114-01(07-19).fm

Similar documents
歯1.PDF

012임수진

γ

10(3)-10.fm


Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

12.077~081(A12_이종국).fm

I 서론 치과용 임플란트는 Brånemark 등1의 골유착 (osseointegration) 발견 이후 끊임없는 발전 을 거듭해 왔다. Brånemark 등 1 이 밝혀낸 골 유착은 임플란트의 표면과 living bone 사이에 연조직 층 의 생성이 없이 직접 골조직이

( )Kju269.hwp

09È«¼®¿µ 5~152s

본문.PDF

Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

03이경미(237~248)ok

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

605.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

실험변수로전류, 전압, 주파수, 전해질, 열처리등의조건을달리한실험군들의거칠기, 미세구조, 결정구조등을조사하고, 이를인공체액 (SBF; simulated body fluid) 에침지 ( ; soaking) 하여표면성질및산화막의변화가골과직접결합하는생체활성도 (bioacti

°ø±â¾Ð±â±â

DBPIA-NURIMEDIA

14.531~539(08-037).fm

<35BFCFBCBA2E687770>

:,,.,. 456, 253 ( 89, 164 ), 203 ( 44, 159 ). Cronbach α= ,.,,..,,,.,. :,, ( )

Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp DOI: 3 * Effects of 9th

43-5.fm

untitled

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

농학석사학위논문 폴리페닐렌설파이드복합재료의기계적및열적 특성에영향을미치는유리섬유 환원된 그래핀옥사이드복합보강재에관한연구 The combined effect of glass fiber/reduced graphene oxide reinforcement on the mecha

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

fm

82-01.fm

Lumbar spine

상담학연구,, SPSS 21.0., t,.,,,..,.,.. (Corresponding Author): / / / Tel: /

93.fm

. 45 1,258 ( 601, 657; 1,111, 147). Cronbach α=.67.95, 95.1%, Kappa.95.,,,,,,.,...,.,,,,.,,,,,.. :,, ( )

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종

DBPIA-NURIMEDIA

<C7D1B1B9B1A4B0EDC8ABBAB8C7D0BAB85F31302D31C8A35F32C2F75F E687770>

,,,.,,,, (, 2013).,.,, (,, 2011). (, 2007;, 2008), (, 2005;,, 2007).,, (,, 2010;, 2010), (2012),,,.. (, 2011:,, 2012). (2007) 26%., (,,, 2011;, 2006;

歯 PDF

Berechenbar mehr Leistung fur thermoplastische Kunststoffverschraubungen

139~144 ¿À°ø¾àħ

현대패션의 로맨틱 이미지에 관한 연구

27 2, 17-31, , * ** ***,. K 1 2 2,.,,,.,.,.,,.,. :,,, : 2009/08/19 : 2009/09/09 : 2009/09/30 * 2007 ** *** ( :

hwp

歯5-2-13(전미희외).PDF


16(5)-06(58).fm


< DC1A4C3A5B5BFC7E22E666D>

Microsoft Word - KSR2013A320

DBPIA-NURIMEDIA

1. 서론 1-1 연구 배경과 목적 1-2 연구 방법과 범위 2. 클라우드 게임 서비스 2-1 클라우드 게임 서비스의 정의 2-2 클라우드 게임 서비스의 특징 2-3 클라우드 게임 서비스의 시장 현황 2-4 클라우드 게임 서비스 사례 연구 2-5 클라우드 게임 서비스에

44-4대지.07이영희532~

92-04.fm

<3136C1FD31C8A320C5EBC7D52E687770>

19(1) 02.fm

fm

DBPIA-NURIMEDIA

64.fm

Alloy Group Material Al 1000,,, Cu Mg 2000 ( 2219 ) Rivet, Mn 3000 Al,,, Si 4000 Mg 5000 Mg Si 6000, Zn 7000, Mg Table 2 Al (%

10(3)-12.fm

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

untitled

14.fm

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: * Strenghening the Cap

04-다시_고속철도61~80p

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

4ÃÖÁØ¿µ

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

歯_ _ 2001년도 회원사명단.doc

DBPIA-NURIMEDIA

김범수

기관고유연구사업결과보고

fm

304.fm

한국성인에서초기황반변성질환과 연관된위험요인연구

04조남훈

원위부요척골관절질환에서의초음파 유도하스테로이드주사치료의효과 - 후향적 1 년경과관찰연구 - 연세대학교대학원 의학과 남상현

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: (LiD) - - * Way to

08원재호( )

16(1)-3(국문)(p.40-45).fm

untitled

Journal of Educational Innovation Research 2017, Vol. 27, No. 1, pp DOI: NCS : G * The Analy

fm

<30382EC0C7C7D0B0ADC1C22E687770>

fm

Can032.hwp

도비라

10.063~070(B04_윤성식).fm

11¹Ú´ö±Ô

제 출 문 경상북도 경산시 농업기술센터 귀하 본 보고서를 6차산업수익모델시범사업 농산물가공품개발 연구용역 과제의 최종보고서로 제출합니다 년 11 월 19 일 주관연구기관명 : 영남대학교 총괄연구책임자 : 한 기 동 연 구 원 : 김 상 욱 이 수 형 이 상

54 한국교육문제연구제 27 권 2 호, I. 1.,,,,,,, (, 1998). 14.2% 16.2% (, ), OECD (, ) % (, )., 2, 3. 3

06.fm

07.045~051(D04_신상욱).fm

135 Jeong Ji-yeon 심향사 극락전 협저 아미타불의 제작기법에 관한 연구 머리말 협저불상( 夾 紵 佛 像 )이라는 것은 불상을 제작하는 기법의 하나로써 삼베( 麻 ), 모시( 苧 ), 갈포( 葛 ) 등의 인피섬유( 靭 皮 纖 維 )와 칠( 漆 )을 주된 재료

03-서연옥.hwp

300 구보학보 12집. 1),,.,,, TV,,.,,,,,,..,...,....,... (recall). 2) 1) 양웅, 김충현, 김태원, 광고표현 수사법에 따른 이해와 선호 효과: 브랜드 인지도와 의미고정의 영향을 중심으로, 광고학연구 18권 2호, 2007 여름

아태연구(송석원) hwp

<BABBB9AE2E687770>

Transcription:

Biomaterials Research (2007) 11(4) : 170-175 Biomaterials Research 7 The Korean Society for Biomaterials y z e w pk t p w Study of Titanium Surface Characteristics Treated with Alkali after Anodic Oxidation ½ 1,2Á 1Á½ 3Á 4Á k 2Á 1,5* Myung Duk Kim 1,2, Ji Won Shin 1, In Ae Kim 1, Su A Park 3, Tae gwan Eom 2, and Jung-Woog Shin 1 1fh Š f Š Š fd Š, 2 f ƒ(j) f ƒ 3 d Š, x Š tg Š 4Š e 5fh Š, FIRST, f Še l Dept. of Biomedical Engineering, Inje University 2 Implant R&D Center of OSSTEM IMPLANT Co., Ltd. 3 Dept. of Dental Biomaterials Science and Dental Research Institute, School of Dentistry, Seoul National University 4 Dept. of Future Technology, Korea Institute of Machinery & Materials 5 FIRST Research Group, Institute of Biomedical Engineering, Inje University (Received Ocotber 5, 2007/Accepted November 20, 2007) The purpose of this study is to evaluate reactions of the MG-63 cells to the changes of the surface characteristics resulting from the alkali treatment on the anodic oxidized titanium (Grade 3) surface. For this study, the groups were classified into three as follows. 1) Group 1: blasted surface with hydroxyapatite powders whose diameters were ranged between 300~600 µm. 2) Group 2: anodic oxidized surface in electrolyte of 0.25 M H 2 SO 4 and H 3 PO 4 at 300V and 0.09 A/cm 2. 3) Group 3: treated surface in the same way as those in Group 2 followed by alkali treatment of 2 M NaOH for 24 hrs at 60 o C. The porous layers were observed in Group 2 while nano-sized radial type cilia structures were observed in Group 3 through the SEM. The measurements of surface roughnesses showed that Group 1 has higher average values of Ra (arithmetical mean deviation of the profile) than the other groups. The Contact angle was measured least in Group 3 (8.1 ± 1.3 o ). Reactions of MG-63 cells to each group were also evaluated for 4 hrs, 3, 7 and up to 10 days. The results of the DNA contents showed a significant increase of the cell proliferation for all groups with time, and the increases were observable in Group 3. ALP activities were decreased significantly in all groups with time, while the decrease was reduced after 7 days. Significantly more calcium were produced in Group 3 compared to other groups. In this study, alkali treatment of the anodic oxidized titanium surface resulted in the fine nano-sized radial type cilia structures on the porous, micro-sized oxide layer. From all the data obtained through this study, this nano-sized structure has a potential of promoting the osseointegration in dental implant. However, further studies with animals and histological evaluation about these results are recommended. Key words: Anodic oxidation, Alkali treatment, Nano-sized radial type cilia structures, Porous oxide layer, MG-63 cells e d f ƒf f eš f ƒf g, ƒ, ff, l,, f ƒf Š ~ f i Š 1). f j xi f f g lhh f 1rhf f x f f ƒf g ƒ f. x d f ƒf g thš h, hšf d Š ~ (Ti)f j d f. ~ f f ƒ h f j v (O 2 ) fš ƒ (Å) f ~ Œ (TiO 2 ) *sf hf: sjw@bme.inje.ac.kr f Œ Š 1,2) f t Œ f lf thš f d Š g h f. f ƒf f f hf er er f v ~ er f ~ eš jdš Šf Š fff. hf erf eš Š s f f. t ~ HA f t Œ lf z Š x Š f h t hf f Š lš. Wennerberg 3,4) f f i ihš x l ~ f f ƒ f f h Š ~ Š f l x x er hf f Š 4). ~ f Šf ~ eš d f ~ f t 170

Œ x s Š ~ ƒ Š 171 Œ f jdš eff f h ~ Œ Š lš 5,6). j Œ f g f d Š Œ f Œ i, ihš f hhf f f ƒ ff er f l ~ f Š 7,8). u Œ Šh s fdš Œ ƒ (NaOH) d xh ~ s Š (Mg 2+ ) f (F) xh z f ƒ f ŒŠh ff l ~ f Š f lš f. Sul 9) f Œ f Š z f ff Š, Ellingsen 10) Cooper 11) f Œ ~ f ƒ f f x f s Š f f f e Š Š. Š Kim 12,13) f ~ f Œ ƒ d xh ~ s Š f f SBF (Simulated Body Fluid) xh z Œf f Œ z. Šl r f s h f lš h f hdš eš g f h Š v Š f h Š. s hf Œ Š ef f Š ŠdŠ. Œ ~ f Œ ƒ d xh z f ƒ Œ f f x f Œs x l ~ f Š f Š. x d f ƒ d ~ (ASTM Ti Grade 3)f l 12 mm, 1 mmf } Œ~ Š f 3 l f s Š. Group 1. Resorbable Blasting Media(RBM) ~ 300~600 µm l f Œf (HM2002) f 4 MPaf f Š x Œf f h Š eš 15%f l d f sf Š. Group 2. Anodic oxidation DC hhe gx (DV156-51B, Dong-yang Electronics, Korea)f f Š, f f Š. hšlf l 0.25 Mf Œ (H 2 SO 4 ) 0.25 Mf f (H 3 PO 4 ) d f ŒŠŠ dš. Œ f h 0.09 A/cm 2 hš h f 300 V l z 20 elš. f hšlf 10~20 o C el z. Figure 1f ~ f Œ eš f. Figure 1. Schematic drawing of the anodizing apparatus. Group 3. Alkali treatment after anodic oxidation Group 2 f f Œ ~ f 2 Mf Œ ƒ d 24 xh z. f xh 60 o C elš. t p Œ f j hf (Field Emission-Scanning Electron Microscopy, FE-SEM, S-4300SE, HITACHI, Japan)f fdš 2k, 5k, 30kf e rš. x ht i wh (FTSS S5, Taylor Hobson Ltd, UK) fdš whš. wh f 2 mm, y f 0.025 mm whš d Š f dš Ra f. f x f ht wh (OCA15+, Dataphysics Int, Germany) f ŒfŠ f l ht f whš. whf fff f ~Š i, df ht f whš. t s sƒ f Š i f ff Š eš MG-63 (human osteoblast-like cell, Korean Cell Line Bank, Korea)f 1 10 cells/discf 5 iš. 10% f FBS (Fetal Bovine Serum, Hyclone, USA) antibiotics Š DMEM-LG (Dulbecco's Modified Eagle's Medium- Low Glucose, Gibco BRL, USA) f Œ e Š eš 1 10-8 Mf dexamethasone (Sigma) 50 µg/mlf ascorbic acid (Sigma) 10 mmf β-glycerophosphate (Sigma) t Š dš. r f l Œ Š ff Š eš 6 f f dš 4, 3f, 7f, 10f f DNA f w hš ALP (Alkaline Phosphatase) Œ x f wh Š. Vol. 11, No. 4

172 김명덕 신지원 김인애 박수아 엄태관 신정욱 DNA contents 세포의 증식은 DNA 정량 키트 (PicoGreen dsdna Quantitation Kit, Molecular Probes, USA)를 이용하여 측정하였 다. 이를 위해 PicoGreen dye를 세포 추출액에 넣고, 빛을 차단시킨 상태에서 5분 동안 실온에서 반응시킨 후 흡광도 측 정기 (Synergy HT Multi-Detection Microplate Reader, BioTek Instruments, Inc., USA)를 이용하여 480 nm~520 nm 파장에서 형광도를 측정하였고 표준용액은 λdna (Molecular Probes)를 사용하였다. ALP activity 골아세포로의 분화를 평가하기 위해 ALP 정량 키트 (104사용하여 DNA 측정시 세포 추출액을 녹 여내는 방법과 같이 시행하였다. 이를 세포 추출액과 p-np standard 용액과 ALP mixture 용액을 교반하여 37 C에서 30 분간 반응시킨 후, 1 N NaOH로 반응을 중단시켰다. 유출액 내의 ALP의 활성도를 계산하기 위해 흡광도 측정기를 이용하 여 405 nm에서 흡광도를 측정하였다. 측정된 값은 DNA 값 으로 나누어 정량화하였다. LL, Sigma, USA)를 o Calcium assay 각 시편에 1 M의 HCl을 넣고 24시간 동안 rotatory shaker 에서 교반한 뒤 Calcium assay kit (Diagnostic Chemicals Limit, USA)를 추출액의 100배로 넣고 다시 교반한 후 650 nm의 파장으로 흡광도를 측정하였다. 측정된 값은 DNA 값으 로 나누어 정량화하였다. 통계분석(Statistical analysis) 표면의 상태에 따른 세포의 증식 및 분화 정도에 대한 결과 는 통계분석을 실시였다 (p < 0.05) 데이터의 통계적 신뢰성 확보를 위해 범용 통계 프로그램인 SPSS (Ver.10.0, Standard Package Inc., USA)를 이용하여 일원 분산 분석 (ANOVA)을 실시하였고, 다중 분산 비교는 LSD 방법을 이용하였다. 결 과 표면 특성 분석 Figure 2는 각 군의 형상을 SEM으로 관찰한 결과이다. 수산 화인회석 분말을 고압에서 표면에 분사시켜 만든 1군은 표면 에 불규칙한 거칠기가 형성되었다. 양극산화 처리한 2군은 2~4 µm 크기의 3차원 기공이 생성되었다. 마지막으로 양극산 화 된 2군의 표면을 알칼리 용액에 침적시킨 3군은 양극산화 에 의한 다공성 구조가 유지되면서 표면 전체에 200~500 nm 간격으로 미세한 섬모형상의 돌기 구조가 동반되는 것을 Figure 2. SEM morphology on the surfaces: Group 1. RBM, Group 2. anodic oxidation, Group 3. alkali treatment after anodic oxidation. Biomaterials Research 2007

Œ x s Š ~ ƒ Š 173 Figure 3. Surface roughness: Group 1. RBM, Group 2. anodic oxidation, Group 3. alkali treatment after anodic oxidation (n=6, p<0.05). rš f. f x Figure 3 f j Raf } 1 (Ra=1.42 ± 0.11 µm, Rz=4.30 ± 0.27 µm), 2 (Ra=0.96 ± 0.06 µm, Rz=4.06 ± 0.14 µm), 3 (Ra=0.79 ± 0.07 µm, Rz=3.39 ± 0.21 µm)f f ef f rf ~. 3 f d Œ fš i Š Œ f i Œ Š 2 Š Ra f 18% ~. Šl f x Figure 4 f ht f g f ~. ht Š f 1 f 71.1 ± 4.5 o, 2 f 38.1 ± 7.6 o, 3 f 8.1 ± 1.3 o f e f f rf. t s DNA contents f l h Figure 5 f f l l Š 10fm 2~2.5 l l. 3 f d 3f m 1 efš, 3, 7, 10f Šhf efš rf f xhf ~. ALP activity t f Œ s f ALPf Œ DNA h Figure 5. DNA contents of MG-63 cells on the surfaces: Group 1. RBM, Group 2. anodic oxidation, Group 3. alkali treatment after anodic oxidation (n=6, p<0.05). Figure 6. Normalized ALP activity of MG-63 cells on the surfaces: Group 1. RBM, Group 2. anodic oxidation, Group 3. alkali treatment after anodic oxidation (n=6, p<0.05). ŒŠ Figure 6 f t 4 Š hf efš h. Š f e f f Š 3 f 3f 10f 1 2 efš. Figure 4. Contact angle on the surfaces: Group 1. RBM, Group 2. anodic oxidation, Group 3. alkali treatment after anodic oxidation (n=6, p<0.05). Figure 7. Normalized calcium depositions of MG-63 cells on the surfaces: Group 1. RBM, Group 2. anodic oxidation, Group 3. alkali treatment after anodic oxidation (n=6, p<0.05). Vol. 11, No. 4

174 Á leá f Á Á ~ Á hd Calcium assay f Œ s f x f f Š DNA f h ŒŠ Figure 7 f 1 2 f t 3 f 7f 10f efš Š. Šl 3 f d 7fm x f f l Š 10fm Š f, hthf Š 1.5 f f x f wh. š x d f ƒ er f vš f hf eš jdš hf. er f f ƒf ƒ hš f. f hf x d f ƒf ƒ f Œ z er f v ~ f f Š f Š. f e Š ~ f ŒŠ x d xh z f } f Œ i Œ ~ f Œ x f f f. f f Œ f x, i, f x f f r l f j Š 14~18). Œ x s Š f SEMf r Š Œ fš f} } f 200~500 nm f Š Œ i Œ } f Œ fš ih fhf l 19). f x Wennerberg 4) f Š x f f ƒ f ƒ h f Š x 1.11 µm 2.01 µm 1.45 µmf i f efš Š. f f ŒŠ x f ff il f Š e Š, hhš x igš f f 3,4,20). Š Anil 19) f Œ ƒ s Š polymer } f x e f f f Š f} e sub- f} ef x l f l e Š. f x f g x, ff Œ Œ x s Š f. Šl f l x f Œ x s Š f g e Š f f x Ra 0.79~1.42 µm j x fš f rf f l fš f } f f. l Œ x s Š f } f Š Œ f hf l ~f ƒ f f ƒf Š el f f df f. f x f ht f Œf Š Œ f ht f 38.1 ± 7.6 o f Š x d xh ~ f 8.1 ± 1.3 o f x f fff f. Šl f x f f f h hf e Š fd Š Š v ŠdŠ. ƒ f ff ŒfŠ eš l f f Š DNA f ŒfŠ h ef f f Œ x s Š f xhf f Š f Œf s x Š 1.5 f f h ef f ~. f Œ l ALPf Œ 3f, 10f Š f f l ALP Œ f l f hf 10fm l DNA f l Š l f DNA f h ŒŠ ALP Œ Š f 14). 10f f f g rf Š DNA l Œ f Œ d Š h ALPf f l f f. Š f ƒ MG-63 f Œƒ f BMSCs (Bone Marrow Stromal Cells) f stem cell Š eff ev. f l f Œ Œ h hf f l h l BMSCs f Š Œ hf 21,22) ƒ ŠdŠ. Œ x s Š f Œ Š Œ f i Œ Š Œ MG-63 f l x efš ff f ŒfŠ. f Š ef f Œ fš Œ f } } l f x Œ f x d xh z Œ ef Š Œ f f x f e Š fd f. h f} } f Œ } f Š Œ i l f f ƒ ff hf Š f x fš Œ Šhf Šf f f d i Š f h Š. Šl Šhf ƒ j er x ff Š f v hf Š dš. Š g hf h f f h ƒ in vivo f Š e Šd Š f. Œ fš ~ Œ f} } f Œ f x d xh z } f Š Œ f i Œ Š f. x s Œ f Œ x Ra f 18%, f x f ht f 4.7 Š. f Š, ŒŠh ƒ f Œ MG-63 f f f x. f l f 3fm f x Œ 1 ef f f Š f 7f, 10f h ef f f ~. Š Œ ~ x f 3f, 7f, 10f ef f ~. f Š x f h ƒ f f x Biomaterials Research 2007

Œ x s Š ~ ƒ Š 175 f ŒŠh ƒ fš f fff j f. Šl ALPf Œ t 4 hr f, 3f, 10f hf efš h. f i Œ x s fš ƒ Œ f l f x Œ e Š f ALP Œ Šl Š f ~. š x 1. D. M. Brunette, P. Tengvall, M. Textor et al., Titanium in medicine, 1th ed., New York, Springer, 1-13 (2001). 2.X. Liu, P. K. Chu, and C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Mater. Sci. & Eng., R47, 49-121 (2004). 3. A. Wennerberg, A. Ektessabi, T. Albrektsson et al., A 1-year follow-up of implants of differing surface roughness placed in rabbit bone, Int J Oral Maxillofac Implants, 12, 486-494 (1997). 4. A. Wennerberg, The importance of surface roughness for implant incorporation, Int J Mach Tool Manufact, 38, 657-62 (1998). 5. J. C. Keller, C. M. Wightman, and R. A. Zaharias, Characterization of titanium implant surfaces III, J. Biomed. Mater. Res., 28, 939-946 (1994). 6. C. Larsson, P. Thomsen, J. Lausmaa et al., Bone response to surface modified titanium implants: studies on electropolished implants with different oxide thicknesses and morphology, Biomaterials, 15, 1062-1074 (1994). 7. Y. T. Sul, C. B. Johansson, Y. Jeong et al., Oxidized implants and their influence on the bone response, J. Mater. Sci. Mater. Med., 12, 1025-1031 (2001). 8. Y. T. Sul, C. B. Johansson, Y. Jeong et al., Resonance frequency and removal torque analysis of implants with turned and anodized surface oxides, Clin. Oral. Impl. Res., 13, 252-259 (2002). 9. Y. T. Sul, C. B. Johansson, A. Wennerberg et al., Optimum surface properties of oxidized implants for reinforcement of osseointegration: surface chemistry, oxide Thickness, Porosity, Roughness, and Crystal Structure, Int. J. Oral. Maxillofac. Implants., 20, 349-359 (2005). 10. J. E. Ellingsen, C. B. Johansson, A. Wennerberg et al., Improved retention and bone-to-implant contact with fluoride-modified titanium implants, Int. J. Oral. Maxillofac. Implants, 19, 659-666 (2004). 11. L. F. Cooper, Y. Zhou, J. Takebe et al., Fluoride modification effects on osteoblast behavior and bone formation at TiO 2 gritblasted c.p. titanium endosseous implants, Biomaterials, 27, 926-936 (2006). 12. H. M. Kim, F. Miyaji, T. Kokubo et al., Preparation of bioactive Ti and its alloys via simple chemical surface treatment, J. Biomed. Mater. Res., 32, 409-417 (1996). 13. H. M. Kim, T. Himeno, M. Kawashita et al., Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid, J. Biomed. Mater. Res., 67A, 1305-1309 (2003). 14. L. H. Li, Y.M. Kong, H. W. Kim et al., Improved biological performance of Ti implants due to surface modification by micro-arc oxidation, Biomaterials, 25, 2867-2875 (2004). 15. X. Zhu, J. Chen, L. Scheideler et al., Effects of topography and composition of titanium surface oxides osteoblast responses, Biomaterials, 25, 4087-4103 (2004). 16. J. Lincks, B. D. Boyan, C. R. Blanchard et al., Response of MG- 63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition, Biomaterials, 19, 2219-2232 (1998). 17. K. Anselme, M. Bigerelle, B. Noel et al., Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses, J Biomed Mater Res, 49, 155-166 (2000). 18. F. Rupp, L. Scheideler, D. Rehbein et al., Roughness induced dynamic changes of wettability of acid etched titanium implant modifications, Biomaterials, 25, 1429-1438 (2004). 19. T. Anil, C. Derick, Miller et al., Nano-structured polymers enhance bladder smooth muscle cell function, Biomaterials, 24, 2915-2926 (2003). 20. K. Suzuki, K. Aoki, K. Ohya, Effects of surface roughness of titanium implants on bone remodeling activity of femur in rabbits, Bone, 21, 507-514 (1997). 21. D. D. Deligianni, N. D. Katsala, P. G. Koutsoukos et al., Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength, Biomaterials, 22, 87-96 (2001). 22. K. Nishio, M. Neo, H. Akiyama, et al., The effect of alkali- and heat-treated titanium and apatite-formed titanium on osteoblastic differentiation of bone marrow cells, J. Biomed. Mater. Res., 52, 652-661 (2000). Vol. 11, No. 4