction analysis, the structures of the fibers were found in the form of cellulose I when treated with a 0-16% alkali concentration and cellulose II when treated with over 20%. It was also confirmed that the crystallinity was lowered according to an increased NaOH concentration. The change of fiber compositions was investigated in FT-IR analysis. Strong band of 1,738cm -1 and asymmetrical stretching strong bands of 1,630-1,600cm -1 in spectrum (which represent pectin) were not found in the samples because the pectin was removed by the alkali treatment. Weak bands of 1,728-1,730cm -1 and peaks of 1,245-1,259cm -1 (which represent hemicellulose) and peaks of 1,592cm -1, 1,504cm -1, 1,462cm -1 and 1,429cm -1 (which are related to lignin) were not found or reduced in the samples treated with a concentration over 20%. TGA indicated that the kenaf fiber had the better hydrophilic properties by alkali treatment. The higher Tmax in TGA and the higher thermal stability when treated by alkali with the higher concentration. The fibers treated with an alkali concentration over 30% did not show any changes in Tmax. Key words: Kenaf, Alkali, Crystallinity, FT-IR, TGA; fùv, e, y Ÿ, I.,, m,, s y š. ù w 20% š,, Corresponding author E-mail: hjlee@knue.ac.kr w û. t xk s ƒ ƒ s l, s v v, ù, w ƒ š ƒ š (Lee et al., 2007; Park, 2008). w, w û w w s» ƒwš y š. w w ù w 982
e fùv p y 117 w» w y wš. e w y, g, fùv ƒ ƒ Ÿ š. ƒ erp,, ü, m, y y š. fùv ù ü w ü š yw w, k š» w w w f (Kevlar) y w (Franck, 2005). fùv w y w» w ƒ y w w š (Cho & Choi, 1996; Lim et al., 2007; Yoo & Lee, 2005). fùv» l ü g v, g ù p š v wý ƒ w» w ƒ y w» j. fùv rp, x,,,. w e w x, rp,, w» w q,, t, y e w y, yw j w e (Parikh et al., 2002; Song & Obendorf, 2006; Yoo et al., 2006). p w ƒœœ w e š w w. fùv» l ƒ»¾ yw œ ƒ Ÿ w š t e yùp j š»¾ w yùp fùv y j w e š, yùp fùv,, y. e fùv w ¼ ù», t xk w y r ù, yw y r w (Lee et al., 2004; Lee et al., 2003: Wang & Ramaswamy, 2003; Yoo et al., 2006) ùyùp w q ƒ 2~4% ù ù t t yww w» yùp p yƒ w m w. w» w s yùp fùv wš»» mw p, p, p y mw fù v w y w w y wš w. II. x 1. fùv v w 120 f ùv yw. fùv» v (bark) (core) w z v g w w. ³ w l 50~60cm v w. 2. e fùv v k e š 24 w z g w. fùv e yùp fù v p w» w yùp 2, 4, 6, 8, 10, 12, 16, 20, 30, 40% w y g 100 o C 60 fùv v ƒƒ wš w z w. ù w m e 24 w z w. 3.»» w fùv p d w yùp w Ÿ (JS-555, Technocolor System, Japan) d wš CIE L, a, b, E Munsell sƒw. x (FE-SEM, NOVA NanoSEM200, FEI Company, USA) w e fùv xk 250 10,000 w. fùv w e y y sƒw» w X-ray Diffrac- 983
118 w wz 7PM/P tometer(dmax-2500, Rigaku, Japan) w š z (002 ) z ƒ(2θ 22.5 ) vj z ƒ(2θ 18.5 ) z w Segal w y w. ƒƒ 3mg w w z KBr 200mg yww 600kg/cm 2 pellet š, FT- IR Spectrometer(Thermo Mattson 60AR, USA) d w IR spectrum. e w fùv 8~10mg w z Thermogravimetric Analyzer(TGA Universal V4.2E, TA Instruments, USA) w ƒ w l 600 o C¾ 10 o C d w p y š w. III. š fùv v NaOH 0, 2, 4, 6, 8, 10, 12, 16, 20, 30, 40% w y g 100 o C 1 ƒƒ w z d,, IR rp, X-ray z, TGA w y mw e fùv p y w. 1. y <Table 1> w yùp w fùv t d w. yùp ƒ L (whiteness) û w š 35.74 53.10 ƒw t w ùk û. a* b* +, e ƒ a* ƒ š b* redness ƒ yellowness Y(yellow) y YR(ywllowred) w w š NaOH 30% w y YR(yellowred) d. 2. SEM w xk SEM w e fùv xk 250 10,000 w <Fig. 1> ùkþ. 250 w <Fig. 1> w e ƒ t w Áòw š ƒ ƒ v y ƒ w. 10,000 w <Fig. 2> e ƒ fùv ƒ v yƒ ú (Kwon et al., 1997) 4% ƒ ƒ w ù x j vƒ ù w. 20% w j vƒ wš ³ w y w. Kim et al.(2009) s v v Table 1. Color values of kenaf fiber bundles treated with alkali Temp. ( o Conc. of NaOH Color Values C) (v/v%) L* a* b* E Munsell Hue Reference (MgO White) 98.21 0.04 0.22-100 2 66.75 2.84 18.90 35.74 3.81Y 4 66.98 3.76 17.34 36.92 2.96Y 6 65.98 4.16 17.41 36.98 2.84Y 8 65.09 3.91 17.53 37.79 3.04Y 10 64.74 4.11 17.31 38.01 2.76Y 12 63.29 4.63 16.30 39.01 2.49Y 16 62.50 4.46 15.21 39.08 2.50Y 20 62.40 4.40 14.75 39.34 2.24Y 30 46.16 5.91 6.84 52.87 8.99YR 40 46.18 6.12 8.37 53.10 9.24YR 984
알칼리 처리에 따른 케나프 섬유의 특성 변화 연구 Fig. 1. SEM photographs of alkali treated kenaf fibers ( 250). Fig. 2. SEM photographs of alkali treated kenaf fibers ( 10,000). 985 119
120 w wz 7PM/P p wš 3% 5% yùp w fùv 30% yww w w z q y w 5% w fùv w w ƒ p w û š šw. Mwaikambo and Ansell(2002) hemp, sisal, jute, kapok 0.8~8% yùp w t xk y resin w ƒw š šw. š e w fùv t Áòw j vƒ w w š w š e fùv w p w w w q. 3. X z e w yùp 2~ 10% x I 16.7 22.5 2θ vjƒ. 30%, 40% 12.5 22.5 2θ vjƒ 22.5 vjƒ x ùkû, II y q (Aguilar-Vega & Cruz-Ramos, 1995). 20%, 30%ù 40% vj ƒ e ù 22.5 vj. yùp 2~16% y j 57~60% ù 20% Table 2. Crystallinity (%) of kenaf treated with various concentration of NaOH aqueous solutions Concentration of NaOH (%) Diffraction Intensity 18.5 o 22.5 o Crystallinity Index (%) untreated 1976 4976 60.3 2% 1458 3708 60.7 4% 1565 3863 59.5 6% 1434 3442 58.3 8% 1508 3762 59.9 10% 1698 4042 58.0 12% 1534 3764 58.2 16% 1425 3349 57.4 20% 1474 2920 49.5 30% 2348 4498 47.8 40% 2190 3826 42.8 49.5%, 30% 47.8%, 40% 42.8% y ƒ û 20% š w yƒ û y w., 20% w I ƒ š y y ù 20% w I ƒ y š y w. 30% w fùv II ë š y w 20% (Table 2). 4. IR spectrum w yùp w f ùv FT-IR rp <Fig. 1> ùkþ. OH p e 3,340~3,350cm 1 II I w, I 3,350cm 1 parallel polarized bandsƒ ùkù II 3,447cm -1 3,488cm -1 ü w w strong bandsƒ ùkù (Sao, 1987). 0~40%¾ w yùp w f ùv IR rp ü, w w OH streching bandsƒ II xk y y w., 20% y ùkù š, 20% e 3,450cm -1 shoulderƒ ùkù broad w, ü w y q. Singthong et al.(2005) š w 2,850cm 1 w band rp» w 2,850cm 1 bandƒ spectrum ùkûš e z ùkù. 1,250~1,500cm 1 5 peakƒ w ùkù X z ƒ I y w. wr, ù 16%¾ NaOH 1,030~1,025cm 1 úe š w vj ùkþ. 20% 995cm 1 w ƒ ùkùš š 895cm 1 vj ƒ úe cellulose II yƒ š (Kim & Yun, 1986). fùv 1,738cm 1 strong 986
e fùv p y 121 band 1,630~1,600cm 1 asymmetrical stretching strong band pectin w 1,738cm 1 band š yùp pectin ùkù. 1,630~ 1,600cm 1 band ùkùù 20% ùkù. Lee et al.(2003) fùv 2~4% yùp w q z rp 2~3% û š šw, š yùp. wr 1,728cm 1 ùkù weak band x e» e» w w, 1,245~1,259cm 1 vj x C-H bending» w yùp w vj p»ƒ x w. Mwaikambo and Ansell(2002) y FT-IR ew. 1,592cm 1, 1,504cm 1, 1,462cm 1, 1,429cm 1 q. ww w 1,592cm 1 1,510~1,500cm 1 x guaiacyl x w w. 16%¾ IR spectrum 1,592~1,600cm 1 1,504cm 1 guaiacylx ƒ ù 20% 30% spectrum š 40% guaiacylx ƒ. 1,232cm 1 syringylx xylan p»(c-o-c) (Kim, 1988; Wang & Ramaswamy, 2003). 30~40% š e spectrum vj ƒ» w ù û. Lee et al.(2006) š fùv e 0.7% ùp yw w w š w. e fùv ƒ w wš» w ù (Fig. 3). 5. TGA w p fùv w e ƒ p e y TGA mw r. TGA l 150 o C¾ w y ùkü, e w ƒ j ùkù (Zini et al., 2003). <Fig. 4> w e w fùv TGA w l 150 o C¾ y ùk ü. 150 o C w TGA ƒ NaOH 20% w 7.3~8.3% j ƒ ùkù ù 30% 9.3%, 40% 10.05% ùkù, e ƒ 20% w w 30% ƒw f ùv w e ƒ 20% w w 30% e y w. TGA wƒ ù Fig. 3. Infrared spectrum of kenaf fiber bundles treated with NaOH aqueous solutions. Fig. 4. Weight loss (%) from room temperature to 150 o C in TGA thermogram of kenaf fiber treated with alkali of various concentrations. 987
122 w wz 7PM/P Tmaxƒ 320 o C 70% k w w ƒ ùkù (Aguilar-Vega & Cruz-Ramos, 1995; Salamone, 1996; Zini et al., 2003). <Table 3> w e w fù v TGA w w Tmax y Tmax ùkü t. e w fùv Tmax 347 o C 64% ùkþ. 8% w e w fùv Tmax 372 ~375 o C ùkû w wƒ û Tmax 67~69% ùkû. w w ù Tmax 3~5% ƒ. 10~20% e w fùv Tmaxƒ 390~393 o C 10% w w 20 o Cù ƒ 77~79% 10% ƒ š ü û q. x ù w w š, w ƒ ù v y ƒ y ƒ ùkû. Kwon et al.(1997) šw NaOH w X-ray z, v š g w w x w Table 3. Tmax ( o C) and weight loss (%) at Tmax of kenaf fiber treated with alkali in TGA thermogram Concentration of NaOH (%) Tmax ( o C) Weight Loss (%) 0 347 64.4 2 375 69.2 4 373 68.7 6 372 67.2 8 375 69.8 10 390 76.6 12 392 77.6 16 393 78.1 20 391 79.3 30 396 85.9 40 390 90.5 wƒ û» q. š 30% 40% yùp w Tmax yƒ ù ƒ ƒ ƒ 86% 91% ùkù ƒ j w. w w w w, fùv sww w w ü š w 30% š w q. IV. fùv q, y,, t w y š y ùp fùv e y w» w 2~40% s w,,,, p»» mw. 1. NaOH ƒ w š Y(yellow) ùkû yùp 30% YR (yellowred) y. 2. e w fùv t x w, t Áòw j vƒ w w p w š w w q. 3. 20% w I ƒ š y j y ù 20% w I ƒ y š y w. 30% w fùv II ë š y w 20%. 4. FT-IR rp fùv 1,738cm 1 strong band pectin w yùp pectin ùkù. 1,728~1,730cm 1 weak band 1,245~1,259cm 1 vj x» w p»ƒ x w. 1,592cm 1, 1,504cm 1, 1,462cm 1, 1,429cm 1 q. 20% e spectrum vj ƒ j 988
e fùv p y 123 û ƒ e w y w. 5. l 150 o C¾ TGA w y ùkü, e ƒ 20% w w 30% ƒw fùv w e ƒ 20% w w 30% e y w. 6. e w fùv Tmax 347 o C 8% w e w f ùv Tmax 372~375 o C, 10% e w fùv 390~393 o C ùk ù e ƒ ƒ ù 30% yƒ. e ƒ x ù Tmaxƒ wš ƒ š Tmax ƒ ƒ. References Aguilar-Vega, M., & Cruz-Ramos, C. A. (1995). Properties of henequen cellulosic fibers. Journal of Applied Plymer Science, 56, 1245 1252. Cho, N. S., & Choi, T. H. (1996). Manufacturing of Korean traditional paperg (Hanji) from fast-growing new fiber plant kenafg (Hibiscus Cannabinus). Journal of Korea Tappi, 28(4), 7 16. Franck, R. R. (2005). Bast and other plant fibres. Cambridge, England: Woodhead publishing Limited. Han, Y. S., Yoo, H. J., Lee, H. J., Rhie, J. S., Kim, J. H., Song, K. H., & Ahn, C. S. (2003). Research for kenaf fiber production in Korea. Journal of the Korean Society of Clothing and Textiles, 27(7), 862 871. Kim, K. J., & Yun, B. S. (1986). Application of fourier transform infrared spectroscopy to qualitative and quantitative analysis of fiber blendsg (I). Journal of the Korean Society of Textile Engineers and Chemicals, 23(3), 177 188. Kim, S. S., Lee, B. H., Kim, H. J., Oh, S. C., & Ahn, S. H. (2009). Mechanical properties of alkali treated kenaf fiber filled PP bio-composites. Mokchae Konghak, 37(3), 222 230. Kim, Y. S. (1988). Application of infrared spectroscopical techniques for investigation archaeological woods. Mokchae Konghak, 16(4), 3 9. Kwon, H. Y., Park, Y. H., & Kong, Y. S. (1997). Effect of NaOH treatment on the structure and physical properties of flax fiber. Journal of the Korean Fiber Society, 34(2), 97 103. Lee, H. J., Ahn, C. S., Kim, J. H., Yoo, H. J., Han, Y. S., & Song, K. H. (2004). Characteristics of kenaf/rayon fabrics. Journal of the Korean Society of Clothing and Textiles, 28(9/10), 1282 1291. Lee, H. J., Han, Y. S., & Yoo, H. J. (2006). The change of kenaf fiber characteristics by the contents of noncellulosic material. Journal of the Korean Society of Clothing and Textiles, 30(11), 1581 1588. Lee, H. J., Han, Y. S., Yoo, H. J., Kim, J. H., Song, K. H., & Ahn, C. S. (2003). Effect of chemical retting on the fiber seperation of kenaf bast. Journal of the Korean Society of Clothing and Textiles, 27(9/10), 1144 1152. Lee, H. J., Yoo, H. J., & Han, Y. S. (2007). The properties of kenaf/polyester blended nonwovens. Journal of the Korean Society of Clothing and Textiles, 31(7), 1119 1127. Lim, O., Lee, H. J., Yoo, H. J., & Han, Y. S. (2007). The production of kenaf hand-made paper. Journal of the Korean Society of Clothing and Textiles, 31(8), 1286 1296. Mwaikambo, L. Y., & Ansell M. P. (2002). Chemical modification of hemp, sisal, jute and kapok fibers by alkalization. Journal of Applied polymer Science, 84(12), 2222 2234. Parikh, D. V., Calamari, T. A,. Sawhney, A. P. S., Blanchard,G E. J., Screen, F. J., Warnock, M., Muller, D. H., & Stryjewski, D.G D. (2002). Improved chemical retting of kenaf fibers. Textiles Research Journal, 72(7), 618 624. Park, S. M. (2008). Trend of technical textiles. Dyeing and Finishing, 8, 1 27. Salamone, J. C. (Ed.). (1996). Polymeric materials encyclopedia Vol. 4G(F-G)U Boca Raton, FL: CRC Press. Sao, K. P., Mathew, M. D., & Ray, P. K. (1987). Infrared spectra of alkali treated degummed ramie. Textiles Research Journal, 57(7), 407 414. Singthong, J., Ningsanond, S., Cui, S. W., & Goff, H. D. (2005). Extraction and physicochemical characterization of Krueo Ma Noy pectin. Food Hydrocolloids, 19(5), 793 801. Song, K. H., & Obendorf, S. K. (2006). Chemical and biological retting of kenaf fibers. Textile Research Journal, 76(10), 751 756. Wang, J., & Ramaswamy, G. N. (2003). One-step Processing and bleaching of mechanically separated kenaf fibers: Effects on physical and chemical properties. Textiles Research Journal, 73(4), 339 344. 989
124 w wz 7PM/P Yoo, H. J., & Lee, H. J. (2005). Production and application of kenaf fiber. Fiber Technology and Industry, 9(2), 177 187. Yoo, H. J., Lee, H. J., Kim, J. H., Ahn, C. S., Song, K. H., & Han, Y. S. (2006). The change of physical characteristics of kenaf fiber by the chemical processes. Journal of the Korean Society of Clothing and Textiles, 30(7), 1025 1033. Zini, E., Scandola, M., & Gatenholm, P. (2003). Heterogeneous acylation of flax fibers reaction kinetics and surface properties. Biomacromolecules, 4, 821 827. 990