Korean J. Soil Sci. Fert. Vol.50, No.4, pp.318-324, 2017 Korean Journal of Soil Science and Fertilizer Article https://doi.org/10.7745/kjssf.2017.50.4.318 pissn : 0367-6315 eissn : 2288-2162 Accumulation of Heavy Metals in Soil Growing for Red Pepper (Capsicum annuum) with using Lime Bordeaux and Lime Sulphur Mixture Hyun Ho Lee, Keun Ki Kim, Yong Bok Lee 1, Youn Sig Kwak 1, Byong Gu Ko 2, Sang Beom Lee 2, Chang Ki Shim 2, and Chang Oh Hong* Department of Life Science & Environmental Biochemistry, Pusan National University, Miryang 54063, Korea 1 Division of Applied Life Science, Graduate School, Gyeongsang National University, Jinju 52828, Korea 2 Organic Agriculture Division, Department of Agricultural Environment, National Academy of Agricultural Science, RDA, Wanju 55365, Korea *Corresponding author: soilchem@pusan.ac.kr A B S T R A C T Received: July 10, 2017 Revised: August 31, 2017 Accepted: September 1, 2017 Lime bordeaux mixture (LBM) and lime sulfur mixture (LSM) are representative environmental friendly organic materials for prevention of insect pests in South Korea. Recently, those have been widely used as an alternative for chemical pesticides in eco-friendly farms. However, South Korea has not established even recommendation of LBM and LSM considering the stability of heavy metals in soil. The aim of this study was to evaluate the accumulation of hazardous heavy metals in soil and plant with long-term application of LBM and LSM. Firstly, we investigated the amount of LBM and LSM used per year in several eco-friendly farms to determine a standard application rate of both materials. The pepper plant was grown on the pot in greenhouse for 14 weeks. Both materials were applied at 0, 1, 3, and 9 times of standard application rates (2.56 and 1.28 L ha -1 of LBM and LSM per year, respectively). Dry matter yield of pepper and heavy metals (As, Cd, Cu, Hg, Ni, Pb, and Zn) concentration in soil and pepper plant were measured after 14 weeks. Yield of pepper plant did not significantly chang with up to application rate of 1 times, thereafter it markedly decreased with more than 3 times. With increasing LBM and LSM application, the concentration of Cu and Zn in soil significantly increased. Especially, Zn concentration in pepper significantly increased with increasing application rates of both materials. This might resulted in significant decrease in dry matter yield of pepper. The concentrations of those heavy metals in soil did not exceed safety levels (150 mg kg -1 for Cu and 300 mg kg -1 for Zn) established by the Korean Soil Environmental Conservation Act as well as concentration of heavy metals in pepper plant by Korean Ministry of Food and Drug Safety. However, particular attention should be paid for heavy metal safety and crop productivity when using LBM and LSM in the organic farm. Keywords: Copper, Organic amendment, Uptake, Zinc Concentration of heavy metals in soil amended with different rate of Bordeaux and Sulphur mixtures at harvest time. Application rate As Cd Cu Hg Ni Pb Zn 0 times 7.18 a tr 9.50 c tr 7.13 a 41.9 a 88 b 1 times 7.99 a tr 9.90 c tr 7.16 a 42.3 a 90 b 3 times 8.15 a tr 42.6 b tr 7.44 a 38.0 a 88 b 9 times 8.84 a tr 48.2 a tr 8.17 a 41.7 a 113 a Criteria value 25 4 150 4 100 200 300 Average value 6.2 0.16 23 0.03 15 21 80 Criteria value: Maximum permissible concentration of heavy metal in soil established by Korean Soil Conservation Act. Average value: Average concentration of heavy metals in Korean arable soils. tr: trace. C The Korean Society of Soil Science and Fertilizer. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non- Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Accumulation of Heavy Metals in Soil Growing for Red Pepper (Capsicum annuum) with using Lime Bordeaux and Lime Sulphur Mixture 319 Introduction 석회보르도액은 19세기말프랑스의보르도시지역포도재배지에서황산구리와석회의혼합물이포도노균병에효과가있는것을발견한이래지금까지과수나화훼작물의보호살균제로이용되고있다. 석회보르도액의병에대한예방효과는좋은편이나, 농업인이직접조제하기가번거롭기때문에그동안에는화학농약위주의방제가주로많이이루어져왔다. 그러나최근약제잔류에의한문제가대두되면서친환경재배를하는포장에서석회보르도액을사용하는농가가늘어나면서화학농약대체제로살포하는빈도가늘어나고있다 (Jung et al., 2013; Lee et al., 2012). 그러나석회보르도액은구리 (Cu) 와아연 (Zn) 과같은중금속을함유하고있어석회보르도액의지속적인사용에따른토양및작물의중금속축적에대한우려가있다 (Jung et al., 2014). 따라서최근유럽국가들은석회보르도액을유기농업에활용할수없도록금하고있다. 또한국내일부감귤농장에서구리제사용에따른구리피해가발생되기도하여검토가필요한실정이다 (Hyun et al., 2005; Moonenaar et al., 1998). 살균제로서유황은 1800년대프랑스에서포도흰가루병으로인하여포도주생산량의 80% 까지감소하면서포도흰가루병을방제하기위하여본격적으로사용되기시작하였고 (Shim et al., 2014; Tiecher et al., 2017), 1845년미국으로전해져포도과원에흰가루병뿐만아니라응애에도방제효과가있어광범위하게사용되게되었다 (Buchanan and Amos, 1992; Emmett et al., 1992). 유황은유기농업자재로서미국, 유럽, 우리나라등지에서사용이허용되어있다 (Ahn, 2010; EPA, 1991; OMRI 2012). 그리고현재까지우리나라에도친환경유기농병해충방제목적으로사용할수있는친환경유기농업자재의원료로허용되어있으며, 유황을함유하고있는제품이시중에판매되고있다. 유기농업을실시하는과수및고추재배농가에서는병해충방제를위해석회보르도액과유황합제를함께사용하고있다. 그러나현재까지우리나라에토양및작물의중금속안전성을고려한석회보르도액과유황합제에대한정확한권장량이설정되어있지않은실정이다. 따라서본연구에서는석회보르도액과유황합제의사용권장량설정을위한기초자료를제공하기위해두유기농업자재의사용량에따른토양및재배작물의중금속축적량을평가하기위해실시되었다. Materials and Methods 공시토양및공시유기농업자재특성연구를수행하기위해경남밀양시부북면오례리에소재하는부산대학교부속농장밭토양 (35 30 07.6N 128 43 16.0E) 을공시토양으로선정하였다. 자세한공시토양의화학적특성은 Table 1 과같으며, 우리나라의일반적농경지토양성과유사하였다. 또한시험에사용된공시유기농업자재인석회보르도액과유황합제는밀양지역과수농가를대상으로가장많이사용되는제재를선발하였으며, 석회보르도액의공시번호는공시-2-4-** 으로소석회 (Ca(OH) 2 ) 와황산동 (CuSO 4 5H 2 O) 이주성분이며, 황화칼슘 (CaS) 이주성분인유황합제의공시번호는 07-유기-4-** 으로최종선정하여사용하였다. Table 1. Chemical properties of the soil before the study (Continued). Items Concentration Warning criteria ph (1:5 with H 2 O) 6.7 Organic matter (g kg -1 ) 17.6
320 Korean Journal of Soil Science and Fertilizer Vol. 50, No. 4, 2017 Table 1. Chemical properties of the soil before the study (Continued). Items Concentration Warning criteria Total nitrogen (g kg -1 ) 1.05 Available phosphorus (mg kg -1 ) 142 Exchangeable cation (cmol c kg -1 ) K 0.42 Ca 5.03 Mg 1.02 Na 0.38 Total heavy metals (mg kg -1 ) 7.18 25 As Cd tr 4 Cu 9.50 150 Hg 0.01 4 Ni 7.13 100 Pb 41.9 200 Zn 88 300 Means warning criteria of each heavy metals established by Korean Soil Environmental Conservation Act. tr: trace. 포트시험유기농업농가에서석회보르도액과유황합제를사용에따른토양에직접투입되는평균량을조사하기위해경남지역에분포하는 10 개의농가를임의적으로선발하였다. 농가에서사용하는석회보르도액과유황합제의살포시토양에직접투입되는두유기농업자재의연간평균투입량은각각 2.56 l ha -1 와 1.28 l ha -1 이었다. 토양과작물내중금속의축적량을조사하기위해 2016 년 5 월 22 일에고추를정식하여온실의포트에서재배하였다. 고추정식후석회보르도액과유황합제의평균사용량 (2.56 l ha -1 와 1.28 l ha -1 ) 의 0, 1, 3, 9 배를각각토양에처리하였다. 사용된포트는 1/2000 a 와그너포트로농경지토양 18 kg 을충진하여 3 반복으로난괴법에의해배치하였다. 모든처리구에질소 (N 190 kg ha -1 ), 인산 (P 2 O 5 112 kg ha -1 ), 칼리 (K 2 O 150 kg ha -1 ), 석회 (1.5 Mg ha -1 ), 축분퇴비 (20 Mg ha -1 ) 를동일한양으로처리하였다. 30 일이후부터포트당 1 주씩정식된고추모종에서약 10 일마다총 4 번고추를수확하였으며, 수확한고추를건조하여무게를측정하였다. 토양및식물체분석및중금속함량분석고추수확후토양시료는풍건세토하여 2 mm 체로걸러내어중금속함량분석에이용하였다. 토양의총중금속함량은왕수 ( 염산 : 질산의비 3:1) 로분해하여 (Noh et al., 2017) 중금속 As, Cd, Cu, Ni, Pb, Zn 은 ICP-OES (Inductively coupled plasma optical emission spectrophotometer, Perkinelmer ICP optima 5300DV, United states) 를이용하여측정하였고, Hg 은수은분석기 (NIC mercury analyzer MA-3000, Japan) 를사용하여측정하였다. 이후건조된알타리무는분쇄하여중금속함량측정을위한시료로사용되었다. 고추재배기간동안수확된고추는 48 시간동안건조기 (Dry oven) 에서 105 C 의온도로건조되었다. 건조된시료 1 g 을채취하여 ternary solution 으로분해시킨후 ICP-OES 로중금속의함량을측정하였다.
Accumulation of Heavy Metals in Soil Growing for Red Pepper (Capsicum annuum) with using Lime Bordeaux and Lime Sulphur Mixture 321 통계분석시험토양및작물내총중금속함량과고추수확량데이터의통계분석을위해 SAS 통계프로그램 ( 버전 9.2) 을이용하였다. 처리간의차이를비교하기위하여조사된자료는 ANOVA 검증을통하여분석하였다. F-test 결과값이 p < 0.05 의범위에서유의한경우에만최소유의차검정 (LSD) 을실시하였다. Results and Discussion 생육특성석회보르도액과유황합제를농가에서사용하는평균량으로시용하였을때고추수량은무처리와유사하게나타났으나 3배이상으로처리시수량의유의한감소가나타났다 (Fig. 1). 시용량을 9배까지증가시켰을때고추정식후 50일째에고추가고사하는결과를나타냈다. 이러한결과의원인은석회보르도액에포함되어있는다량의 Cu와 Zn에서기인된것으로판단된다. 비록 Cu와 Zn이작물의생육에필수적인원소이기는하지만토양용액내고농도의 Cu와 Zn 은다른양분의흡수를방해하여식물영양학적불균형을초래할수있다 (Panou-Filotheou et al., 2001). 또한과도한양의 Cu와 Zn 은작물내활성산소를증대시켜광합성및엽록소의합성을저해한다 (Chen et al., 2008; Dhir et al., 2008; Girotto et al., 2013; Gratao et al., 2005). 따라서과도한양의석회보르도액과유황합제의사용은고추의생육을저해하여결국고사하게될수있으므로유기농가에서는사용량의조절에각별한주의가요구된다. Plant weight (Mg ha -1, dry mass) 18.0 16.0 14.0 12.0 10.0 8.0 6.0 0.4 0.0 a a a ab 0 times 1 times 3 times 9 times b b Application rates Dry Weight of Pepper Dry Weight of Pepper Plant Fig. 1. Yield response of red pepper to application rate of Bordeaux and Sulphur mixtures. c 유기농업자재중금속함량및토양및작물내중금속함량먼저, 본시험에사용된공시토양은 As를포함한 8종의중금속함량이토양오염우려기준을초과하지않는것으로나타났다. 또한시험에사용된유기농업자재인석회보르도액내중금속함량중 Cu와 Zn의함량은각각 845 mg kg -1 과 3,477 mg kg -1 으로다른중금속에비하여상대적으로높게나타났다 (Table 2). 유황합제의경우, 다른중금속에비해 Cu와 Zn의함량이상대적으로높게나타났으나석회보르드액에비해낮은것으로조사되었다.
322 Korean Journal of Soil Science and Fertilizer Vol. 50, No. 4, 2017 Table 2. Concentration of heavy metals in Bordeaux and Sulphur mixtures used in the study. Organic amendment As Cd Cr Cu Hg Pb Ni Zn Bordeaux mixture tr 0.09 1.74 845 0.04 19.7 2.40 3,477 Sulphur mixture tr 0.64 0.89 1.39 0.08 0.61 0.64 3.75 tr: trace. Table 3. Concentration of heavy metals in soil amended with different rate of Bordeaux and Sulphur mixtures at harvest time. Application rate As Cd Cu Hg Ni Pb Zn 0 times 7.18 a tr 9.50 c tr 7.13 a 41.9 a 88 b 1 times 7.99 a tr 9.90 c tr 7.16 a 42.3 a 90 b 3 times 8.15 a tr 42.6 b tr 7.44 a 38.0 a 88 b 9 times 8.84 a tr 48.2 a tr 8.17 a 41.7 a 113 a Criteria value 25 4 150 4 100 200 300 Average value 6.2 0.16 23 0.03 15 21 80 Criteria value: Maximum permissible concentration of heavy metal in soil established by Korean Soil Conservation Act. Average value: Average concentration of heavy metals in Korean arable soils. tr: trace. 석회보르도액과유황합제의처리량을증가시킴에고추수확후토양내 As, Cd, Hg, Ni, Pb의총함량의유의한증가는없었다 (Table 3). 또한두유기농업자재를농가사용평균량의 9 배까지사용하여도토양내조사된 7종의총중금속함량은토양오염우려기준을초과하지않았다. 그러나두유기농업자재의사용량을증가시킴에따라토양내 Cu 와 Zn의총함량은유의적으로증가하였다. 특히두유기농업자재의사용량이농가사용량의 1 배를사용하였을때 Cu와 Zn의함량은무처리와통계적으로유의한차이가없었으나사용량을 3배이상으로증가시켰을때 Cu와 Zn의함량은현저히증가하였다. 이상과유사한결과는 Moolenaar and Beltrami (1998) 에의해보고된적이있다. 해당연구에서석회보르도액을연간 15,000~49,000 g ha -1 로사용하였을때토양내 Cu와 Zn의함량이각각 158 mg kg -1 과 258 mg kg -1 로 EU의 Cu와 Zn의기준치인 27 mg kg -1 과 35 mg kg -1 을초과하는것으로보고하였다. 본연구에서석회보르도액과유황합제를농가사용량의 3 배이상사용시토양내 Cu와 Zn 의함량은토양오염우려기준을초과하지않았으나우리나라밭토양의평균 Cu와 Zn 의함량에비해높은것으로나타났다. 따라서과도한양의석회보르도액과유황합제의사용은토양내 Cu와 Zn 과같은중금속의축적을유발할수있을것으로판단된다. 고추재배기간동안수확된고추내중금속의함량은조사한결과, 석회보르도액과유황합제의시용량증가에따라고추내 As, Cd, Cu, Hg, Ni, Pb 함량은높아지지않았다 (Table 4). 현재까지우리나라에는농산물내중금속에대한허용기준이 Cd과 Pb에대해서만이각각 0.1 mg kg -1 과 0.2 mg kg -1 로설정되어있다 ( 식품의약안전처, 2011). 두유기농업자재의사용에의한고추내 Cd와 Pb의함량은중금속허용기준치를초과하지않았다. 고추내 Zn 의함량은석회보르도액과유황합제의사용에따라유의하게증가하였다. 두유기농업자재의사용량을농가사용량의 1 배이상으로증가시 Zn의함량은무처리에비해약 2 배증가하는결과를나타냈다. Zn 은작물의생육에필수적인미량필수원소이지만과량흡수시오히려작물의생육을저해하여수량을낮출수있다. 고추의수량결과 (Fig. 1) 에서나타
Accumulation of Heavy Metals in Soil Growing for Red Pepper (Capsicum annuum) with using Lime Bordeaux and Lime Sulphur Mixture 323 Table 4. Concentration of heavy metals in red pepper grown in soil amended with different rate of Bordeaux and Sulphur mixtures at harvest time. Application rate As Cd Cu Hg Ni Pb Zn 0 times 1.40 a tr tr tr tr tr 0.35 b 1 times 1.45 a tr tr tr tr tr 0.67 a 3 times 1.41 a tr tr tr tr tr 0.74 a 9 times - - - - - - - Permissible safety level - 0.1 - - - 0.2 - Permissible safety level: Maximum permissible safety level for agricultureal products established by Ministry of Food and Drug Safety of Korea. tr: trace. 난바와같이두유기농업자재의사용량증가에따라수량이감소하는원인은고추내 Zn의과도한흡수량증대에서기인된것으로판단된다. 하지만본연구는고추를사용하여토양에직접처리한것으로제한적인실험결과임을감안할때, 두유기농업자재의실제사용량선정에있어서도움이될수있게다양한작물과다양한접근을통한전반적인연구가더필요하다고판단된다. Conclusions 석회보르도액과유황합제의사용량을농가평균사용량 ( 각각연간 2.56 l ha -1 와 1.28 l ha -1 ) 의 9 배까지증가시켰을때토양내 As, Cd, Cu, Hg, Ni, Pb, Zn 의함량은토양오염우려기준을초과하지않았다. 그러나토양내 Cu 와 Zn 의함량은사용량증가에따라유의적으로증가하였으며우리나라밭토양의평균함량보다높았다. 또한석회보드도액과유황합제를 3 배이상증가시고추내 Zn 함량이과도하게증가하여수량감소의원인이된것으로판단된다. 따라서유기농업재배를실시하는과수및고추농가에서는석회보르도액과유황합제사용시농산물의중금속안정성과생산성을고려하여과도한양을사용하지않도록각별한주의가요구된다. Acknowledgement This study was carried out with the support of Research Program for Agricultural Science & Technology Development (Project No. PJ010827042017), National Academy of Agricultural Science, Rural Development Administration, Republic of Korea. References Ahn, I. 2010. Setting of evaluation criteria for safety management of organic farming materials in the major OECD nations. Rural Development Administration (RDA) annual report. Korea. Buchanan, G.A. and T.G. Amos. 1992. Grape pests, p. 209-231. In: Coombe, B.G. and Dry, P.R. (ed), viticulture: Vol. 2 practices, Winetitles, Adelaide SA, Australia.
324 Korean Journal of Soil Science and Fertilizer Vol. 50, No. 4, 2017 Chen, W., X. Yang, Z. He, Y. Feng, and F. Hu. 2008. Differential changes in photosynthetic capacity, chlorophyll fluorescence and chloroplast ultrastructure between Zn efficient and Zn inefficient rice genotypes (Oryza sativa) under low zinc stress. Physiol. Plant. 132:89-101. Dhir, B., P. Sharmila, and P. Pardha Sarad. 2008. Phytosynthetic performance of Salvinia natans exposed to chromium and zinc rich wastewater. Braz. J. Plant Physiol. 20:61-70. Emmett, R.W., A.R. Harris, R.H. Taylor, and J.K. McGechan. 1992. Grape diseases and vineyard protection. p. 232-278. In: B.G. Coombe, P.R. Dry (ed), Viticulture, Practices, Vol. 2, Winetitles, Adelaide Sa. Australia. Girotto, E., C.A. Ceretta, L.V. Rossato, J.G. Farias, T.L. Tiecher, L. De Contil, R. Schmatz, G. Brunetto, M.R.C. Schetinger, and F.T. Nicoloso. 2013. Triggered antioxidant defense mechanism in maize grown in soil with accumulation of Cu and Zn due to intensive application of pig slurry. Ecotoxicol. Environ. Saf. 93:145-155. Gratao, P.L., A. Polle, P.J. Lea, and R.A. Azevedo. 2005. Making the life of heavy metal-stressed plants a little easier. Funct. Plant Biol. 32:481-494. Hyun, J.W., S.W. Ko, D.H. Kim, S.G. Han, H.S. Kim, H.M. Kwon, and H.C. Lim. 2005. Effective usage of copper fungicides for environment-friendly control of citrus diseases. Res. Plant Dis. 11:115-121. Joo, J.H., J.S. Son, and G.S. Im. 2010. Assessment of soil according to application of public announced organic materials. Korean J. Soil Sci. Fert. 1:304 (abstract). Jung, W.K., D.J. Ahn, J.K. Choi, T.S. Ryu, M.H. Jang, T.R. Kwon, J.H. Park, and S.J. Park. 2014. Effects of repetitive using lime bordeaux mixture in the copper concentration of the soil and ginseng root. J. Pestic. Sci. 18(4):404-408. KFDA (Korea Food and Drug Administration). 2011. Maximum permissible safety level for crops. Lee, S.W., G.S. Kim, K.H. Park, S.H. Lee, I.B. Jang, J. Eo, and S.W. Cha. 2012. Growth characteristic and ginsenosides content of 4-Year-Old ginseng by spraying lime-bordeaux mixture in Panax ginseng C. A. Meyer. Korean J. Med. Crop Sci. 20(2):89-93. Moolenaar, S.W. and Beltrami, P. 1998. Heavy metal balances of an Italian soil as affected by sewage sludge and bordeaux mixture applications. J. Environ. Qual. 27:828-835. Noh, Y.D., H.J. Park, K.R. Kim, W.I. Kim, K.Y. Jung, S.U. Kim, V.N. Owens, J.S. Moon, S.W. Yun, S.Y. Kim, and C.O. Hong. 2017. Contrasting effect of phosphate on phytoavailability of arsenic and cadmium in soils supporting medicinal plants. Appl. Biol. Chem. 60(2):119-128. OMRI (Organic Materials Review Institute). 2012. OMRI Product List (www.omri.org) Panou-Filotheou, H., A.M. Bosabalidis, and S. Karataglis. 2001. Effects of copper toxicity on leaves of oregano (Origanum vulgare subsp. Hirtum). Ann. Bot. 88:207-214. Park, H.J., H.H. Lee, and C.O. Hong. 2016. Monitoring of heavy metal (loid)s contamination of arable soils near industrial complexes in Gyeongnamprovince of South Korea. Korean J. Soil Sci. Fert. 49(5):589-597. Shim, C.K., M.J. Kim, Y.K. Kim, S.J. Hong, and S.C. Kim. 2014. Reducing phototoxic by adjusted ph and Control effect of loess-sulfur complex as organic farming material against powdery mildew in tomato. J. Pestic. Sci. 18(4):376-382. Tiecher, T.L., T. Tiecher, C.A. Ceretta, P.A.A. Ferreira, F.T. Nicoloso, H.H. Soriani, L.D. Conti, M.S.S. Kulmann, R.O. Schneider, and G. Brunetto. 2017. Tolerance and translocation of heavy metals in young grapevine (Vitis Vinifera) grown in sandy acidic soil with interaction of high doses of copper and zinc. SCI. HORTIC-AMSTERDAM. 222:203-212. U.S. Environmental Protection Agency (EPA). 1991. Reregistration Eligibility Document Facts: Sulfur. US EPA, Pesticides and toxic substances, (7508W), 738-F-91-110 Washington, D.C.