Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006, pp. 160-165 Cu Reflow mk Pd-Cu-Ni Š k Ç Çi iç *Çmm *Ç p **Çm ** q 443-760 oe m pp 94-6 * o 330-706 }ke } r 307 ** l v l o 305-343 re o q 71-2 (2005 11o 8p r, 2006 3o 6p r ) Characteristic of Pd-Cu-Ni Alloy Hydrogen Membrane using the Cu Reflow Dong-Won Kim, Heung-Gu Kim, Ki-Youn Um, Sang-Ho Kim*, In-Seon Lee*, Jong-Su Park** and Shin-Kun Ryi** Department of Advanced Materials Engineering, Kyonggi University, 94-6, Yiui-dong, Yeongtong-gu, Suwon, Kyonggi-do 443-760, Korea *Department of Materials Engineering, Korea University of Technology and Education, 307, Gajeon-ri, Byeongcheon-myeon, Cheonan, Chungnam 330-707, Korea **Korea Institute of Energy Research, 71-2, Jang-dong, Yuseong-gu, Daejeon 305-343, Korea (Received 8 November 2005; accepted 6 March 2006) k p pn l rs vv~ ol Ž - - p rs m. vv~ lrkr l dp ˆ lp, vv~l sp de ep m l p r} ep e ep v v ~ m. vv~p p o r ep 2µmp Ž mp, vv~ ol d ep Ž p 4µm, 0.5 µmp Ž m. pm p rs e p 700 o Cl 1e n p l n Ž - - p rs m. Ž - - p vv~m sp r p v pp -v dl p p ˆ l. h Abstract A Pd-Cu-Ni alloyed hydrogen membrane has fabricated on porous nickel support formed by nickel powder. Porous nickel support made by sintering shows a strong resistance to hydrogen embrittlement and thermal fatigue. Plasma surface modification treatment is introduced as pre-treatment process instead of conventional HCl wet activation. Nickel was electroplated to a thickness of 2 µm in order in to fill micropores at the nickel support surface. Palladium and copper were deposited at thicknesses of 4 µm and 0.5 µm, respectively, on the nickel coated support by DC sputtering process. Subsequently, copper reflow at 700 o C was performed for an hour in H 2 ambient. And, as a result Pd- Cu-Ni composite membrane has a pinhole-free and extremely dense microstructure, having a good adhesion to the porous nickel support and infinite hydrogen selectivity in H 2 mixtures. Key words: Cu Reflow, Porous Nickel Support, Pd-Cu-Ni Alloyd Hydrogen Membrane, Plasma Surface Treatment, Electroplating, Sputtering Deposition 1. l rvp p r p l p lvl l rvp o p d rs o l p v p. rsp l p l ˆk p p n dp, p r, v l sq To whom correspondence should be addressed. E-mail: dwkim@kyonggi.ac.kr ˆ d dp p kl d o l v p [1]. pm p l q p l l n rp p. ~ n p pn ml p sr kr p l, m k r l r p t p [2]. ~ o p,, p p. p k, o p p 160
p nl t Kundsen l p ~ p ˆ q l p r, q p d ~ Œ r rp p. p Ž p ~ q q p oq ˆ q p ~ p. p p ˆ n p p ~ rs n l Œ r lv rp p., p p v v~ vv~p p p }o n, l kp p Že p qrp el p. v ˆ Œ o p p [3]. p Ž p dl p p ˆr Œ v pp [4], n lr, r, rp vp v p l n. Ž p p l Ž q α l β p pl p f q p p sp Ž opp [5]. p po Ž p (Cu), p(ag), (Ni) p Ž p n [6]. pm p p rs p r [7], r [8], v [9] d [10]p rs p. sp vv~ p t n mv p, p l r, p r r p r l vv~ n l p lv p. p t d p d vv~ pn l q p lrp d p d vv~l Ž p Ž o vv~ l sq p o q r} n [11]., Ž r p o r} r t t p m l p vv~p e p, Ž p nm p 400~500 o Cl vv~ Œ l q p lp e ˆ p l vv~ r v k [12]. pl l l p vv~ r p o l pq v p n l p sq vv~ rs m. pm p rs vv~l p mr o l p r p m d v p p l Ž, Ž n s s v n Ž - - p rs l p eˆ q. 2. 2-1. ssz oo l l m p sl l vv~ Ž p r p lv l l n rp p. vv~p d p d vv~ p l q r} n nm p 400~500 o Cl l p p r r. p vv ~m d p d vv~p rp m o l p n l vv~ rs m. vv~ tp o 5µm p 80 wtím 0.15 µm p 20 wtí Cu Reflow pn Pd-Cu-Ni 161 d n l d ˆ k rs m. k vv~ v o o o l 600 o C, 3e k l lr kr r v e. 2-2. r Ž s rs vv~ l sq p o p p m. p vv~m Ž p r r o r} sp de } l e v } ~ mp, pm p r } e v } ~ p f de r} e l p p vv~p ep v pl. v v} d n l 10 m torr rk RF 100 Wp Žo 5 ee m. pm p v } vv~p p o m nk(nicl 2 -HCl-H 2 O)p n l r 2 A/dm 2 l 5 k 2µm p v s l e p mr s m. 2-3. Œ mk Pd-Cu ry vv~l Ž Ž r rl p r, Ž - Ž p r p eˆ o e v }, d pn l DC 40 Wp Žo, k d 20 sccm, rk 5 10 2 torr, Žm 400 o Cl Ž p 4µmp Ž, l rp Ž Ž ol 20 Wp Žo 0.5 µm Ž m. 2-4. k mk oo n ~ ll r(metallization process) e p o lr p n p pn l Giga pd Ž l lp eˆ p. p p pn o n rp Ž p Ž l Ž mp, n rp pn l o o l v 10 1 torr, 700 o C 1e l} l p l Ž - - p rs m. 2-5. m ˆ ~o pm p rs Ž - - p t rq (FE-SEM; JEOL JSM-6500F)p s mp, X- r (XRD) p l m., Fig. 1p redšp n l m v p 1:1 d n 2.2 psip k p l m nm p 500 o C v dm eˆ p r m. Fig. 1 p redšp p, l}, m sr, k pv/sr p p lr pp, r p n o n l d p r m. 3. y l m p p l v r o l l vv~ l p n p Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006
162 oë Ël lë Ëpp Ë s Ëpe Fig. 1. Schematic diagram of test equipment for gas permeation. 1. Mass flow controller 6. Temperature controller 2. Mixing chamber 7. Pressure controller 3. Furnace 8. Bubble flow meter 4. Membrane test unit 9. Gas chromatography 5. Thermocouple f r p, p pn vv~ r s p p e. q~ rs v v~ d ˆ rs m. p sp p l p l v p vv~ p rnl v r d v ep Ž l l k p Žp ˆp d p rs m. pm p p rs vv~p s Fig. 2l ˆ l. Fig. 2l p 5µmp pqm 0.15 µm pq n l k 600 o Cl l l µmp p sq vv~ lp pl. p sp d p d vv~l p p tp pl p o r} rp r eˆ pp rs rp r m p. p rp d pn Ž Ž e p opp p p mr, d Fig. 2. SEM micrographs of porous Ni support. o44 o2 2006 4k Fig. 3. SEM micrographs of Ni electro plating. Ž e p Ž l n ˆ vv~ p l o p p m. Fig. 2l m p sq µm p p Fig. 3 p p Žl p mr l ˆ p ov l d ep Ž Ž p r s l. pm p p p sp p tp o n l p tp l[13] p p lp p p., vv~m Ž p r p p r o ee } sp de } [14]l e v } [15, 16] ~ p f r vv l p vv~p e l p mmp v pl. d v p vv~l p l kp Ž p v eˆ l n rp p k r p [17]. l l p rp Ž Ž p o d ep Ž Ž m. p Ž Ž p e Ž p r Ž Ž p nl Fig. 4l m p r m p 700 o Cl Ž Ž Ž p p p lr Ž p l p l p l [18]., Fig. 5l m p p rp ep Ž p Ž mp l p p mr lk ll p r p ˆ [19]. l l ~ r p p r(metallization process)p giga pdž l lp eˆ [20, 21]p n p p l Ž - p rs m. p Žp p p mr vv~l d ep Ž p Ž l e Ž l p p o l r p pn l 700 o Cl n l} p l p l s Ž - - p r s pl. pm p rs Ž - - p
Cu Reflow pn Pd-Cu-Ni 163 Fig. 6. (a) SEM micrograph of Pd-Cu sputtering coating on nickel porous support, (b) SEM micrograph of reflowed Pd-Cu sputtering coating layer at 700 o C for 1 hr. Fig. 4. SEM micrograph of annealed membrane cross section of Cu- Pd sputtering coating on nickel porous support. Fig. 5. SEM micrograph of annealed Pd alloy coating layer at 700 o C for 1 hr. n r, p s Fig. 6l ˆ l. Fig. 6(a) n rp t r ˆ v Ž - Ž p l t pp Fig. 6(b) n p p l s s lt p. pm p p l s Ž p sl Ž l p n p l v. l l m p Ž p mp re q l p r v o Ž p l kk o l X- r (XRD) rs Ž - - p mp Fig. 7l ˆ l. Fig. 7(a) nrp XRD p Ž,, p o ˆ p. v, Fig. 7. (a) XRD patterns of Pd-Cu-Ni coatings before Cu reflow, (b) XRD patterns of Pd-Cu-Ni coatings after Cu reflow. Fig. 7(b)p n XRD l p p n rl p o v p p p ˆ p k p. p p Ž - d Ž p n mr o p lrpp k pl. Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006
164 oë Ël lë Ëpp Ë s Ëpe Fig. 8. SEM micrograph of membrane cross section. Fig. 8p r Ž - - r p t rq (SEM) vp. vl k p p Ž vv~ e p p p p. p Ž p vv~ v kk Ž p p vp ˆ vv~ vp ˆ l rp p p ˆ pp p l v., ne, Ž p p lr p q l r v pp p., l l p r p n Ž,, p n p f vv~m Ž p p r n p ˆ p. l l l d Žp rs n pn Ž - - p v m p 1:1 d 2.2 psip k l nm p 500 o C v dmeˆ (selectivity) Œ (permeance) Fig. 1p r e dšp n l r 6 ml/atm cm 2 minp Œ m p (H 2 ) p ˆ l. pm p p p l l lv d v p rs Ž p (H 2 )[9] ep rs Ž p (H 2 )[22]m p n n l v. l Ž n ee l rs Ž - - p p p ˆ pl p sp l ˆ p o lr p n l Že n mr eˆ pl p. pm p Ž,, n p f sp vv~m l lv rr p l n n p v Ž p rs pl. 4. sl n vv~m d p d dž vv~p r rp o p n l d n o44 o2 2006 4k Fig. 9. Dependence of Permeability and selectivity on Temperature for Pd-Cu-Ni alloyed membrane under 2.2 psi pressure (Inlet: 50 H 2 +50 N 2 ). vv~ rs m., s de } v ep e v ep ~ p l p vv~ e p v k vv~m Ž p r p rm. p rs v v~ l p p e n p p rm p. vv~ol Ž p d Ž l o lr p n d Žeˆ n p lp r p n Ž - - o p rs m. pm p l Ž n rs Ž - - o p v v l lm ˆ l l p p n n m. p rs n on pm p p v p p l rv,, d p ~ l k p rrl l p pp p. l p 21 Žl l lp p ˆ r } l p l vop l d. y 1. Cheng, Y. S. and Yeung, K. L., Palladium-Silver Composite Membranes by Electroless Plating Technique, J. Membr. Sci., 158, 127-141(1999). 2. Marshall, A. D., Munro, P. A. and Tragardh, G., The Effect of Protein Fouling in Microfiltration and Ultrafiltration on Permeat Flux, Protein Retention and Selectivity, Desalination, 91(1), 65-108(1993). 3. Lee, S.-J., Cho, I.-H., Kim, H.-Y., Yang, S.-M. and Park, S.-B.,
Cu Reflow pn Pd-Cu-Ni 165 Preparation and Characterization of Pd/Al 2 O 3 Composite Membrane Supported on Porous Alumina Tube by Sol-gel Method, Kor. J. Inst. Chem. Eng., 33, 29-38(1995). 4. Mcbride, R. B. and McKinley, D. L., A New Hydrogen Recovery Route, Chem. Eng. Prog., 61, 81(1965). 5. Lewis, F. A., The Palladium Hydrogen System, Academic Press, London(1967). 6. Hoang, H. T., Tong, H. D., Gielens, F. C., Jansen, H. V. and Elwenspoek, M. C., Fabrication and Characterization of Dual Sputtered Pd-Cu Alloy Films for Hydrogen Separation Membranes, Mat. Let., 58, 525-528(2004). 7. Ho, C. C. and Zydney, A. L., Effect of Membrane Morphology on the Initial Rate of Protein Fouling during Microfiltration, J. Membr. Sci., 155(2), 261-275(1999). 8. Nam, S.-E. and Lee, K.-H., A Study on the Palladium/nickel Composite Membrane by Vacuum Electrodeposition, J. Membr. Sci., 170, 91-99(2000). 9. Jun, C.-S. and Lee, K.-H., Palladium and Palladium Alloy Composite Membranes Prepared by Metal-organic Chemical Vapor Deposition Method (cold-wall), J. Membr. Sci., 176, 121-130(2000). 10. Checchetto, R., Bazzanella, N., Patton, B. and Miotello, A., Palladium Membranes Prepared by r.f.magnetron Sputtering for Hydrogen Purification, J. Membr. Sci., 177-178, 73-79(2004). 11. Nam, S.-E., Lee, S.-H. and Lee, K.-H., Preparation of a Palladium Alloy Composite Membrane Supported in a Porous Stainless Steel by Vacuum Electrodeposition, J. Membr. Sci., 153, 163-173(1999). 12. Ryi, S. K., Park, J. S., Choi, S. H., Cho, S. H. and Kim, S. H., Fabrication and Chracterization of Metal Prous Membrane Made of Ni Powder for Hydrogen Separation, Separation and Purification Technology(to be accepted). 13. Jemaa, N., Shu, J., Kaliaguine, S. and Grandjean, B. P. A., Thin Palladium Film Formation on Shot Peening Modified Porous Stainless Steel Substrates, Ind. Eng. Chem. Res., 35, 973(1996). 14. Maridilovich, P. P., She, Y., Ma, Y. H. and Rei, M-H., Defectfree Palladium Membranes on Porous Stainless-steel Support, AICHE J., 44, 310(1998). 15. Kim, D. W., Kim, D. G., Lee, E. J., Lee, W. J. and Lee, Y. S., Method and Apparatus for Coating Electromagnetic Wave Shielding Films, United States Patent, US 6,406,601 B1(2002). 16. Kim, D. W., Kim, D. G., Park, J.-K. and Km, S.-H., Adhesion of Cu on Polycarbonate Modified by O 2 /Ar Plasma Treatment, J. Kor. Mater. Res., 12, 740-746(2002). 17. Jayaraman, V., Lin, Y. S., Pakala, M. and Lin, R.Y., Fabrication of Ultrathin Metallic Membranes on Ceramic Supports by Sputter Deposition, J. Membr. Sci., 99, 89(1995). 18. Kim, D. W., Um, K. Y., Kim, H. G., Lee, I. S., Kim, S. H. and Park, J. S., A Pd-Cu-Ni Ternary Alloyed Membrane on Prous Nickel Support Prepared by Sputtering and Copper Reflow, Jpn. J. App. Phy., 44, 233-234(2005). 19. Kulprathipanja, A., Alptekin, G. O., Falconer, J. L. and Way, J. D., Pd and Pd-Cu Membrane: Inhibition of H 2 Permeation by H 2 S, J. Membr. Sci., 254, 49-62(2005) 20. Lee, S. Y., Kim, D. G., Rha, S. K., Park, C. O. and Park, H. H., Reflow of Copper in an Oxygen Ambient, J. Vac. Sci. Tech., 16, 2902-2905(1998). 21. Kim, D. W. and Kim, H. M., Method of Patterning and Manufacturing Semiconductor Devices, Korea Patent 0058667(1999). 22. Roa, F., Way, J. D. and Robert, L., Preparation and Characterization of Pd-Cu Composite Membranes for Hydrogen Separation, J. Chem. Eng., 93, 11-22(2003). Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006